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1. REGULARITY CONDITIONS FOR SURE SCREENING PROPERTIES

We discuss the conditions for the uniform convergence results at the sample level.

Condition A. Suppose the covariates can be partitioned into G disjoint groups with group index 15

g ∈ {1, ..., G}. Denote by gj the group membership for variable Xj .

A·1. Suppose that {β̄∗
g,0, β̄

∗
g} is an interior point of a sufficiently large, compact and convex set

Dg = {(β∗
g,0, β

∗
g ) : |β

∗
g,0 − β̄∗

g,0|+ ‖β∗
g − β̄∗

g‖1 < Dg}, where Dg > 0.

A·2. The Fisher information is

Ig(β
∗
g,0, β

∗
g ) = E{b′′(β∗

g,0 +X∗T
g β∗

g)(1,X
∗T
g )T(1,X∗T

g )},

and

sup
(β∗

g,0,β
∗

g)∈Dg ,‖X∗

g ‖=1
‖Ig(β

∗
g,0, β

∗
g )

1/2(1,X∗T
g )T‖ < ∞.

A·3. There exist positive constants r0, r1, s0, s1 and α such that

pr(|Xj | > t) ≤ r1 exp(−r0t
α)

for a sufficiently large t and that

E[exp{b(β0 +XTβ + s0)− b(β0 +XTβ)}] + E[exp{b(β0 +XTβ − s0)− b(β0 +XTβ)}] ≤ s1.

A·4. Suppose that b′′(θ) is continuous and positive, as a function of θ.

A·5. For g = 1, . . . , G, there exists a sequence Rn > 0 and we assume that 20

(a) there exists an ǫ1 > 0 such that

sup
{β∗

g,0,β
∗

g}∈Dg,‖(β∗

g,0,β
∗

g )−(β̄∗

g,0,β̄
∗

g)‖≤ǫ1

|E{b(β∗
g,0 +X∗T

g β∗
g )I[|Xj | > Rn]}| ≤ o

(

Sgn
−1
)

,

for all j such that gj = g;
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(b) for a given {β∗
g,0, β

∗
g} ∈ Dg, the function l(β∗

g,0 + ξTg β
∗
g , η) is Lipschitz with a positive

constant rg,n. That is, for all (ξTg , η)
T in Ψn,g = {(ξg, η) ‖ξg‖∞ ≤ Rn, |η| ≤ r0R

α
n/s0},

we have that

|l(β∗
g,0 + ξTg β

∗
g , η)− l(β∗′

g,0 + ξTg β
∗′

g , η)| ≤ rg,n|β
∗
g,0 + ξTg β

∗
g − (β∗′

g,0 + ξTg β
∗′

g )|,

for any {β∗
g,0, β

∗
g}, {β

∗′
g,0, β

∗′
g } ∈ Dg.

A·6. For g = 1, . . . , G and {β∗
g,0, β

∗
g} ∈ Dg,

E{l(β∗
g,0 +X∗T

g β∗
g , Y )− l(β̄∗

g,0 +X∗T
g β̄∗

g , Y )} ≥ K0{‖β
∗
g − β̄∗

g‖
2 + (β∗

g,0 − β̄∗
g,0)

2},

for a positive K0.

Of note, many generalised linear models, such as linear regression, logistic regression and

Poisson regression, satisfy Conditions A·1–A·5 for any group partition. In particular, by taking25

rg,n = b′(RnDgSg) + r0R
α
n/s0, Condition A·5 holds for all models in the exponential family

for any group partition. For logistic regression, rg,n is a finite constant. Additionally, Condition

A·6 ensures model identifiability with group partitions. Similar conditions are also used for the

theoretical development of sure and conditional sure independence screening (Fan & Song, 2010;

Barut et al., 2016).30

2. REGULARITY CONDITIONS FOR THE UPPER BOUND OF THE FALSE POSITIVE RATE

Condition B. Suppose the covariates can be partitioned into G disjoint groups with a group index

g ∈ {1, ..., G}:

B·1. define eg = Y − b′(X∗T
g β∗

g), for g = 1, . . . , G. Assume that var(eg) > c6 for c6 > 0 and

sup1≤g≤GE(|eg |
2+l) < ∞ for some l > 0;35

B·2. for j ∈ Mc, we have that Eb′(Y | X∗
−j) = Eb′(Y | X∗

−j ,Xj);

B·3. n1/2|M| = o(p).
Condition B·1 includes mild assumptions to ensure the asymptotic normality of the proposed

screening statistics. Similar conditions have been used by others (Barut et al., 2016; Heyde,

2008). By Theorem 1, Condition B·2 is equivalent to β̄j = 0 for all j ∈ Mc. Condition B·3 does40

not allow the number of true signals to grow too fast as n → ∞.

