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Abstract

Despite overwhelming evidence that variation in intergenic regions (IGRs) in bacteria impacts
on phenotypes, most current approaches for analysing pan-genomes focus exclusively on
protein-coding sequences. To address this we present Piggy, a novel pipeline that emulates
Roary except that it is based only on IGRs. We demonstrate the use of Piggy for pan-genome
analyses of Staphylococcus aureus and Escherichia coli using large genome datasets. For S.
aureus, we show that highly divergent (“switched”) IGRs are associated with differences in gene
expression, and we establish a multi-locus reference database of IGR alleles (igMLST;

implemented in BIGSdb). Piggy is available at https://github.com/harry-thorpe/piggy.
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Background

Whole-genome sequencing has revealed that, in many bacteria, individual strains frequently
recruit new genes from a seemingly endless genetic reservoir. The total complement of genes
observed across all strains, known as the pan-genome, often numbers tens of thousands, up to
an order of magnitude more than the number of genes present in any single genome. In
contrast, the “core-genome”, which refers to the complement of genes present in all (or the vast
majority) of sampled isolates, can be significantly smaller than the total number of genes in any
given genome [1,2]. For example, a study of 328 Klebsiella pneumoniae isolates, each of which
harbour 4-5,000 genes, revealed a pan-genome of 29,886 genes; only 1,888 (6.8%) of which
were universally present (core) [3]. Similarly, genome data for 228 Escherichia coli ST131
isolates revealed a pan-genome of 11,401 genes, of which 2,722 (23.9%) were core [4]. The
degree of gene content variation in the latter study is particularly striking as these isolates were
all from the same sequence type (ST), thus show limited nucleotide divergence in core genes,

and are descended from a recent common ancestor.

There is growing recognition that the acquisition of new genes through horizontal gene transfer
(HGT) has a central role in ecological adaptation [5]. The emergence and spread of antibiotic
resistance, underpinned by the transfer of plasmids and other MGEs, is a pertinent example.
The increasing availability of datasets containing thousands of isolates thus offers an
unprecedented opportunity for describing the genetic basis of bacterial adaptation. However, the
scale of these data presents serious logistic and conceptual challenges in terms of data

management and analysis.


https://paperpile.com/c/xRMYlV/yWgun
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Pioneering pan-genome analysis tools, such as PanOCT and PGAP relied on all-vs-all BLAST
comparisons between protein sequences, and scaled approximately quadratically with the
number of isolates [6.7]. LS-BSR introduced a pre-clustering step which substantially reduced
the number of BLAST comparisons, but sacrificed specificity [8]. More recently, the Roary
pipeline has rapidly gained in popularity for scalable, user-friendly, pan-genome characterisation
[2]. Roary uses a pre-clustering step based on CD-HIT [9], and is more accurate and faster than
LS-BSR, meaning that it can analyse 1000s of isolates quickly using modest computing

resources.

The concept of the pan-genome, as described above, places an exclusive emphasis on genes;
or, more specifically, open reading frames with the potential to encode proteins. This
gene-centric perspective has both shaped, and been shaped by, the bioinformatics tools
developed to interrogate the pan-genome. For example, Roary works by taking individual
protein-coding sequences, pre-defined using Prokka annotation [10], and assigning each to a
single cluster of homologous sequences. This approach thus excludes non protein-coding
intergenic regions (IGRs) which typically account for approximately 15% of the genome. This is
clearly problematic for downstream attempts to identify genotype-phenotype links, as IGRs
contain many important regulatory elements including, but not limited to, promoters, terminators,
non-coding RNAs, and regulatory binding sites. Moreover, we have recently shown that IGRs
are subject to purifying selection in the core-genomes of diverse bacterial species, even when

known major regulatory elements are excluded [11,12].

