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Supplementary Figure 1: Illustration of the forward (4) and backward (-) reflection and transmission coef-

ficients. For a bi-anisotropic unit cell, the forward and backward transmission coefficients are identical, while the reflection

phases are different for different directions
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Supplementary Figure 2: Control of the asymmetric response with side-loaded resonators. (a) Single resonators
and the corresponding equivalent circuit. (b) Asymmetric cell with two resonators and the equivalent circuit. (c) Asymmetric

cell with three resonators and the equivalent circuit.
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Supplementary Figure 3: Gradient metasurface for anomalous refraction (6; = 0° and 6; = 80°). (a) Values of the
impedance matrix in one period of the metasurface and (b) impedances of the three resonators when I = \o/4 which produce

the desired response.
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Supplementary Figure 4: Setups of the standard 4-microphone method. =z, z2, 3, x4 shows the location of the

microphones, z¢ is the location of the unit cell. A, B, C, D shows the incoming and outgoing plane waves. Measurements are

performed with two different boundaries at the end of the tube.
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Supplementary Figure 5: Simulated acoustic field (real part) of the designed perfect metasurface for 6; = 0°
and 6; = 60° using the proposed non-resonant structures. Lossless simulation (left) and simulation with viscous loss

(right) in air.
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Supplementary Figure 6: Comparison between transfer matrix method and numerical simulations. The param-
eters are the same as in Fig.2. (a) shows the Amplitudes of the transmission and reflection coefficients; (b) shows the phase of
transmission coefficients; (c) shows the phase of reflection coefficients. In a bi-anisotropic unit cell, only reflection phases are

different for both directions.
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Supplementary Figure 7: The evolution of the cost function with the evolution of the algorithm. The figure

shows 10 convergence plots.
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Supplementary Figure 8: Comparison of 3-resonator design and 4-resonator design.
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Resonator A Resonator B Resonator C Resonator D coefficients
Cell | wi(mm) | wa (mm) | fu (cH) | wy (mm) | £, (kHo) | we (mm) | fo (kH2) | wq (mm) | f4 (cHo) rt r o
1 2.4 7.6 4.61 6.1 5.21 4.3 6.30 4.0 6.54 -0.24+4-0.391 0.46-0.001 -0.7740.44i
2 3.2 6.8 4.78 5.3 5.48 5.6 5.32 5.1 5.59 -0.13-0.14i 0.18-0.06i -0.95-0.251
3 3.5 6.5 4.86 4.2 6.14 4.1 6.22 4.6 5.86 0.28-0.08i 0.16-0.24i -0.57-0.771
4 4.6 5.4 5.24 4.9 5.52 2.8 7.34 4.6 5.71 0.31+0.028i 0.29-0.30i -0.04-0.91i
5 4.6 5.4 5.24 3.0 7.10 1.0 11.23 1.9 8.78 0.0140.45i 0.37-0.25i 0.41-0.79i
6 6.8 3.2 6.63 3.1 6.73 0.1 16.20 0.1 16.20 -0.204-0.171 0.25-0.08i 0.85-0.451
7 1.4 8.6 4.52 6.1 5.50 6.9 5.13 2.4 8.91 0.68-0.111 0.18-0.67i 0.484-0.54i
8 1.9 8.1 4.54 7.8 4.64 7.0 4.94 5.6 5.59 0.01-0.11i 0.08-0.08i 0.904-0.42i
9 2.1 7.9 4.56 7.6 4.67 6.5 5.10 5.8 5.43 0.464-0.14i 0.28-0.39i 0.28+-0.83i
10 2.1 7.9 4.56 6.8 4.97 4.9 5.95 5.7 5.48 0.3740.43i 0.47-0.31i -0.114-0.82i
11 2.2 7.8 4.58 6.6 5.03 3.9 6.69 4.7 6.06 0.044-0.53i 0.52-0.12i -0.504-0.68i

Supplementary Table 1:

Design parameters and resonance frequencies of the individual resonators of the

scattering-free bianisotropic metasurface to steer a normal incident wave toward 6; = 60°, implemented with

11 cells within one period.
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Cell | cost(%) | w (mm) | w; mm) | we (mm) | wp (mm) | we (mm) | wg (mm) rt ro t*
1 17.42 30.4 10.4 9.1 7.5 114 10.2 -0.334+0.391 | 0.23-0.45i | -0.484-0.72i
2 4.50 30.4 11.9 6.5 16.2 8.6 16.0 -0.04-0.511 | 0.39-0.34i | 0.794-0.32i
3 1.52 30.4 15.6 9.2 7.2 2.0 3.5 0.074-0.53i | 0.38-0.37i 0.27-0.80i
4 5.94 30.4 10.9 10.6 10.6 5.2 1.7 -0.06-0.44i | 0.33-0.31i | -0.84-0.301