3. PROOF OF THEOREM 1

Proof. When Xj is eliminated in group g, (3) in § 3 becomes

(β̃∗
g,0, β̃

∗
−j) = argmax

(βg,0,β∗

−j
)
E
{

l
(

βg,0 +X∗T
−jβ

∗
−j , Y

)}

,

which satisfies

E{b′(β̃∗
g,0 +X∗T

−j β̃
∗
−j)(1,X

∗T
−j )

T} = E{Y (1,X∗T
−j )

T}. (S1)

On the other hand, (4) in § 3 is equivalent to45

E{b′(β̄∗
g,0 +X∗T

−j β̄
∗
−j +Xj β̄j)(1,X

∗T
−j )

T} = E{Y (1,X∗T
−j )

T},

E{b′(β̄∗
g,0 +X∗T

−j β̄
∗
−j +Xj β̄j)Xj} = E{Y Xj}.
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When β̄j = 0, E{b′(β̄∗
g,0 +X∗T

−j β̄
∗
−j +Xj β̄j)} = E{b′(β̄∗

g,0 +X∗T
−j β̄

∗
−j)(1,X

∗T
−j )

T} =

E{Y (1,X∗T
−j )

T}, implying that (β̄∗
g,0, β̄

∗
−j) is a solution to (S1).

Under the assumption that the solution to (S1) is unique, we have

β̄∗
g,0 = β̃∗

g,0, β̄∗
g = β̃∗

g .

Using Definition 1 of Eb′(· | ·) completes the proof for the necessary part.

Now, we prove the sufficient condition. First,

Eb′(Y | X∗
−j) = Eb′(Y | X∗

−j ,Xj)

implies that

b′(β̃∗
g,0 +X∗T

−j β̃
∗
−j +Xj × 0) = b′(β̄∗

g,0 +X∗T
−j β̄

∗
−j +Xj β̄j).

By Definition 1, this further implies that (β̃∗
g,0, β̃

T∗
−j , 0)

T is a solution of (4). By the uniqueness 50

of solutions to (4), and given that (β̄∗
g,0, β̄

T∗
−j , β̄j)

T is also a solution to (4), we have β̄j = 0.

4. PROOF OF THEOREM 2

Proof. For each j, let g = gj and Ωj = E{δj(1,X
∗T
−j ,Xj)

T(1,X∗T
−j ,Xj)}, where

δj =
b′(β̄∗

g,0 +X∗T
−j β̄

∗
−j +Xj β̄j)− b′(β̃∗

g,0 +X∗T
−j β̃

∗
−j)

(β̄∗
g,0 +X∗T

−j β̄
∗
−j +Xj β̄j)− (β̃∗

g,0 +X∗T
−j β̃

∗
−j)

.

Because b′′(·) is positive, δj > 0.

From (4) in § 3 and (S1),

E{b′(β̄∗
g,0 +X∗T

−j β̄
∗
−j +Xj β̄j)(1,X

∗T
−j )

T} = E{b′(β̃∗
g,0 +X∗T

−j β̃
∗
−j)(1,X

∗T
−j )

T} = E{Y (1,X∗T
−j )

T}.

Let β̌∗
−j = β̄∗

−j − β̃∗
−j and β̌∗

g,0 = β̄∗
g,0 − β̃∗

g,0. Recall the definition of δj . We have 55

E{δj(β̌
∗
g,0 +X∗T

−j β̌
∗
−j +Xj β̄j)(1,X

∗T
−j )

T} = 0. (S2)

We can partition Ωj as

Ωj =

[

E{δj(1,X
∗T
−j )

T(1,X∗T
−j )} E{δj(1,X

∗T
−j )

TXj}

E{δjXj(1,X
∗T
−j )} E(δjX

2
j )

]

=

(

Ω∗∗
j Ω∗

j

Ω∗T
j Ωj,j

)

.

Solving (S2),

(β̌∗
g,0, β̌

∗T
−j )

T = −(Ω∗∗
j )−1Ω∗

j β̄j .