Given that variation in IGRs can have profound phenotypic consequences, it is timely to

consider how best to incorporate these sequences into pan-genome analyses. A key question is
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the degree to which protein-coding genes, and their cognate regulatory elements, should be
considered a single “unit”, both selectively (in terms of co-adaptation) and in terms of physical
linkage on the chromosome. If physical linkage is assumed to be highly robust, such that genes
are mostly transferred along with their cognate IGRs, then in principle the definition of a “gene”
could be expanded to include the upstream regulatory regions. On the other hand, if there is
moderate or weak linkage between genes and IGRs, such that IGRs can occasionally transfer

independently, then the purview of the pan-genome could be expanded to include the full

complement of IGR alleles in addition protein-coding sequences.

Consistent with the second model, which allows for independent transfer of IGRs, a landmark
study demonstrated that E. coli genes can apparently be regulated by alternative IGRs that
frequently share no sequence similarity to each other [13]. Moreover, the distribution of these
IGRs was incongruent with gene trees, suggesting that recombination can act to replace one
IGR with another resulting in regulatory “switches”; a process they call horizontal regulatory
transfer (HRT) [13]. It was also noted that conserved flanking genes may facilitate this process
by providing localised regions of homology. IGR switches can be accompanied by differential
gene expression [13], and may provide a mechanism to offset the fithess costs of harbouring

plasmids and other MGEs [4], pointing to a central role for this process in adaptation.

Our current understanding of the evolutionary dynamics of IGRs in the context of bacterial
pan-genome leave many open questions. Specifically, it is unclear how IGRs are distributed
among isolates within bacterial populations, how commonly IGRs and their cognate genes are
co-transferred, or how the frequency of HRT relates to different functional gene categories. A

more complete understanding of bacterial adaptation clearly requires a careful consideration of
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gene presence/absence alongside gene regulation. Here we address this by introducing a new
pipeline called Piggy which closely emulates and complements the established pan-genome
analysis pipeline Roary [2]. Input and output files for Piggy and Roary use the same format, and
run in a similar time on modest computing resources. Piggy provides a means to rapidly identify
IGR switches, and more broadly the means to examine the role of horizontal transfer in shaping
the bacterial regulome. We demonstrate the utility of Piggy using large genome datasets for
single lineages within two bacterial species, both of which are of high public health importance;
Staphylococcus aureus ST22 (EMRSA-15) and Escherichia coli ST131. Conventional
pan-genome analyses are applied to analyse and compare core and accessory IGRs / genes in
these lineages. In S. aureus we show a link between IGR switching and changes in gene
expression, and demonstrate proof-of-principle by establishing a multilocus IGR scheme,

(igMLST) in BIGSdb [14]. Piggy is available at (https://github.com/harry-thorpe/piggy) under the

GPLv3 licence.

Results

Staphylococcus aureus ST22

S. aureus ST22 (EMRSA-15) is a clinically important hospital-acquired methicillin resistant strain
which is common in the UK and is rapidly expanding elsewhere in Europe and globally.
Previous work has shown that S. aureus ST22 is clonal and has a relatively small set of
accessory genes [15,16]. The size of the gene and IGR pan and core-genomes were compared
by running 500 ST22 [16] isolate genomes through Roary and Piggy. Frequency histograms and
accumulation curves were plotted for both genes and IGRs (Fig 2). The gene-IGR frequency
histogram (Fig 2a) shows that there are 2,312 core genes and 1,486 core IGRs, where core is

defined as gene presence in > 99% of isolates. The fact that there are fewer core IGRs than
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core genes is in part due to the exclusion of intra-operonic IGRs < 30 bp. Both distributions
conform to the U-shape typically found in such analyses, where the majority of genes/IGRs are
either very common or very rare. The gene accumulation curve (Fig 2b) shows a total of 3,225
genes, with a mean of 2,524 genes per isolate. The gradient of the curve is shallow, consistent
with the small, closed, pan-genome of clonal ST22 isolates. The IGR curve shows that each
isolate has fewer IGRs than genes (1,696 on average per isolate) due to the exclusion of IGRs
< 30 bp, but that the total number of IGRs (3,593) is higher than the total number of genes
reflecting greater diversity in IGRs than genes. The IGR curve increases more steeply than the
gene curve, and does not appear to plateau. Despite these differences, within any given isolate

on average 92% of genes and 88% of IGRs were core.