Supplementary Table 2: Design parameters of the individual resonators of the scattering-free bianisotropic

metasurface to steer a normal incident wave toward 6; = 70° implemented with 4 cells within one period.
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Cell | cost(%) | w (mm) | w; mm) | we (mm) | wp (mm) | we (mm) | wg (mm) rt ro t*
1 4.07 29.0 4.6 9.6 10.7 4.4 4.6 -0.0740.71i | 0.49-0.51i | -0.304-0.64i
2 14.32 29.0 7.1 6.6 19.3 7.4 19.1 -0.15-0.681 | 0.53-0.451 | 0.68+0.231
3 15.40 29.0 16.5 3.8 9.9 0.3 6.1 0.334-0.671 | 0.57-0.49i 0.13-0.65i1
4 9.47 29.0 14.5 7.5 8.7 11.5 9.4 -0.21-0.64i | 0.48-0.461 | -0.72-0.18i

Supplementary Table 3: Design parameters of the individual resonators of the scattering-free bianisotropic

metasurface to steer a normal incident wave toward 6; = 80° implemented with 4 cells within one period.
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Supplementary Note 1. Analysis of the scattering properties of lossless and reciprocal

metasurfaces

The objective of this supplementary note is to evaluate the required properties of a metasurface for producing
a specific scattering response, i.e., a set of transmission and reflection coefficients. The scattering properties
of the metasurface are defined through the transmission and reflection coefficients in the forward (+) and
a backward (-) direction [see Supplementary Figure 1] which can be expressed in terms of the scattering
matrix as:
rt ot
5= (1)
tt ro
In our analysis we will consider reciprocal metasurfaces which satisfy S = S*, where the superscript t
denotes the transpose of the scattering matrix. This condition can also be written as tT = ¢t~ = ¢. In
addition, we will work with lossless metasurfaces which have to satisfy $*S* = I, with the superscript *

being the complex conjugate and I being the identity matrix. In other words, a lossless and reciprocal

metasurface will satisfy:

N A R G o 10
= (2)

trt e 2 4t 0 1

which can be simply written as

[t + | * =1 3)
Tt T =0 (4)
The complex value of the transmission and reflection coefficients can be expressed as r* = \rﬂej‘ﬁ ,
r~ = |r7|e’, and t = |t|e’?*. From Supplementary Eq. (3), we can see that the amplitudes of the
reflection coefficients in forward and backward direction have to be the same, |r| = |r~| = |r|. The second
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condition for a lossless and reciprocal metasurface shown in Supplementary Eq. (4) can be rewritten as
\rHt\ej(‘f’r_d’t) + [r[|t]le I —#) = (5)
This condition is fulfilled if the phases of the reflection coefficient satisfy
(6 +¢r) =20+ (2n+ D)7 (6)

where n = 0,1,2.... In summary, any lossless and reciprocal metasurface must satisfy Supplementary Egs.
(3) and (6).

For non-bianisotropic metasurfaces, the phases of the reflection coefficient are equal, ¢;" = ¢, . In this
case, the relation between the magnitudes and the phases of the reflection and transmission coefficients are
uniquely determined by Supplementary Egs. (3) and (6). From a practical point of view, one can fully
design (magnitude and phase) the reflection or transmission coefficient but not having simultaneous control
of both of them with non-bianisotropic metasurfaces.

On the other hand, bianisotropic metasurfaces generate different phases in the reflection coefficient when
the metasurface is illuminated from different sides, ¢ # ¢, . In this case, the magnitude of reflection and
transmission coefficients will still be related by Supplementary Eq. (3), but two phases can be simultaneously

designed at will [the third phase is automatically determined by satisfying Supplementary Eq. 6)].
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Supplementary Note 2. Minimum requirements for full control of the bianisotropic

response

In this supplementary section, we deeply analyze how to control the bianisotropic response with side-loaded
resonators. This analysis will determine the minimum number of resonators that allows full control of the
response. We can analyze the response of the resonator as a local impedance which produce continuity of
the pressure at both sides of the resonator [see Supplementary Figure 2(a)]. The proposed building element
is a symmetric structure and consequently any bianisotropic response can be found. In order to force the
asymmetric response of the cell, we can combine the effect of two different resonators separated a distance

[. The relation between the pressure and velocity fields at both sides of the cell can be written as

My 1 )

P _ | M2 M= n-vi (7)
1 Moo .

s Mor Moy n-vi

where My = cos(kl) + jYasin(kl), Moy = cos(kl) + jYisin(kl), and My = [Y7 + Ya]cos(kl) + j[Yo +
YoY1Zo] sin(kl). We can see that this structure allows bianisotropic response if Y7 # Ys. However, for full
control of the response we need to include the separation between the resonators as a parameter of the
design. This solution is not suitable for gradient metasurfaces, where the thickness of the metasurface has
to be constant.