By Definition 1 and the definition of δj , we have

E[Xj{Eb′(Y | X∗
−j ,Xj)− Eb′(Y | X∗

−j)}] = E[Xj{δj(β̌
∗
g,0 +X∗T

−j β̌
∗
−j +Xj β̄j)}]

= {Ωj,j −Ω∗T
j (Ω∗∗

j )−1Ω∗
j}β̄j .

To bound Ωj,j − Ω∗T
j (Ω∗∗

j )−1Ω∗
j , we first apply a blockwise Cholesky decomposition and

obtain
{

ISg 0
−Ω∗T

j (Ω∗∗
j )−1 1

}

Ωj

{

ISg −(Ω∗∗
j )−1Ω∗

j

0 1

}

=

{

Ω∗∗
j 0

0 Ωj,j − Ω∗T
j (Ω∗∗

j )−1Ω∗
j

}

, (S3)
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where ISg is an identity matrix with dimension Sg. Since Ωj is positive definite by assumption,

we have Ωj,j −Ω∗T
j (Ω∗∗

j )−1Ω∗
j > 0.60

Furthermore, by Condition 2 and the monotonicity of function b′(·), it follows that 0 < δj ≤ L,

where L is the Lipschitz constant. Hence, 0 < Ωj,j ≤ LE(X2
j ) ≤ c1 for a positive constant c1.

Furthermore, because Ω∗∗
j is semi-positive definite, we have that Ω∗T

j (Ω∗∗
j )−1Ω∗

j ≥ 0. Therefore,

0 < Ωj,j − Ω∗T
j (Ω∗∗

j )−1Ω∗
j ≤ Ωj,j ≤ c1.

By Condition 1, we have65

|β̄j | ≥ c−1
1 |E[Xj{Eb′(Y | X∗

−j ,Xj)− Eb′(Y | X∗
−j)}]| ≥ c2n

−κ,

where c2 = c0/c1 for all j ∈ M, which completes the proof.

5. PROOF OF THEOREM 3

Proof. By Lemma 1 of Fan & Song (2010) and Condition A·3, for any t > 0,

pr(|Y | > t) ≤ s1 exp(−s0t).

Furthermore, for each g = 1, . . . , G, we have

pr(Ψc
g,n) ≤ pr(‖X∗

g ‖∞ > Rn) + pr(|Y | > r0R
α
n/s0)

≤
∑

j:gj=g

pr(|Xj | > Rn) + s1 exp (−r0R
α
n)

≤ (Sgr1 + s1) exp (−r0R
α
n) ,

where Rn → ∞ as n → ∞.

By taking Vn = K0, kn = rg,n = b′(RnDgSg) + r0R
α
n/s0 and t = c2Vnn

1/2−κ/(8kn)− 1 in70

Theorem 1 of Fan & Song (2010), for each j, we have that

pr
(

|β̂j − β̄j | ≥ c2n
−k/2

)

≤ pr
(

‖β̂∗
gj − β̄∗

gj‖ ≥ c2n
−κ/2

)

≤ exp(−c3Qgj ,n) + npr(Ψc
gj ,n),

(S4)

for a positive constant c3 and Qg,n = n1−2κ(rg,nRn)
−2. Then we have that

pr

(

max
1≤j≤p

|β̂j − β̄j | ≥ c2n
−κ/2

)

≤

p
∑

j=1

exp(−c3Qgj ,n) +

p
∑

j=1

npr(Ψc
gj ,n)

=

G
∑

g=1

Sg exp(−c3Qg,n) +

G
∑

g=1

Sg(Sgr1 + s1)n exp(−r0R
α
n).

This completes the proof for part (a). For part (b), we consider the event

En =

{

max
j∈M

|β̂j − β̄j | ≤ c2n
−κ/2

}

.

By Theorem 2,

min
j∈M

|β̄j | ≥ c2n
−κ.

Thus, if event En happens, it holds that for all j ∈ M, |β̂j | ≥ c2n
−κ/2.
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By taking c4 = c2/2 and γ = c4n
−κ, it follows immediately that En ⊂ {M ⊂ M̂γ}. This

implies that

pr(M ⊂ M̂γ) ≥ pr(En) = 1− pr

(

max
j∈M

|β̂j − β̄j | > c2n
−κ/2

)

.

Applying (S4) and Bonferroni’s inequality over all j ∈ M completes the proof.