Escherichia coli ST131

The utility of Piggy was further validated by re-analysing data from a recent study on the
widespread and clinically important E. coli lineage ST131 [4]. This dataset contains 236 clinical
E. coli ST131 isolates from human, domesticated animal, and avian hosts. E. coli is a more
genetically diverse species than S. aureus, and unsurprisingly E. coli ST131 has a larger
pan-genome than S. aureus ST22, with 12,806 genes and 16,429 IGRs (Fig 3a). Of these,
3,285 genes and 1,403 IGRs were core (Fig 3b), out of an average of 4,678 genes and 2,999
IGRs per isolate. Thus despite the differences in diversity, for both S. aureus and E. coli
datasets we found a lower number of core IGRs than core genes, but a high number of
accessory IGRs compared to accessory genes. This is illustrated by the fact that the IGR and
gene accumulation curves intersect in both species. A lower proportion of both genes (70%) and
IGRs (47%) are core within each E. coli ST131 isolate, compared to S. aureus ST22. Similarly,

rare accessory genes and IGRs are much more prevalent in E. coli ST131 than in S. aureus
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ST22 with 34% of genes and 55% of IGRs found in < 1% of isolates in E. coli ST131, compared

with 11% of genes and 40% of IGRs in S. aureus ST22.

Previous work has found evidence of extensive IGR switching, where the linkage between an
IGR and the cognate downstream gene breaks down, resulting in alternative gene / IGR pairs
[13]. Piggy provides a list of candidate switching events together for both “gene-pair” and
“‘upstream” approaches (see Methods) at different thresholds of nucleotide identity. For the E.
coli ST131 data, the pipeline detected 61 cases of putative IGR switching using the most
conservative settings (i.e. the conservative gene-pair method, and the alternative IGRs showing
no sequence similarity by BLASTN). Relaxing the threshold of sequence identity to < 90%
resulted in the identification of an additional 317 candidate switching events, though these

possibly reflect either relaxed or positive selection.

Switched IGRs influence gene expression in S. aureus

To examine whether switches in IGRs affect the expression of cognate (downstream) genes, we
used a previously published RNA-seq dataset based on four reference S. aureus isolates
HO_5096_0412 (ST22), Newman (CC8), MRSA252 (CC36), and S0385 (CC398) [17]. Each of
these S. aureus references isolate represents a distinct major clonal complex, and all were
grown under identical conditions with each experiment being replicated. Thus these data
provide evidence of the natural variation in gene expression within the S. aureus population. By
analysing these data alongside the output from Piggy, it is possible to test the extent to which
IGR switches between these four genomes can account for the observed variation in gene
expression between clonal complexes. First Roary was used to identify a set of 2094 single

copy core genes present in all four isolates, and then expression of these core genes was
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quantified using Kallisto [18]. To do this we used RNA-seq data for two replicates for each of the
four reference genomes. The tpm (Transcripts per Kilobase Million) values for each gene are

given in Table S1. We then used Sleuth [19] to normalise and filter these counts.

To check the consistency of the data between biological replicates, we first plotted two
replicates for each isolate against each other (e.g. Newman replicate 1 vs Newman replicate 2)
(Fig 4). These plots were tightly correlated (mean R? = 0.98), confirming that the expression
values for individual genes were consistent between replicates. We then plotted between-isolate
comparisons, again using both replicates for each genome (e.g. Newman replicate 1 vs
MRSA252 replicate 1, and Newman replicate 2 vs MRSA252 replicate 2) (Fig 4). These
comparisons revealed considerably more scatter, with R? values ranging from 0.76 to 0.9. Given
the extremely high R? values for within-isolate comparisons, the decrease in R? for
between-isolate comparisons reflects genuine differences in expression between the isolates.
We note that a small number of genes show very striking differences in expression between the
clonal complexes. For example, the expression of mepA, which encodes a multidrug efflux

pump, was ~250 fold higher in Newman compared with the other isolates.

