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Abstract 

Despite overwhelming evidence that variation in intergenic regions (IGRs) in bacteria impacts 

on phenotypes, most current approaches for analysing pan-genomes focus exclusively on 

protein-coding sequences. To address this we present Piggy, a novel pipeline that emulates 

Roary except that it is based only on IGRs. We demonstrate the use of Piggy for pan-genome 

analyses of Staphylococcus aureus and Escherichia coli using large genome datasets. For S. 

aureus, we show that highly divergent (“switched”) IGRs are associated with differences in gene 

expression, and we establish a multi-locus reference database of IGR alleles (igMLST; 

implemented in BIGSdb). Piggy is available at https://github.com/harry-thorpe/piggy. 
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Background 

Whole-genome sequencing has revealed that, in many bacteria, individual strains frequently 

recruit new genes from a seemingly endless genetic reservoir. The total complement of genes 

observed across all strains, known as the pan-genome, often numbers tens of thousands, up to 

an order of magnitude more than the number of genes present in any single genome. In 

contrast, the “core-genome”, which refers to the complement of genes present in all (or the vast 

majority) of sampled isolates, can be significantly smaller than the total number of genes in any 

given genome [1,2]. For example, a study of 328 Klebsiella pneumoniae isolates, each of which 

harbour 4-5,000 genes, revealed a pan-genome of 29,886 genes; only 1,888 (6.8%) of which 

were universally present (core) [3]. Similarly, genome data for 228 Escherichia coli ST131 

isolates revealed a pan-genome of 11,401 genes, of which 2,722 (23.9%) were core [4]. The 

degree of gene content variation in the latter study is particularly striking as these isolates were 

all from the same sequence type (ST), thus show limited nucleotide divergence in core genes, 

and are descended from a recent common ancestor. 

 

There is growing recognition that the acquisition of new genes through horizontal gene transfer 

(HGT) has a central role in ecological adaptation [5]. The emergence and spread of antibiotic 

resistance, underpinned by the transfer of plasmids and other MGEs, is a pertinent example. 

The increasing availability of datasets containing thousands of isolates thus offers an 

unprecedented opportunity for describing the genetic basis of bacterial adaptation. However, the 

scale of these data presents serious logistic and conceptual challenges in terms of data 

management and analysis. 
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Pioneering pan-genome analysis tools, such as PanOCT and PGAP relied on all-vs-all BLAST 

comparisons between protein sequences, and scaled approximately quadratically with the 

number of isolates [6,7]. LS-BSR introduced a pre-clustering step which substantially reduced 

the number of BLAST comparisons, but sacrificed specificity [8]. More recently, the Roary 

pipeline has rapidly gained in popularity for scalable, user-friendly, pan-genome characterisation 

[2]. Roary uses a pre-clustering step based on CD-HIT [9], and is more accurate and faster than 

LS-BSR, meaning that it can analyse 1000s of isolates quickly using modest computing 

resources. 

 

The concept of the pan-genome, as described above, places an exclusive emphasis on genes; 

or, more specifically, open reading frames with the potential to encode proteins. This 

gene-centric perspective has both shaped, and been shaped by, the bioinformatics tools 

developed to interrogate the pan-genome. For example, Roary works by taking individual 

protein-coding sequences, pre-defined using Prokka annotation [10], and assigning each to a 

single cluster of homologous sequences. This approach thus excludes non protein-coding 

intergenic regions (IGRs) which typically account for approximately 15% of the genome. This is 

clearly problematic for downstream attempts to identify genotype-phenotype links, as IGRs 

contain many important regulatory elements including, but not limited to, promoters, terminators, 

non-coding RNAs, and regulatory binding sites. Moreover, we have recently shown that IGRs 

are subject to purifying selection in the core-genomes of diverse bacterial species, even when 

known major regulatory elements are excluded [11,12]. 