6. PROOF OF THEOREM 4

Proof. By Condition 5, we can bound the determinant of the Schur complement (von Neu-

mann & Goldstine, 1947) of block Ω∗
j in Ωj as follows:

|Ωj,j − Ω∗T
j (Ω∗∗

j )−1Ω∗
j | ≥ λmin(Ωj) > K1,

for j = 1, . . . , p. 75

By (2) and the Lipschitz continuity of b′(θ),

|β̄j | < M0|E[Xj{Eb′(Y | XT)− Eb′(Y | X∗T
−j )}]|

≤ M0E|Xj{b
′(β0 +XTβ)− b′(β̃gj ,0 +X∗T

−j β̃
∗
−j)}|

≤ M1E|Xj{β0 +XTβ − β̃gj ,0 −X∗T
−j β̃

∗
−j}|

= M1E

∣

∣

∣

∣

∣

∣

Xj







β0 − β̃gj ,0 +X∗T
−j (β

∗
−j − β̃∗

−j) +
∑

g′ 6=gj

X∗T
g′ β

∗
g′ +Xjβj







∣

∣

∣

∣

∣

∣

,

where M0 = K−1
1 , M1 = M0L and (β0, β

T)T are the true parameters in model (1) in § 2. Sim-

plifying the above inequality, we have

|β̄j | < M1E
∣

∣

∣
Xj(Xjβj + X̆T

−j β̌
δ
−j + X̆∗T

−gj β̌−gj)
∣

∣

∣
, (S5)

where

X̆−j = (1,X∗T
−j )

T, β̆δ
−j = (β0 − βgj ,0, β

∗T
−j − β̃∗T

−j )
T,

X̆∗
−g = (X∗T

1 , . . . ,X∗T
g−1,X

∗T
g+1, . . . ,X

∗T
G )T,

β̆∗
−g = (β∗T

1 , . . . , β∗T
g−1, β

∗T
g+1, . . . , β

∗T
G )T.

By the properties of the generalised linear conditional expectation,

E{E1(Xj | X
∗
−j ,X

∗
g′ , g

′ 6= gj)X
∗T
−j } = E(XjX

∗T
−j ),

E{E1(Xj | X
∗
−j ,X

∗
g′ , g

′ 6= gj)X
∗T
g } = E(XjX

∗T
g ), g 6= gj .

Furthermore,

E{E1(Xj | X
∗
−j,X

∗
g′ , g

′ 6= gj)(X̆
T
−j β̌

δ
−j + X̆∗T

−gj β̌−gj)} = E{Xj(X̆
T
−j β̌

δ
−j + X̆∗T

−gj β̌−gj )},

and

E{E1(Xj | X
∗
−j,X

∗
g′ , g

′ 6= gj)E1(Xj | X
∗
−j,X

∗
g′ , g

′ 6= gj)} = E{XjE1(Xj | X
∗
−j ,X

∗
g′ , g

′ 6= gj)}.
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Let Vj = E
[

{Xj − E1(Xj | X
∗
−j ,X

∗
g′ , g

′ 6= gj)}
2
]

. Then

Vj = E
[

{Xj − E1(Xj | X
∗
−j ,X

∗
g′ , g

′ 6= gj)}{Xj − E1{Xj | X
∗
−j ,X

∗
g′ , g

′ 6= gj)}
]

= E(X2
j )− E{E1(Xj | X

∗
−j ,X

∗
g′ , g

′ 6= gj)Xj}.

This further implies that

Vjβj + Uj =E(X2
j βj)− E

{

E1

(

Xj | X
∗
−j ,X

∗
g′ , g

′ 6= gj
)

Xj

}

βj

+ E
{

E1

(

Xj | X
∗
−j,X

∗
g′ , g

′ 6= gj
)

(

β0 − β̃gj ,0 +XTβ −X∗T
−j β̃

∗
−j

)}

=E(X2
j βj) + E



E1

(

Xj | X
∗
−j,X

∗
g′ , g

′ 6= gj
)







β0 − β̃gj ,0 +X∗T
−j (β

∗
−j − β̃∗

−j) +
∑

g′ 6=gj

X∗T
g′ β

∗
g′











=E(X2
j βj) + E

{

E1

(

Xj | X
∗
−j,X

∗
g′ , g

′ 6= gj
)

(

X̆T
−j β̌

δ
−j + X̆∗T

−gj β̌−gj

)}

=E
{

Xj

(

Xjβj + X̆T
−j β̌

δ
−j + X̆∗T

−gj β̌−gj

)}

.