The genomes of each pair of isolates were analysed using Roary and Piggy to identify switched
IGRs with a nucleotide identity threshold of < 90% for IGR clusters. For each pair of isolates, we
then identified all genes immediately downstream of a switched IGR. As a single switched IGR
might impact on the expression of more than one co-transcribed downstream genes we also
considered all genes linked in a single operon that could be impacted by a single switching
event upstream affecting a shared promoter. For each pair of isolates, we thus identified all core

genes putatively affected by upstream IGR switches. We then tested whether these genes
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showed a higher degree of differential expression by conducting Monte Carlo permutation tests
on the residuals from the regressions (Fig 4). For each pairwise comparison of isolates, we
summed the residuals of the genes with switched IGRs (shown as red points in Fig 4), and
compared this to a distribution obtained by resampling (without replacement) 100,000 random
sets of the same number of genes and summing their residuals. We computed a one-tailed
p-value by dividing the number of permutations with summed residuals greater than the
observed value by 100,000. We then adjusted the p-values using the Benjamini-Hochberg
method (Fig 4). Because we used both replicates separately (e.g. Newman replicate 1 vs S0385
replicate 1, and Newman replicate 2 vs S0385 replicate 2), each comparison between pairs of
isolates was tested twice independently. In 9/12 pairwise comparisons, the observed residuals
of the genes downstream of switched IGRs were significantly greater than expected from the
resampled data, indicating that genes with switched IGRs were more differentially expressed
than those without. Of the three remaining comparisons, two corresponded to comparisons
between HO_ 5096 0412 and S0385 (P = 0.17, and P = 0.062), and one between
HO_5096_0412 and Newman (p = 0.062). The second comparison between HO_5096 0412
and Newman was the most weakly significant result (p = 0.032). Thus, the two replicates for

each individual pairwise comparison were largely concordant with each other.

Our analysis confirms that genes downstream of switched IGRs are on average more likely to
be differentially expressed than genes not associated with IGR switches as identified using
Piggy. To illustrate the genomic context and expression differences of genes with switched
IGRs, we selected three of the most differentially expressed genes with IGR switches for the
Newman vs MRSA252 comparison, and plotted nucleotide identity across the IGR (calculated

as a 20-bp sliding window) alongside gene expression (Fig 5).
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Compatibility and scalability

We have so far demonstrated that Piggy can be used to analyse the intergenic component of
the pan-genome and identify IGR switches, and shown that these switches have biological
relevance with respect to gene expression. Importantly, Piggy is designed such that the output
files are compatible with existing software and databases. The “IGR_presence_absence.csv”
file has an identical format to the “gene_presence_absence.csv” file produced by Roary, and
can be loaded directly into the interactive browser-based viewer phandango [20] (Fig S1). It can
also be used as input, along with a traits file, to Scoary [21] to test for associations between
IGRs and phenotypic traits. Moreover, the “representative_clusters_merged.fasta” file can be
loaded directly into BIGSdb [14] to create an allele scheme for IGRs. In order to provide
proof-of-principle, we created a multilocus IGR (igMLST) scheme in BIGSdb. Briefly, 2631
unique IGR sequences with length 2 30bp, from 7 S. aureus reference genomes, were entered
into the database locus list. Using functionality within the database, these sequences were
grouped as a searchable scheme (S_aureus_Intergenic_PIGGY), comparable to MLST, rMLST
and wgMLST schemes [22—24]. The distribution of IGRs was analysed for all isolates in the
database, identifying IGRs as present in the respective genome if a hit was recorded with
nucleotide identity 2 70% over 2 50% of the sequence using a BLAST word size of 7 bp. The
scheme can be found at https://sheppardlab.com/resources/. Finally, Piggy runs in a
comparable time to Roary and scales approximately linearly with increasing numbers of isolates,
as tested on a MRC-CLIMB [25] virtual machine with 10 vcpus and increasing numbers of S.

aureus ST22 isolates (Fig S2).