For this reason, we find that the minimum requirement for full control of the scattering properties
with a constant thickness is three different resonators. If we keep the resonators equally spaced, as it is
shown in Supplementary Figure 2(c), the relation between the resonator impedances and the elements of

the impedance matrix are

B Zydet(Z) sin(kl)
2= jdet(Z) cos(kl) + Zo(Zag + Z12) sin(kl) ®)
B Z3Z12(cos(2kl) — 1) (9)
> 7 2det(Z) + 2§ ZoZ12 sin(2kl)
7, Zydet(Z) sin(kl) (10)

~ jdet(Z) cos(kl) + Zo(Z11 + Z12) sin(kl)
where det(Z) = Z11Z22 — Z2,. This configuration allows to independently control the three components
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of the impedance matrix (Z11, Z22, and Zi2) with a fixed thickness of the cell by changing the physical
dimensions of the resonators, i.e., the values of the impedances according to Supplementary Egs. (8-10).

As an example, we can analyze the three-resonators model for the anomalous reflection scenario. Supple-
mentary Figure 3(a) shows the values of the impedance matrix along one period when 6; = 0° and 6, = 80°.
This condition can be implemented using three resonators for a fixed separation between them [ = \g/4 if
when the resonators are described by the impedances represented in Supplementary Figure 3(b). As we can
see from the high impedance values at some point of the period, some of the resonators are working in the
resonant frequency.

Similar analysis can be applied to the four resonator approach and the transfer matrix can be expressed

in terms of the four impedances:

M1 =a® + 2abe + bed + (a%c + bc?) Zs + Zo(a’c + acd + ac? Z3)+
(11)

Zila*c 4 bc? + acd + cd® 4 (ac® + ¢*d) Z3 + Zo(ac? + c2d + ¢* Z3)]

Mas =abe + 2bed + d° + ((IQC +bc? + acd + cd2)Z4—|—
(12)
Zslacd + +ed® + (ac® + 2d) Zy + Z3(Pd + 2 Z4)]

My = a?c + bc® 4 acd + cd? + (ac® + 2d) Z3 + Zo(ac® + Pd + 3 Z3) (13)

where a = cos(kl), b = jZosin(kl), c = 4-sin(kl), d = cos(kl) are the components of the transfer matrix
for a transmission line with length [. From these equations we can see that there are 3 equations and 4
unknowns, meaning that there will be infinite sets of solutions to the impedances. Therefor it is not trivial
to define the geometry of the cells in theory, especially under certain geometric constraints. In light of this
analysis, it it necessary that one needs optimization algorithms to help searching for a practical design for

experimental implementations.
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Supplementary Note 3. Retrieving impedance matrix in COMSOL

For the ease of implementation, the method we used to retrieve the impedance matrix in COMSOL is the
same as the standard 4-microphone method for acoustic experiments with impedance tubes, whose setups
are shown in Supplementary Figure 4. The positions of 4 microphones are 1, xo2, T3, x4, respectively. By
performing two measurements with different boundary conditions at the end of the tube, we can obtain four
independent equations for determination of the four transfer matrix elements. Two different boundaries we
used at the end of the tube are plane wave radiation (condition #1) and hard wall (condition #2). The
pressure detected by these microphones under these two boundary conditions are noted as pq(ff) where m

denotes the number of the microphone and n denotes the number of the boundary condition.They satisfy

the condition:

_efjk:cl ejkxl_ _A(1) A(z)_ _ _pgl) p§2)_ )
e—ikz2  gikz2 | | (1) B2 pél) p§2)

Sinlarly f o
e—ikes  gikzs | | o) o) _ pgl) p§2) 5)
e—dkza  gikza| | D) D) pil) pf)

With the measurement of p,(ﬁ), all the ABCD in the matrices can be calculated. If the metasurface is

located at g, then the pressure and velocity at the left side and right side can be written as:

D p=@ e—Jkxo eikzo A1) A@)
_ (16)
O b)) e~ikzo /7, —ej’““O/Zg B B2
pt) pt®) e—Jkxo edko c @
_ (17)
ot () T2 e~ikzo 70 —eikwo /7, DL p©)
Therefore, the transfer matrix of the measured unit cell can be calculated as
-1
+(1) HT+(©2) -1 H=@
p p p p
T = (18)
v+(1) v+(2) 'U_(l) 'U_(Q)
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Hence the impedance matrix can is calculated as

_ Ty
T21

T19T51=T11T52

T21
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Supplementary Note 4. Numerical simulations when loss is considered