Thus, we can write (S5) in a vector form:80

‖β̄‖2 ≤ M2
1 ‖Σβ + U‖2 , (S6)

where β̄ = (β̄1, . . . , β̄p)
T and Σ = diag(V1, . . . , Vp).

Furthermore, Vj = E(X2
j )− {E(Xj)}

2 + {E(Xj)}
2 − E{E1(Xj | X

∗
−j,X

∗
g′ , g

′ 6= gj)
2} ≤

var(Xj) and

‖Σβ‖22 ≤ V βTΣβ ≤ V

p
∑

j=1

var(Xjβj) = O(V ).

The right-hand side of (S6) can be further bounded as follows:

‖Σβ + U‖22 = βTΣ2β + 2UTΣβ + UTU

≤ V βTΣβ + 2UTΣβ + UTU

≤ V

p
∑

j=1

var(Xjβj) + 2UTΣβ + UTU,

where the last two terms are o(V ) based on Condition 6. Hence,

‖β̄‖2 = O(V ).

This further implies that the number of j’s such that |β̄j | > γ/2 = c4n
−κ/2 cannot exceed

O(n2κV ). That is, letting M̄γ/2 = {j : |β̄j | > c4n
−κ/2}, we have that M̄γ/2 = O(n2κV ). Con-

sider

Fn =

{

max
1≤j≤p

|β̂j − β̄j | ≤ c4n
−κ/2

}

.

Then on the event Fn, M̂γ =
{

j : |β̂j | > c4n
−κ
}

is a subset of M̄γ/2. More precisely, we have

{

|M̂γ | ≤ |M̄γ/2|
}

⊇
{

M̂γ ⊂ M̄γ/2

}

⊇
{

Fn ∩ {M̂γ ⊂ M̄γ/2}
}

= Fn.
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Thus

pr
{

|M̂γ | ≤ O(n2κV )
}

≥ pr(Fn).

Applying Theorem 3 part (a) and Bonferroni’s inequality completes the proof.

7. PROOF OF THEOREM 6

Proof. For partition G(k)(k = 1, . . . ,K), let c
(k)
3 , c

(k)
4 , r

(k)
0 , r

(k)
2 , r

(k)
3 , γ(k), Q

(k)
gj ,n, S

(k)
g , R

(k)α
n

and M̂
(k)
γ be the corresponding terms for c3, c4, r0, r2, r3, γ, Qgj ,n, Sg, Rα

n and M̂γ respectively 85

in Theorems 3 and 4. Since G(k) satisfies Conditions 1–3,

pr
(

M ⊂ M̂(k)
γ

)

≥ 1−
∑

j∈M

exp
(

−c
(k)
3 Q(k)

gj ,n

)

− nr
(k)
3 exp

(

−r
(k)
0 R(k)α

n

)

.

Take c5 = min1≤l≤K c
(l)
4 ≤ c

(k)
4 . Then M̂

(k)
γ ⊂ M̃γ and

pr
(

M ⊂ M̃γ

)

≥ pr
(

M ⊂ M̂(k)
γ

)

≥ 1−
∑

j∈M

exp
(

−c
(k)
3 Q(k)

gj,n

)

− nr
(k)
3 exp

(

−r
(k)
0 R(k)α

n

)

.

Taking n → ∞ on both sides completes the proof for part (a).

For part (b), since all G(k) satisfy Conditions A·1–A·5 and Conditions 4–6, by Theorem 4 we

have that

pr
{

|M̂(k)
γ | ≤ O

(

n2κV (k)
)}

≥ 1−
G(k)
∑

g=1

S(k)
g exp

(

−c
(k)
3 Q(k)

g,n

)

− nr
(k)
2 exp

(

−r
(k)
0 R(k)α

n

)

.

Since |M̃γ | ≤
∑K

k=1 |M̂
(k)
γ |,

{

∣

∣

∣
M̃γ

∣

∣

∣
> O

(

n2κ
K
∑

k=1

V (k)

)}

⊂

{

K
∑

k=1

|M̂(k)
γ | > O

(

K
∑

k=1

n2κV (k)

)}

⊂

K
⋃

k=1

{

|M̂(k)
γ | > O

(

n2κV (k)
)}

.