 

Given that variation in IGRs can have profound phenotypic consequences, it is timely to 

consider how best to incorporate these sequences into pan-genome analyses. A key question is 
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the degree to which protein-coding genes, and their cognate regulatory elements, should be 

considered a single “unit”, both selectively (in terms of co-adaptation) and in terms of physical 

linkage on the chromosome. If physical linkage is assumed to be highly robust, such that genes 

are mostly transferred along with their cognate IGRs, then in principle the definition of a “gene” 

could be expanded to include the upstream regulatory regions. On the other hand, if there is 

moderate or weak linkage between genes and IGRs, such that IGRs can occasionally transfer 

independently, then the purview of the pan-genome could be expanded to include the full 

complement of IGR alleles in addition protein-coding sequences. 

 

Consistent with the second model, which allows for independent transfer of IGRs, a landmark 

study demonstrated that E. coli  genes can apparently be regulated by alternative IGRs that 

frequently share no sequence similarity to each other [13]. Moreover, the distribution of these 

IGRs was incongruent with gene trees, suggesting that recombination can act to replace one 

IGR with another resulting in regulatory “switches”; a process they call horizontal regulatory 

transfer (HRT) [13]. It was also noted that conserved flanking genes may facilitate this process 

by providing localised regions of homology. IGR switches can be accompanied by differential 

gene expression [13], and may provide a mechanism to offset the fitness costs of harbouring 

plasmids and other MGEs [4], pointing to a central role for this process in adaptation. 

 

Our current understanding of the evolutionary dynamics of IGRs in the context of bacterial 

pan-genome leave many open questions. Specifically, it is unclear how IGRs are distributed 

among isolates within bacterial populations, how commonly IGRs and their cognate genes are 

co-transferred, or how the frequency of HRT relates to different functional gene categories. A 

more complete understanding of bacterial adaptation clearly requires a careful consideration of 
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gene presence/absence alongside gene regulation. Here we address this by introducing a new 

pipeline called Piggy which closely emulates and complements the established pan-genome 

analysis pipeline Roary [2]. Input and output files for Piggy and Roary use the same format, and 

run in a similar time on modest computing resources. Piggy provides a means to rapidly identify 

IGR switches, and more broadly the means to examine the role of horizontal transfer in shaping 

the bacterial regulome. We demonstrate the utility of Piggy using large genome datasets for 

single lineages within two bacterial species, both of which are of high public health importance; 

Staphylococcus aureus ST22 (EMRSA-15) and Escherichia coli ST131. Conventional 

pan-genome analyses are applied to analyse and compare core and accessory IGRs / genes in 

these lineages. In S. aureus we show a link between IGR switching and changes in gene 

expression, and demonstrate proof-of-principle by establishing a multilocus IGR scheme, 

(igMLST) in BIGSdb [14]. Piggy is available at (https://github.com/harry-thorpe/piggy) under the 

GPLv3 licence. 

 

Results  

Staphylococcus aureus ST22  

S. aureus ST22 (EMRSA-15) is a clinically important hospital-acquired methicillin resistant strain 

which is common in the UK and is rapidly expanding elsewhere in Europe and globally. 

Previous work has shown that S. aureus ST22 is clonal and has a relatively small set of 

accessory genes [15,16]. The size of the gene and IGR pan and core-genomes were compared 

by running 500 ST22 [16] isolate genomes through Roary and Piggy. Frequency histograms and 

accumulation curves were plotted for both genes and IGRs (Fig 2). The gene-IGR frequency 

histogram (Fig 2a) shows that there are 2,312 core genes and 1,486 core IGRs, where core is 

defined as gene presence in > 99% of isolates. The fact that there are fewer core IGRs than 
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core genes is in part due to the exclusion of intra-operonic IGRs < 30 bp. Both distributions 

conform to the U-shape typically found in such analyses, where the majority of genes/IGRs are 

either very common or very rare. The gene accumulation curve (Fig 2b) shows a total of 3,225 

genes, with a mean of 2,524 genes per isolate. The gradient of the curve is shallow, consistent 

with the small, closed, pan-genome of clonal ST22 isolates. The IGR curve shows that each 

isolate has fewer IGRs than genes (1,696 on average per isolate) due to the exclusion of IGRs 

< 30 bp, but that the total number of IGRs (3,593) is higher than the total number of genes 

reflecting greater diversity in IGRs than genes. The IGR curve increases more steeply than the 

gene curve, and does not appear to plateau. Despite these differences, within any given isolate 

on average 92% of genes and 88% of IGRs were core. 