Discussion
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Whole-genome sequence datasets consisting of hundreds or even thousands of bacterial
isolates have revealed pan-genomes of many thousands of genes and large differences in gene
content between isolates of the same species. Currently, pan-genome diversity is considered
almost exclusively in terms of protein-coding genes, despite overwhelming evidence that
variation within IGRs impacts on phenotypes. Here we address this by introducing Piggy, a
pipeline specifically designed to incorporate IGRs into routine pan-genome analyses by working

in close conjunction with Roary [2].

The utility of this approach is demonstrated using large datasets of S. aureus ST22 and E. coli
ST131. Consistent with previous analyses of protein-coding regions [4,15], the IGR component
of the ST131 pan-genome (the “panlGRome”) is considerably larger than that for ST22. There
was more diversity within IGRs than genes in both species. While some IGRs may be essential
for expression of multiple genes, it is expected that IGRs will be subject to less stabilizing
selection than protein coding genes [11]. The maintenance of core IGRs in both bacterial
genome datasets is consistent with selection acting to conserve them and allows alignment and

analysis in much the same way as protein-coding regions.

Variation within regulatory elements located within IGRs can impact on the expression of the
downstream gene [13]. Piggy (alongside Roary) provides the means to combine information on
genes and their cognate IGRs thus facilitating the detection of “switched” IGRs and downstream
genes that are potentially affected. We have shown that in S. aureus, genes with switched
upstream IGRs show a higher degree of differential expression than those without. This is
consistent with previous work on E. coli [13], and suggests that the identification of IGR

switches using Piggy can provide a useful indication of differential gene expression, even in the
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absence of RNA-seq data. However, we note that high divergence within IGRs does not
necessarily imply selection for differential gene expression, and may instead simply reflect
weaker selective constraints. A clear direction for future work is to make constructs consisting of
genes with alternative IGRs, in order to directly measure the effect of natural IGR variants on
gene expression. Similar experiments have previously been performed in E. coli based on

variation within promoters [26], and IGRs more broadly [13].

Conclusions

Driven by recent technical advances in high-throughput sequencing, large whole-genome
datasets have provided powerful evidence concerning the genetic determinants that underlie
complex multifactorial phenotypes such as virulence. Moreover, associating variation in core
and accessory genes with phenotype data is providing new fundamental insight into the ecology
and evolution of bacteria. However, in much the same way that non-protein coding DNA in the
human genome was initially dismissed as “junk”, omitting IGRs from bacterial genome analysis
severely limits our ability to draw inferences on the regulation of gene expression and
associated phenotypic consequences. By developing Piggy as an easy-to-use bioinformatics
tool with output files that are compatible with existing software and databases (eg Roary,
Phandango; Figure S1, Scoary, BIGSdb) we envisage that combined information from genes

and their cognate IGRs will vastly improve our understanding of genome evolution in bacteria.

Methods
Overview of the Piggy pipeline (Fig 1a)
The first step is to run Roary, as the gene presence absence output file from Roary is used as

an input for Piggy. Piggy is then run using the same annotated assemblies as Roary, specifically
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GFF3 format files such as those produced by Prokka [10]. Piggy extracts intergenic sequences
(IGRs) from these files, and uses the flanking gene names and their orientations to name the
IGRs (Fig 1b). Including the gene neighbourhood information gives context to the IGR and
enables identification of “switched” IGRs. The IGRs are then clustered with CD-HIT [9] at user
defined identity thresholds (-n - nucleotide identity, -I - length identity). These two flags allow the
user to set the level of stringency for clustering. For example, a conservative approach is to set
high values for both nucleotide and length identity such that IGRs must be similar in both
nucleotide and length identity to cluster together. By relaxing the length identify whilst
maintaining a high nucleotide identity threshold, highly related sequences still cluster even if one
is truncated. A representative sequence from each cluster is then used to perform an all-vs-all
BLASTN search [27]. This is used to merge similar clusters, which did not cluster with CD-HIT.
These clusters are then used to produce an IGR presence absence matrix
(“IGR_presence_absence.csv”), in the same format as the gene presence absence matrix
(“gene_presence_absence.csv”) produced by Roary. Up until this point, the pipeline is very

similar to Roary [2].