This further implies that

1− pr

{

∣

∣

∣
M̃γ

∣

∣

∣
> O

(

n2κ
K
∑

k=1

V (k)

)}

≥ 1−

K
∑

k=1

pr
{
∣

∣

∣
M̂(k)

γ

∣

∣

∣
> O

(

n2κV (k)
)}

.

Taking n → ∞ on both sides completes the proof for part (b).

8. PROOF OF THEOREM 7

Proof. First consider

E
(∣

∣

∣
M̂#

τ ∩Mc
∣

∣

∣

)

=
∑

j∈Mc

pr
{

Ij(β̂j)
1/2|β̂j | ≥ τ

}

.
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By Condition B·2 and Theorem 1, we have β̄j = 0. By Condition B·1 and the theory of quasi-

likelihood (Heyde, 2008), we have

Ij(β̂j)
1/2|β̂j | ∼ N(0, 1)

and according to the Berry–Esseen inequality (Korolev & Shevtsova, 2010), there exists a con-

stant c̃7 > 0 such that

sup
z

∣

∣

∣
pr
{

Ij(β̂j)
1/2|β̂j | > z

}

− Φ(z)
∣

∣

∣
≤ c̃7n

−1/2.

Let τ = Φ−1{1− q/(2p)}, then we have

E
(∣

∣

∣
M̂#

τ ∩Mc
∣

∣

∣

)

≤
∑

j∈Mc

[

2{1 − Φ(τ)}+ c̃7n
−1/2

]

= (p− |M|)
(

q/p+ c̃7n
−1/2

)

.

Because

∣

∣

∣
M̂γ ∩Mc

∣

∣

∣
≤
∣

∣

∣
M̂γ

∣

∣

∣
=
∣

∣

∣
M̂#

τ

∣

∣

∣
=
∣

∣

∣
M̂#

τ ∩Mc
∣

∣

∣
+
∣

∣

∣
M̂#

τ ∩M
∣

∣

∣
≤
∣

∣

∣
M̂#

τ ∩Mc
∣

∣

∣
+ |M|,

we have

EFPRγ = E

(

|M̂γ ∩Mc|

|Mc|

)

≤ q/p+ c̃7n
−1/2 +

|M|

p− |M|
.

By Condition B·3, there exist c7 > 0 and N7 > 0 such that for any n > N7,

EFPRγ ≤ q/p+ c7n
−1/2.

9. COVARIATE PROJECTION VIA PRINCIPAL COMPONENT ANALYSIS90

To make Condition 6 less restrictive, this section presents a method to generate surrogate

covariates with a reduced-correlation structure for the screening procedures. Specifically, we

decompose X, a vector of p continuous covariates, based on principal component analysis and

project it to a set of variables with the largest loadings on the leading eigenvectors. We write

X = ΠZ + X̆,

where Π, a p×Q matrix, is formed by selecting the first Q leading eigenvectors of the sample

covariance matrix of X, Z is a vector of Q projection loadings that can be obtained by ordinary

least squares estimates given Π and X, and X̆ is a vector of p residuals. The number of compo-

nents Q can be chosen according to the proportion of variation explained by principal component

analysis. When Q is large, the correlation among X̆ can be much less than the correlation among95

X. However, we also need to keep Q small to ensure that the variation in X̆ is relatively large

and the variance of the screening statistics is small. In practice, we suggest choosing Q such that

50% of the variance of the covariate X is explained by X̆ . Then with adjusting for Z we compute

the partition-based screening statistics β̆∗
g = (β̆j , gj = g) based on X̆ as follows:

(β̆∗
g,0, β̆

∗
g,Z , β̆

∗
g ) = argmax

(βg,0,βg,Z ,β∗

g )
Enl

(

βg,0 + ZTβg,Z + X̆∗T
g β∗

g , Y
)

,

where the definition of X̆∗
g is the same as X∗

g in § 2 except that we replace X with X̆. For a100

given threshold γ, the selected index set is M̆ = {j : |β̆j | > γ}. We refer to this approach as

partition-based screening with covariate projection.