Although the structure is designed with lossless assumption, the performance is also confirmed in simulation
by considering viscous loss since it is the inherent loss of the structure which is inevitable in the experiments.
Loss in the air is modeled by the viscous fluid model in the Pressure Acoustic Module in COMSOL, with
dynamic viscosity of 1.82 x 1075Pa and bulk viscosity of 5.46 x 1072Pa. The simulated fields are shown
in Supplementary Figure 4. The simulations show that for the bianisotropic design, the amplitude of the
transmission coefficient decays to 7' = 1.31 indicating that 85% of the energy is transmitted to the desired
direction. This value is still higher than lossless discretized GSL-based designs. This confirms that the
performance of the designed metasurface will not be severely influenced when loss is considered. This is
because the proposed metasurface is not resonant based, and all the resonators are designed so that the

operating frequency is far off resonance [see Supplementary Note 7].
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Supplementary Note 5. Comparison between transfer matrix method and numerical

simulations

To evaluate the performance of the transfer matrix, we compare the transmission and reflection character-
istics of a cell both analytically and numerically. The dimensions of the cell is the same as Fig.2 in the
main text, i.e., w = 12 mm, ho = 1.5 mm, we = 1 mm, h; = 1 mm w; = 4 mm, w, = 6 mm, w, = 5 mm,
we = 4 mm, and wg = 3 mm. The lines represent the results from the transfer matrix method and the
markers represent numerical simulations from COMSOL. Good agreement can be observed and the results
confirm the biansiotropic nature of the structure proposed, as the reflected phase from opposite directions

are different.
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Supplementary Note 6. Convergence of the optimization process in each design

To show the convergence of the optimization process, the evolution of the cost function with the evolution
of the algorithm for the first cell of the 60° case is shown in Supplementary Figure 7 as an example. For

cleanness, here we only showed 10 evolution results.
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Supplementary Note 7. Design parameters of the scattering-free anomalous refractive

metasurfaces

This section details the physical dimensions of the final designs for the anomalous refractive metasurfaces
when 6; = 0° and 6; = 60° (Supplementary Table 1), ; = 70° (Supplementary Table 2), and 6; = 80°

(Supplementary Table 3).

22



Supplementary Note 8. The necessity of using four resonators

From the discussion in Supplementary Note 2, the minimum requirement to achieve bianisotropy is to use
three resonators. However, as we will show here, the use of only three resonators will have certain limitations
in practical implementations. For example, it will induce larger error, greater instability/sensitivity to the
geometry and thus fabrication error, closer to resonant frequencies, and is therefore not employed in our
design. To illustrate the necessity of using four resonators, we choose unit #1 of the 60° deflection case as an
example. To replace the four-resonator cell with the three-resonator cell, the width of the cell (w = 12 mm),
thickness of the shell (h; = 1 mm), width of the neck (hy = 1.5 mm) and length of the cell (50 mm) is kept
the same while the height of the channel (w;) and the cavities (wqp,) are set as variable. We run a set of
Genetic Algorithm (GA) by following the same procedure with the four-resonator design to find the optimal
geometry produced by using three resonators. However, the results will not converge and an acceptable
design (within 20% error) can not be found. This is because the individual resonators cannot operate near
the resonance under the given geometry (same as four-resonator designs), and without accessing the extreme
values near the resonance, the resulting whole impedance matrix cannot provide the bianisotropic response
required by the theory. To release this condition, we reduce the width of the hs neck to 0.6 mm, so that
the resonators can operate near resonance within the range of the cavity height (0 mm to 9mm). Moreover,
the height of the necks of each resonator is also set to be variables so that the resulting geometry would
provide more degrees of freedom. By relaxing these constraints and running GA, a design is found with a
4.47% cost. The parameters are w; = 3.2 mm, w, = 4.7 mm, w, = 4.5 mm, w, = 3.6 mm, with the height
of the necks being 0.63 mm, 0.87 mm and 1.15 mm, respectively. Supplementary Figure 8 shows the total
acoustic field of the three-resonator cell compared with the four-resonator cell.

It can be seen that the three-resonator cell can generally produce the same response compared with the
four-resonator cell. However, one should bear in mind that such a unit cell based on three resonators is
achieved by releasing some of the geometrical constraints such as the height of the necks. This will inevitably

make the designing process more complicated, and the narrow neck width and varying neck height will also
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pose challenges to fabrication and may result in less stability and repeatability. Moreover, the small features
would also make the whole structure very sensitive to fabrication errors.

In addition, we also calculate the resonance frequencies of each individual resonator in the three-resonator
design, the resonance frequencies are 3.96 kHz, 3.85 kHz, and 3.97 kHz, respectively, which are all much
closer to the designed operation frequency (3.0 kHz) compared to the four-resonator design. This confirms
that the use of only three resonators will make the resonators work near their resonance, which will in turn
increase the loss in real implementation. The use of four resonators, on the other hand, will effectively

reduce the requirement for each individual resonator, making them work away from resonance.
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