Switched IGR detection

Piggy identifies “switched” IGRs using two methods. The first method identifies adjacent genes
on the same contig (gene-pairs), and searches for IGR clusters which lie between these
gene-pairs (Fig 1c). Instances where multiple IGR clusters correspond to the same gene-pair
are identified as candidate switched IGRs. The second method identifies instances where
multiple IGR clusters are upstream of the same gene, which are also putatively switched IGRs.
This is a less conservative approach as the downstream gene is not considered in this case,

(Fig 1c). The gene-pair method is used by default as it controls against detecting “switching”
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(recombination) events that encompass more than a single IGR, for example, cases where a
mobile element has inserted between two genes. However such cases remain relevant as the

regulation of the downstream gene will still be affected.

To ensure that differences in gene annotation between isolates are not erroneously identified as
“switching” events, the first and last 30 bp of each flanking gene are searched against the IGRs
with BLASTN. Any matches from these searches indicate differences in annotation of gene
borders (rather than genuine differences between the IGRs), and these sequences are
disregarded. In order to confirm that they represent genuine switching events, candidate
switched IGRs are searched against each other with BLASTN with low complexity filtering
turned off (-dust no). If there is no significant match they are classed as “switched”, and if there
is a significant match they are aligned using MAFFT [28]. The resulting alignment is then used
to calculate nucleotide identity (SNPs / shared sites), and length identity (number of shared sites
/ alignment length). These values can then be used to define an appropriate threshold to identify
“switched” IGRs. To aid this, Piggy calculates within-cluster divergences for both genes and

IGRs, and these divergences can be used to calibrate Piggy with Roary.

Datasets
The S. aureus ST22 dataset was assembled from published genome sequences of the clinically

important lineage ST22 (EMRSA-15) [16] available at http://www.ebi.ac.uk/ena (study number

ERP001012). The original genome assemblies were used, and 500 isolates belonging to ST22
were randomly selected for analysis. The S. aureus RNA-seq data was previously published

[17], and is available at (http://www.ebi.ac.uk/ena, study number ERP009279). This was

supplemented with the corresponding reference genomes, HO 5096 _0412: HE681097,
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MRSA252: BX571856, Newman: AP009351, S0385: AM990992, available at

(www.ncbi.nlm.nih.gov). The E. coli ST131 dataset was also from a previously published study

[4], and is available at (http://datadryad.org/resource/doi:10.5061/dryad.d7d71). All complete

genomes and assemblies were annotated with Prokka [10].

Roary and Piggy parameter settings

Roary [2] was run using default parameters except for the following: -e -n (to produce
alignments with MAFFT [28]); -i 90 (lower amino acid identity than the default); -s (to keep
paralogs together); -z (to keep intermediate files). Piggy was run using default parameters
except for --len_id, which controls the percentage of IGR sequences which must share similarity
in order to be clustered together. For the S. aureus ST22 and E. coli ST131 datasets, Piggy was
run twice, once with --len_id 10 and once with --len_id 90. The former was used for the
pan-genome comparisons between genes and IGRs (Figs 2 and 3) in order to be comparable
with Roary (as genes which are clustered together by Roary have a minimum length of 120 bp,
and frequently vary greatly in length). The latter was used whenever “switched” IGRs were

detected, as this enabled more control over downstream filtering of these sequences.