We also perform simulation studies to compare this approach with the original partition-based

screening approach. We generate data based on settings 1 and 4 in § 5 of the main text by slightly
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Table S1. Model selection accuracy of partition-based screening with and without covariate

projections for both linear regression and logistic regression under Settings 1∗ and 4∗ with high

correlation among covariates

Linear Regression

Setting 1∗ Original covariates Projected covariates

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

PartS (Gred) 70 137 100 85 72 100

PartS (Gmis1 ) 52 192 100 48 238 83

PartS (Gmis2 ) 47 224 83 37 263 83

CombPartS (5 Gmis2 ) 63 124 100 59 146 100

CombPartS (10 Gmis2 ) 61 153 100 62 1250 100

CorrPartS (Gcor) 29 362 83 34 348 83

Logistic Regression

Original covariates Projected covariates

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

PartS (Gred) 100 6 100 100 6 100

PartS (Gmis1 ) 47 219 83 29 419 83

PartS (Gmis2 ) 34 328 83 21 621 83

CombPartS (5 Gmis2 ) 55 171 100 47 234 83

CombPartS (10 Gmis2 ) 55 159 100 49 214 83

CorrPartS (Gcor) 28 332 83 17 576 83

Linear Regression

Setting 4∗ Original covariates Projected covariates

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

SpatPartS (Gopt) 100 100 100 100 100 100

SpatPartS (Gred) 100 100 100 100 100 100

SpatPartS (Gmis1 ) 0 8762 59 0 8797 57

SpatPartS (Gmis2 ) 0 9385 52 0 9460 49

CombPartS (Gred, Gmis1 , Gmis2 ) 100 100 100 100 100 100

Logistic Regression

Original covariates Projected covariates

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

SpatPartS (Gopt) 0 10000 0 0 10000 0

SpatPartS (Gred) 0 9999 0 0 9999 0

SpatPartS (Gmis1 ) 0 9780 18 0 9738 14

SpatPartS (Gmis2 ) 0 9998 9 0 9998 7

CombPartS (Gred, Gmis1 , Gmis2 ) 0 9780 18 0 9738 14

CombPartS, combined partition-based screening; CorrPartS, correlation-guided partition screen-

ing; SpatPartS, spatial-oriented partition screening; MMS, the median minimum size of the se-

lected models that are required to have a sure screening; TPR, the average true positive rate;

PIT, the estimated probability of including all true predictors in the top n selected predictors.

modifying the correlation structure of covariates. In Setting 1, we change the exchangeable cor- 105

relation to 0·9, and in Setting 4, we modify the exponential square correlation structure such

that cor(Xj ,Xj′) =0·95 when j and j′ are neighbors. We refer to them as Settings 1∗ and 4∗,

respectively. Table S1 summarizes the comparisons of the model selection accuracy between the

two methods. When the group partition is a size-reduced partition, the covariate projection can

improve the model selection accuracy for linear regression in Setting 1∗. However, there are no 110

clear improvements for linear regression in Setting 4∗ and logistic regression in either setting.

10. SIMULATION STUDIES FOR GOODNESS-OF-FIT ADJUSTMENT

This section presents additional simulations to evaluate the adjusted partition-based screening

in § 4·1. The data were generated using the same Settings 1–4 as in § 5. The group partitions were

also kept the same as those for the partition-based screening method in each scenario in § 5. Table 115
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S2 summarizes the results. For comparisons, Table S2 also includes the model selection accuracy

of the partition-based screening listed in Table 1 in § 5. Based on a size-reduced partition, Gred,

the adjustment produces a clear improvement in the model selection accuracy for both linear

regression and logistic regression in most cases except for Setting 4, where it has a comparable

performance for linear regression but has a much worse accuracy for logistic regression. For the120

correlation-guided partitions, Gcor, the adjustment improves the accuracy in Setting 2 for both

linear regression and logistic regression, while it decreases the selection accuracy substantially

in Setting 3, where the predictors are highly correlated with an exchangeable correlation of 0·9.

For the misspecified partitions, Gmis1 and Gmis2 , the adjustment only improves the accuracy in

Setting 1 with Gmis1 for linear regression, while in all other cases it performs worse, especially in125

Setting 4, where the noise predictors are highly correlated with the true predictors. For combined

partition-based screening, the adjustment is not helpful in all cases either. In summary, the ad-

justed partition-based screening may improve the model selection accuracy when the predictors

are not highly correlated, but it may produce worse results in many other cases.