 

Escherichia coli ST131 

The utility of Piggy was further validated by re-analysing data from a recent study on the                

widespread and clinically important E. coli lineage ST131 [4]. This dataset contains 236 clinical              

E. coli ST131 isolates from human, domesticated animal, and avian hosts. E. coli is a more                

genetically diverse species than S. aureus, and unsurprisingly E. coli ST131 has a larger              

pan-genome than S. aureus ST22, with 12,806 genes and 16,429 IGRs (Fig 3a). Of these,               

3,285 genes and 1,403 IGRs were core (Fig 3b), out of an average of 4,678 genes and 2,999                  

IGRs per isolate. Thus despite the differences in diversity, for both S. aureus and E. coli                

datasets we found a lower number of core IGRs than core genes, but a high number of                 

accessory IGRs compared to accessory genes. This is illustrated by the fact that the IGR and                

gene accumulation curves intersect in both species. A lower proportion of both genes (70%) and               

IGRs (47%) are core within each E. coli ST131 isolate, compared to S. aureus ST22. Similarly,                

rare accessory genes and IGRs are much more prevalent in E. coli ST131 than in S. aureus                 
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ST22 with 34% of genes and 55% of IGRs found in < 1% of isolates in E. coli ST131, compared                    

with 11% of genes and 40% of IGRs in S. aureus ST22. 

 

Previous work has found evidence of extensive IGR switching, where the linkage between an 

IGR and the cognate downstream gene breaks down, resulting in alternative gene / IGR pairs 

[13]. Piggy provides a list of candidate switching events together for both “gene-pair” and 

“upstream” approaches (see Methods) at different thresholds of nucleotide identity. For the E. 

coli ST131 data, the pipeline detected 61 cases of putative IGR switching using the most 

conservative settings (i.e. the conservative gene-pair method, and the alternative IGRs showing 

no sequence similarity by BLASTN). Relaxing the threshold of sequence identity to < 90% 

resulted in the identification of an additional 317 candidate switching events, though these 

possibly reflect either relaxed or positive selection. 

 

Switched IGRs influence gene expression in S. aureus 

To examine whether switches in IGRs affect the expression of cognate (downstream) genes, we 

used a previously published RNA-seq dataset based on four reference S. aureus isolates 

HO_5096_0412 (ST22), Newman (CC8), MRSA252 (CC36), and S0385 (CC398) [17]. Each of 

these S. aureus references isolate represents a distinct major clonal complex, and all were 

grown under identical conditions with each experiment being replicated. Thus these data 

provide evidence of the natural variation in gene expression within the S. aureus population. By 

analysing these data alongside the output from Piggy, it is possible to test the extent to which 

IGR switches between these four genomes can account for the observed variation in gene 

expression between clonal complexes. First Roary was used to identify a set of 2094 single 

copy core genes present in all four isolates, and then expression of these core genes was 
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quantified using Kallisto [18]. To do this we used RNA-seq data for two replicates for each of the 

four reference genomes. The tpm (Transcripts per Kilobase Million) values for each gene are 

given in Table S1. We then used Sleuth [19] to normalise and filter these counts. 

 

To check the consistency of the data between biological replicates, we first plotted two 

replicates for each isolate against each other (e.g. Newman replicate 1 vs Newman replicate 2) 

(Fig 4). These plots were tightly correlated (mean R2 = 0.98), confirming that the expression 

values for individual genes were consistent between replicates. We then plotted between-isolate 

comparisons, again using both replicates for each genome (e.g. Newman replicate 1 vs 

MRSA252 replicate 1, and Newman replicate 2 vs MRSA252 replicate 2) (Fig 4). These 

comparisons revealed considerably more scatter, with R2 values ranging from 0.76 to 0.9. Given 

the extremely high R2 values for within-isolate comparisons, the decrease in R2 for 

between-isolate comparisons reflects genuine differences in expression between the isolates. 