RNA-seq analysis

Two biological replicates for each isolate were analysed. Kallisto [18] was used to quantify
transcripts (--kmer-size 31 and --bootstrap-samples 100), and Sleuth [19] was used to normalise
and filter the counts produced by Kallisto. These counts were then log,, transformed, and major
axis (MA) regression was performed. Rockhopper2 [29] was used to produce an operon map for

each strain by grouping adjacent genes with similar expression profiles together into operons.
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Statistical analysis

All statistical analysis was performed within R version 3.3.2 (https://www.r-project.org). All

plotting was performed with ggplot2 [30].
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Fig 1: An overview of the Piggy pipeline. a) A schematic to illustrate the Piggy pipeline and

how it works alongside Roary. b) IGRs are named according to their flanking genes and their

orientations. This naming scheme enables Piggy to link genes with their associated IGRs, and

provides information on their orientations. ¢) A schematic to illustrate the difference between the

“gene-pair’ and “upstream” methods used to identify candidate switched IGRs.
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Fig 2: Properties of the S. aureus ST22 pan-genome. Genes (red) and IGRs (blue) were
analysed. a) Gene and IGR frequency histogram — that is, the number of genes / IGRs present
in any given number of isolates. The vast majority of genes / IGRs are either very rare or very
common. b) Gene and IGR accumulation curves — that is, the cumulative number of genes /

IGRs detected in a given number of isolates.
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Fig 3: Properties of the E. coli ST131 pan-genome. Genes (red) and IGRs (blue) were
analysed. a) Gene and IGR frequency histogram — that is, the number of genes / IGRs present
in any given number of isolates. The vast majority of genes / IGRs are either very rare or very
common. b) Gene and IGR accumulation curves — that is, the cumulative number of genes /

IGRs detected in a given number of isolates.
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Fig 4: S. aureus gene expression data. Pairwise RNA-seq comparisons between four S.
aureus isolates, where two biological replicates were used for each isolate. The top-left of the
diagonal corresponds to comparisons between replicate 1 from different isolates (e.g. SO385
replicate 1 vs HO_5096 0412 replicate 1). The bottom-right of the diagonal corresponds to
comparisons between replicate 2 from different isolates (e.g. SO385 replicate 2 vs
HO_5096_0412 replicate 2). The diagonal corresponds to comparisons between the two

biological replicates from the same isolate. 2094 core genes were analysed in each comparison,
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and tpm (Transcripts per Kilobase Million) was used to quantify expression. The genes were
separated into two categories: Switched (red), and Not-switched (grey), based on their
upstream IGRs. The R? value corresponds to all the genes. The P-value corresponds to a
Monte Carlo permutation test comparing the residuals of the two groups of genes, where a
significant score indicates that the genes downstream of switch IGRs are associated with a

higher degree of differential expression (ie higher residuals).
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Fig 5: A detailed view of the genomic neighbourhood and expression data for selected

genes in Newman vs MRSA252. Nucleotide identity was calculated using a 20 bp sliding

window across the IGR, and this is shown alongside the flanking genes in their correct

orientation (left). The corresponding expression data for the gene of interest was also shown

(right), with the two boxplots per isolate corresponding to the two biological replicates. a) dapE

b) ssaA_1 c) ytrA.
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Fig S1: The IGR pan-genome (“panlGRome”) as visualised using Phandango. A

neighbour-joining phylogenetic tree was imported into Phandango alongside the

IGR_presence_absence.csv file. Each row corresponds to an isolate, and each column
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corresponds to an IGR, with the IGRs ordered from the left in order of decreasing frequency
within the sample. The line graph at the bottom shows the frequency of the IGRs within the

sample. a) S. aureus ST22 b) E. coli ST131.
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Fig S2: Comparison with Roary. Roary (blue) and Piggy (red) were both run on increasing
numbers of S. aureus ST22 isolates on a CLIMB virtual machine with 10 vcpus. The programs

were both run with (circles) and without (triangles) alignment options.
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