11. ADDITIONAL DATA ANALYSIS RESULTS130

This section presents additional data analysis results. Figure S1 presents the boxplots of the

mean prediction errors estimated through ten-fold cross-validation, indicating that combined

partition-based screening has the best prediction accuracy. This conclusion is also confirmed

by the prediction receiver operating characteristic curves in Fig. S2. Figure S3 shows seven axial

slices that cut through eight important brain regions, which are selected based on the combined135

partition-based screening method.
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Fig. S1. Boxplots for the autism spectrum disorder risk prediction errors of ten-fold cross-validation by different vari-
able screening methods. The mean cross-validation prediction errors: high-dimensional ordinary least squares projection
(HOLP, 48%), correlation-guided partition screening (CorrPartS G = 8, . . . , 512, 39%–42%), brain region partition-
based screening (AAL90, 41%), spatial-oriented partition screening (SpatPartS, 42%) and combined partition-based

screening (CombPartS, 37%).
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Table S2. Model selection accuracy of partition-based screening with and without the goodness-

of-fit adjustment for both linear regression and logistic regression under Settings 1–4

Linear Regression

Setting 1 No adjustment GOF adjustment

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

PartS (Gred) 100 7 100 100 6 100

PartS (Gmis1 ) 84 36 97 91 30 100

PartS (Gmis2 ) 87 34 98 82 47 100

CombPartS (5 Gmis2 ) 93 25 99 92 32 100

CombPartS (10 Gmis2 ) 96 22 99 89 46 100

CorrPartS (Gcor) 78 64 96 81 56 100

Logistic Regression

No adjustment GOF adjustment

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

PartS (Gred) 100 6 100 97 6 100

PartS (Gmis1 ) 46 226 88 53 175 100

PartS (Gmis2 ) 60 145 91 33 361 83

CombPartS (5 Gmis2 ) 64 115 93 56 159 100

CombPartS (10 Gmis2 ) 74 105 96 52 192 100

CorrPartS (Gcor) 47 219 88 30 369 83

Linear Regression

Setting 2 No adjustment GOF adjustment

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

PartS (Gred) 100 10 100 100 10 100

CorrPartS (Gcor) 91 10 98 96 10 100

Logistic Regression

No adjustment GOF adjustment

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

PartS (Gred) 100 10 100 100 10 100

CorrPartS (Gcor) 88 10 98 90 10 100

Linear Regression

Setting 3 No adjustment GOF adjustment

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

PartS (Gred) 100 11 100 100 10 100

CorrPartS (Gcor) 62 101 100 36 574 90

Logistic Regression

No adjustment GOF adjustment

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

PartS (Gred) 100 10 100 100 10 100

CorrPartS (Gcor) 18 426 80 10 1579 0

Linear Regression

Setting 4 No adjustment GOF adjustment

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

SpatPartS (Gopt) 100 100 100 100 101 100

SpatPartS (Gred) 100 100 100 100 101 100

SpatPartS (Gmis1 ) 0 8232 65 0 7975 64

SpatPartS (Gmis2 ) 0 9190 55 0 8672 71

CombPartS (Gred, Gmis1 , Gmis2 ) 100 100 100 100 102 100

Logistic Regression

No adjustment GOF adjustment

PIT (%) MMS TPR (%) PIT (%) MMS TPR (%)

SpatPartS (Gopt) 100 100 100 36 733 99

SpatPartS (Gred) 73 174 100 3 5617 96

SpatPartS (Gmis1 ) 0 9033 65 0 9615 25

SpatPartS (Gmis2 ) 0 9269 74 0 9100 59

CombPartS (Gred, Gmis1 , Gmis2 ) 80 174 100 12 1561 98

PartS, partition-based screening; CombPartS, combined partition-based screening; CorrPartS, correlation-guided

partition screening; SpatPartS, spatial-oriented partition screening; MMS, the median minimum size of the se-

lected models that are required to have a sure screening; TPR, the average true positive rate; PIT, the es-

timated probability of including all true predictors in the top n selected predictors; GOF, goodness-of-fit.



Supplementary material 13

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

1 − Specificity

S
en

si
ti

v
it

y

Fig. S2. Prediction receiver operating characteristic curves by combined partition-based
screening (solid line), other partition-based screening (grey curves) and high-dimensional
ordinary least squares projection (dashes). The reported area under the curves indicates that
the proposed method improves on the prediction accuracy compared with high-dimensional

ordinary least squares projection.
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Fig. S3. Combined partition-based screening statistics are shown on seven axial slices that cut through eight important
brain regions, which have more than 60 selected voxels.