We note that a small number of genes show very striking differences in expression between the 

clonal complexes. For example, the expression of mepA, which encodes a multidrug efflux 

pump, was ~250 fold higher in Newman compared with the other isolates. 

 

The genomes of each pair of isolates were analysed using Roary and Piggy to identify switched 

IGRs with a nucleotide identity threshold of < 90% for IGR clusters. For each pair of isolates, we 

then identified all genes immediately downstream of a switched IGR. As a single switched IGR 

might impact on the expression of more than one co-transcribed downstream genes we also 

considered all genes linked in a single operon that could be impacted by a single switching 

event upstream affecting a shared promoter. For each pair of isolates, we thus identified all core 

genes putatively affected by upstream IGR switches. We then tested whether these genes 
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showed a higher degree of differential expression by conducting Monte Carlo permutation tests 

on the residuals from the regressions (Fig 4). For each pairwise comparison of isolates, we 

summed the residuals of the genes with switched IGRs (shown as red points in Fig 4), and 

compared this to a distribution obtained by resampling (without replacement) 100,000 random 

sets of the same number of genes and summing their residuals. We computed a one-tailed 

p-value by dividing the number of permutations with summed residuals greater than the 

observed value by 100,000. We then adjusted the p-values using the Benjamini-Hochberg 

method (Fig 4). Because we used both replicates separately (e.g. Newman replicate 1 vs S0385 

replicate 1, and Newman replicate 2 vs S0385 replicate 2), each comparison between pairs of 

isolates was tested twice independently. In 9/12 pairwise comparisons, the observed residuals 

of the genes downstream of switched IGRs were significantly greater than expected from the 

resampled data, indicating that genes with switched IGRs were more differentially expressed 

than those without. Of the three remaining comparisons, two corresponded to comparisons 

between HO_5096_0412 and S0385 (P = 0.17, and P = 0.062), and one between 

HO_5096_0412 and Newman (p = 0.062). The second comparison between HO_5096_0412 

and Newman was the most weakly significant result (p = 0.032). Thus, the two replicates for 

each individual pairwise comparison were largely concordant with each other. 

 

Our analysis confirms that genes downstream of switched IGRs are on average more likely to 

be differentially expressed than genes not associated with IGR switches as identified using 

Piggy. To illustrate the genomic context and expression differences of genes with switched 

IGRs, we selected three of the most differentially expressed genes with IGR switches for the 

Newman vs MRSA252 comparison, and plotted nucleotide identity across the IGR (calculated 

as a 20-bp sliding window) alongside gene expression (Fig 5). 
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Compatibility and scalability 

We have so far demonstrated that Piggy can be used to analyse the intergenic component of 

the pan-genome and identify IGR switches, and shown that these switches have biological 

relevance with respect to gene expression. Importantly, Piggy is designed such that the output 

files are compatible with existing software and databases. The “IGR_presence_absence.csv” 

file has an identical format to the “gene_presence_absence.csv” file produced by Roary, and 

can be loaded directly into the interactive browser-based viewer phandango [20] (Fig S1). It can 

also be used as input, along with a traits file, to Scoary [21] to test for associations between 

IGRs and phenotypic traits. Moreover, the “representative_clusters_merged.fasta” file can be 

loaded directly into BIGSdb [14] to create an allele scheme for IGRs. In order to provide 

proof-of-principle, we created a multilocus IGR (igMLST) scheme in BIGSdb. Briefly, 2631 

unique IGR sequences with length ≥ 30bp, from 7 S. aureus reference genomes, were entered 

into the database locus list. Using functionality within the database, these sequences were 

grouped as a searchable scheme (S_aureus_Intergenic_PIGGY), comparable to MLST, rMLST 

and wgMLST schemes [22–24]. The distribution of IGRs was analysed for all isolates in the 

database, identifying IGRs as present in the respective genome if a hit was recorded with 

nucleotide identity ≥ 70% over ≥ 50% of the sequence using a BLAST word size of 7 bp. The 

scheme can be found at https://sheppardlab.com/resources/. Finally, Piggy runs in a 

comparable time to Roary and scales approximately linearly with increasing numbers of isolates, 

as tested on a MRC-CLIMB [25] virtual machine with 10 vcpus and increasing numbers of S. 

aureus ST22 isolates (Fig S2). 

 

Discussion 
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Whole-genome sequence datasets consisting of hundreds or even thousands of bacterial 

isolates have revealed pan-genomes of many thousands of genes and large differences in gene 

content between isolates of the same species. Currently, pan-genome diversity is considered 

almost exclusively in terms of protein-coding genes, despite overwhelming evidence that 

variation within IGRs impacts on phenotypes. Here we address this by introducing Piggy, a 

pipeline specifically designed to incorporate IGRs into routine pan-genome analyses by working 

in close conjunction with Roary [2]. 

 

The utility of this approach is demonstrated using large datasets of S. aureus ST22 and E. coli 

ST131. Consistent with previous analyses of protein-coding regions [4,15], the IGR component 

of the ST131 pan-genome (the “panIGRome”) is considerably larger than that for ST22. There 

was more diversity within IGRs than genes in both species. While some IGRs may be essential 

for expression of multiple genes, it is expected that IGRs will be subject to less stabilizing 

selection than protein coding genes [11]. The maintenance of core IGRs in both bacterial 

genome datasets is consistent with selection acting to conserve them and allows alignment and 

analysis in much the same way as protein-coding regions. 

 

Variation within regulatory elements located within IGRs can impact on the expression of the 

downstream gene [13]. Piggy (alongside Roary) provides the means to combine information on 

genes and their cognate IGRs thus facilitating the detection of “switched” IGRs and downstream 

genes that are potentially affected. We have shown that in S. aureus, genes with switched 

upstream IGRs show a higher degree of differential expression than those without. This is 

consistent with previous work on E. coli [13], and suggests that the identification of IGR 

switches using Piggy can provide a useful indication of differential gene expression, even in the 
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absence of RNA-seq data. However, we note that high divergence within IGRs does not 

necessarily imply selection for differential gene expression, and may instead simply reflect 

weaker selective constraints. A clear direction for future work is to make constructs consisting of 

genes with alternative IGRs, in order to directly measure the effect of natural IGR variants on 

gene expression. Similar experiments have previously been performed in E. coli based on 

variation within promoters [26], and IGRs more broadly [13]. 

 

Conclusions 

Driven by recent technical advances in high-throughput sequencing, large whole-genome 

datasets have provided powerful evidence concerning the genetic determinants that underlie 

complex multifactorial phenotypes such as virulence. Moreover, associating variation in core 

and accessory genes with phenotype data is providing new fundamental insight into the ecology 

and evolution of bacteria. However, in much the same way that non-protein coding DNA in the 

human genome was initially dismissed as “junk”, omitting IGRs from bacterial genome analysis 

severely limits our ability to draw inferences on the regulation of gene expression and 

associated phenotypic consequences. By developing Piggy as an easy-to-use bioinformatics 

tool with output files that are compatible with existing software and databases (eg Roary, 

Phandango; Figure S1, Scoary, BIGSdb) we envisage that combined information from genes 

and their cognate IGRs will vastly improve our understanding of genome evolution in bacteria. 

 

Methods 

Overview of the Piggy pipeline (Fig 1a) 

The first step is to run Roary, as the gene presence absence output file from Roary is used as 

an input for Piggy. Piggy is then run using the same annotated assemblies as Roary, specifically 
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GFF3 format files such as those produced by Prokka [10]. Piggy extracts intergenic sequences 

(IGRs) from these files, and uses the flanking gene names and their orientations to name the 

IGRs (Fig 1b). Including the gene neighbourhood information gives context to the IGR and 

enables identification of “switched” IGRs. The IGRs are then clustered with CD-HIT [9] at user 

defined identity thresholds (-n - nucleotide identity, -l - length identity). These two flags allow the 

user to set the level of stringency for clustering. For example, a conservative approach is to set 

high values for both nucleotide and length identity such that IGRs must be similar in both 

nucleotide and length identity to cluster together. By relaxing the length identify whilst 

maintaining a high nucleotide identity threshold, highly related sequences still cluster even if one 

is truncated. A representative sequence from each cluster is then used to perform an all-vs-all 

BLASTN search [27]. This is used to merge similar clusters, which did not cluster with CD-HIT. 

These clusters are then used to produce an IGR presence absence matrix 

(“IGR_presence_absence.csv”), in the same format as the gene presence absence matrix 

(“gene_presence_absence.csv”) produced by Roary. Up until this point, the pipeline is very 

similar to Roary [2]. 

 

Switched IGR detection 

Piggy identifies “switched” IGRs using two methods. The first method identifies adjacent genes 

on the same contig (gene-pairs), and searches for IGR clusters which lie between these 

gene-pairs (Fig 1c). Instances where multiple IGR clusters correspond to the same gene-pair 

are identified as candidate switched IGRs. The second method identifies instances where 

multiple IGR clusters are upstream of the same gene, which are also putatively switched IGRs. 

This is a less conservative approach as the downstream gene is not considered in this case, 

(Fig 1c). The gene-pair method is used by default as it controls against detecting “switching” 
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(recombination) events that encompass more than a single IGR, for example, cases where a 

mobile element has inserted between two genes. However such cases remain relevant as the 

regulation of the downstream gene will still be affected. 

 

To ensure that differences in gene annotation between isolates are not erroneously identified as 

“switching” events, the first and last 30 bp of each flanking gene are searched against the IGRs 

with BLASTN. Any matches from these searches indicate differences in annotation of gene 

borders (rather than genuine differences between the IGRs), and these sequences are 

disregarded. In order to confirm that they represent genuine switching events, candidate 

switched IGRs are searched against each other with BLASTN with low complexity filtering 

turned off (-dust no). If there is no significant match they are classed as “switched”, and if there 

is a significant match they are aligned using MAFFT [28]. The resulting alignment is then used 

to calculate nucleotide identity (SNPs / shared sites), and length identity (number of shared sites 

/ alignment length). These values can then be used to define an appropriate threshold to identify 

“switched” IGRs. To aid this, Piggy calculates within-cluster divergences for both genes and 

IGRs, and these divergences can be used to calibrate Piggy with Roary. 

 

Datasets 

The S. aureus ST22 dataset was assembled from published genome sequences of the clinically 

important lineage ST22 (EMRSA-15) [16] available at http://www.ebi.ac.uk/ena (study number 

ERP001012). The original genome assemblies were used, and 500 isolates belonging to ST22 

were randomly selected for analysis. The S. aureus RNA-seq data was previously published 

[17], and is available at (http://www.ebi.ac.uk/ena, study number ERP009279). This was 

supplemented with the corresponding reference genomes, HO_5096_0412: HE681097, 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://paperpile.com/c/xRMYlV/wzm14
https://paperpile.com/c/xRMYlV/M4jKH
http://www.ebi.ac.uk/ena
https://paperpile.com/c/xRMYlV/f4LZs
http://www.ebi.ac.uk/ena


MRSA252: BX571856, Newman: AP009351, S0385: AM990992, available at 

(www.ncbi.nlm.nih.gov). The E. coli  ST131 dataset was also from a previously published study 

[4], and is available at (http://datadryad.org/resource/doi:10.5061/dryad.d7d71). All complete 

genomes and assemblies were annotated with Prokka [10]. 

 

Roary and Piggy parameter settings 

Roary [2] was run using default parameters except for the following: -e -n (to produce 

alignments with MAFFT [28]); -i 90 (lower amino acid identity than the default); -s (to keep 

paralogs together); -z (to keep intermediate files). Piggy was run using default parameters 

except for --len_id, which controls the percentage of IGR sequences which must share similarity 

in order to be clustered together. For the S. aureus ST22 and E. coli ST131 datasets, Piggy was 

run twice, once with --len_id 10 and once with --len_id 90. The former was used for the 

pan-genome comparisons between genes and IGRs (Figs 2 and 3) in order to be comparable 

with Roary (as genes which are clustered together by Roary have a minimum length of 120 bp, 

and frequently vary greatly in length). The latter was used whenever “switched” IGRs were 

detected, as this enabled more control over downstream filtering of these sequences. 

 

RNA-seq analysis 

Two biological replicates for each isolate were analysed. Kallisto [18] was used to quantify 

transcripts (--kmer-size 31 and --bootstrap-samples 100), and Sleuth [19] was used to normalise 

and filter the counts produced by Kallisto. These counts were then log10 transformed, and major 

axis (MA) regression was performed. Rockhopper2 [29] was used to produce an operon map for 

each strain by grouping adjacent genes with similar expression profiles together into operons. 
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Statistical analysis 

All statistical analysis was performed within R version 3.3.2 (https://www.r-project.org). All 

plotting was performed with ggplot2 [30]. 
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Fig 1: An overview of the Piggy pipeline. a) A schematic to illustrate the Piggy pipeline and 

how it works alongside Roary. b) IGRs are named according to their flanking genes and their 

orientations. This naming scheme enables Piggy to link genes with their associated IGRs, and 

provides information on their orientations. c) A schematic to illustrate the difference between the 

“gene-pair” and “upstream” methods used to identify candidate switched IGRs. 
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Fig 2: Properties of the S. aureus ST22 pan-genome. Genes (red) and IGRs (blue) were 

analysed. a) Gene and IGR frequency histogram – that is, the number of genes / IGRs present 

in any given number of isolates. The vast majority of genes / IGRs are either very rare or very 

common. b) Gene and IGR accumulation curves – that is, the cumulative number of genes / 

IGRs detected in a given number of isolates. 
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Fig 3: Properties of the E. coli ST131 pan-genome. Genes (red) and IGRs (blue) were 

analysed. a) Gene and IGR frequency histogram – that is, the number of genes / IGRs present 

in any given number of isolates. The vast majority of genes / IGRs are either very rare or very 

common. b) Gene and IGR accumulation curves – that is, the cumulative number of genes / 

IGRs detected in a given number of isolates. 
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Fig 4: S. aureus gene expression data. Pairwise RNA-seq comparisons between four S. 

aureus isolates, where two biological replicates were used for each isolate. The top-left of the 

diagonal corresponds to comparisons between replicate 1 from different isolates (e.g. SO385 

replicate 1 vs HO_5096_0412 replicate 1). The bottom-right of the diagonal corresponds to 

comparisons between replicate 2 from different isolates (e.g. SO385 replicate 2 vs 

HO_5096_0412 replicate 2). The diagonal corresponds to comparisons between the two 

biological replicates from the same isolate. 2094 core genes were analysed in each comparison, 
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and tpm (Transcripts per Kilobase Million) was used to quantify expression. The genes were 

separated into two categories: Switched (red), and Not-switched (grey), based on their 

upstream IGRs. The R2 value corresponds to all the genes. The P-value corresponds to a 

Monte Carlo permutation test comparing the residuals of the two groups of genes, where a 

significant score indicates that the genes downstream of switch IGRs are associated with a 

higher degree of differential expression (ie higher residuals). 
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Fig 5: A detailed view of the genomic neighbourhood and expression data for selected 

genes in Newman vs MRSA252. Nucleotide identity was calculated using a 20 bp sliding 

window across the IGR, and this is shown alongside the flanking genes in their correct 

orientation (left). The corresponding expression data for the gene of interest was also shown 

(right), with the two boxplots per isolate corresponding to the two biological replicates. a) dapE 

b) ssaA_1 c) ytrA. 
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Fig S1: The IGR pan-genome (“panIGRome”) as visualised using Phandango. A 

neighbour-joining phylogenetic tree was imported into Phandango alongside the 

IGR_presence_absence.csv file. Each row corresponds to an isolate, and each column 
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corresponds to an IGR, with the IGRs ordered from the left in order of decreasing frequency 

within the sample. The line graph at the bottom shows the frequency of the IGRs within the 

sample. a) S. aureus ST22 b) E. coli ST131. 
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Fig S2: Comparison with Roary. Roary (blue) and Piggy (red) were both run on increasing 

numbers of S. aureus ST22 isolates on a CLIMB virtual machine with 10 vcpus. The programs 

were both run with (circles) and without (triangles) alignment options. 
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