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Response to Reviewers: Reviewer reports:

Reviewer #1: Piggy represents a potentially valuable tool to the field of comparative
genomics. In general, additional details on how the algorithm works would be helpful to
understand the results.

RESPONSE: We thank the reviewer for recognizing the value of our approach – we
have added additional details concerning the algorithm throughout the manuscript as
requested.

P1,L16; bacteria "has" impacts

RESPONSE: P2,L35-36: This line now reads “variation in intergenic regions (IGRs) in
bacteria can directly influence  phenotypes”
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P2.L9: Add references to this first line

RESPONSE: P2,L46: Added references: McInerney et al. 2017; Andreani et al. 2017

P2,L14: Relationship between pan-genome and core will differ greatly on the organism
chosen

RESPONSE:We agree with this point and have added the following text:

P2,L59-62: “More generally, the relationship between the size of the core and
accessory genomes varies between species. Broadly, ecological generalists have
large accessory genomes, whilst more ecologically restricted species, such as
endosymbionts, have much smaller accessory genomes (McInerney et al. 2017;
Andreani et al. 2017).”

P2,L30-34: This is a run-on sentence and could be broken up to improve clarity

RESPONSE: P3,L67-70: This sentence now reads:

The increasing availability of datasets containing thousands of isolates thus offers an
unprecedented opportunity for describing the genetic basis of bacterial adaptation,
although the scale of these data presents serious logistic and conceptual challenges in
terms of data management and analysis.

P3,L11: I have several problems with this statement about LS-BSR. What do you mean
that it is no longer specific. Specific to what? Also, you mention that this reduced
specificity is a by-product of pre-clustering, but the next sentence indicates that Roary
also uses pre-clustering. Why wouldn't that also affect the results?

RESPONSE:P3,L74-77: We apologise for the confusion, and on reflection agree with
the referee that the text was not reflective of the relative performance of the two
methods. We have changed the text accordingly.

P3,L16-17: You mention that Roary is "more accurate than LS-BSR" and this is likely
based on one comparison in the Roary paper. This was the result of one simulated
dataset, using an unknown version of USEARCH and unknown parameters for
alignment. To be safe, if you want to still report these results, I would mention that
Roary was more accurate than LS-BSR using one simulated dataset, although the
details remain unclear. You could safely remove this statement and not detract from
the rest of your manuscript.

RESPONSE:P3,L74-77: Again, we completely agree with the referee and have
modified the text accordingly.

P3,L39: Reference for "15% of the genome" statement?

RESPONSE:P3,L86: Added references: Ochman and Caro-Quintero 2016;
McCutcheon and Moran 2011

P13,L4-6: What lengths of IGRs do you consider? Is there a minimum length? What do
you do at the beginning and ends of draft contigs? More detail here would be very
helpful.

RESPONSE:We have provided more detail in the text as requested:

P7,L204-206: IGRs at the edge of contigs are excluded by default, but when they are
included (using the --edges flag) the missing information is denoted by NA, for example
‘Gene_1 NA NA’.

P7,L207-209: By default, only IGRs between 30-1000 bp in length are included by
Piggy, though these lengths can be user-defined using the --size flag (minimum length
= 30 bp).
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P13,L27: What BLASTN parameters do you use to merge similar clusters?

P7,L218-219: More detail provided: BLASTN defaults, except -word_size = 10

P13,L27: What thresholds do you decide on for presence/absence?

P7,L219-221: Thresholds are provided by --len_id and --nuc_id, and these are used to
produce clusters. Once the clusters have been produced, the gene presence
information is simply a matrix of these clusters vs strains.

Fig S1: These trees look to be unrooted, but am unsure of why

RESPONSE:The phandango tool provides a visual comparison between the
relatedness based on core genome variation with differences in gene content. The use
of an outgroup to root the tree is not required for this.

Reviewer #2: The manuscript entitled: "Piggy: A Rapid, Large-Scale Pan-Genome
Analysis Tool for Intergenic Regions in Bacteria" introduces the pipeline Piggy for the
analysis of intergenic regions (IGRs). The authors correctly point out that current
approaches in pan-genome analysis focus purely on genes. They present a pipeline to
address the remaining parts of the genome.
Based on published RNA-seq data the manuscript highlights that especially for the
analysis of gene expression the state of the intergenic region can be relevant and
should be considered carefully.
Since the presented pipeline equals to a great extent the approach of the software
Roary, the main contribution of this work is the identification of switched IGRs. In
particular, the handling of differently annotated gene borders is solved in a clever way.
So far no standard file format for pangenomic data has established but the output
format of Roary can be used by a bunch of analysis and visualization tools (panX,
Phandango, FriPan).
It is thus reasonable to use this format for the output of Piggy.
Since for large parts of the intergenic regions in bacteria the function is unknown and
most of these regions are very short, I am not sure how accurate the reconstruction of
the "panIGRome" by Piggy currently is (see point 1. below).
However, before I can recommend accepting the manuscript there are some further
points I would like to see addressed by the authors.:

Major points:

1. Intergenic regions in bacteria are usually much shorter than protein-coding
sequences. Thus the clustering of these regions is potentially more vulnerable to
wrongly aligned short sequences. Please add a part on the clustering performance to
the manuscript.

RESPONSE:We thank the referee for this important point, and have spent
considerable time addressing this issue in detail. Additional analyses on clustering
performance are incorporated in the text (in both the Methods, P6,178-187, Results,
P8-9,L252-271, and Discussion, P14,L445-458) as described below, and we feel this
significantly improves the paper.

Our approach to examining clustering performance was based on truncating IGRs and
re-clustering them with the original set of IGRs. This was based on the logic that if the
truncation had no effect (i.e. if the same clusters were recovered), then this provides
reassurance that the clustering is not confounded by the length of the sequences, at
least within the relevant parameters we are using.

This approach confirmed that 20-30 bp represents a minimum length for reliable
clustering of IGRs for S. aureus, but possible slightly longer for E. coli. The incorrect
clustering at these lengths was mostly driven by IGRs which are homologous to other
IGRs over part, but not all of the sequence (as a result of rearrangements, HGT etc). In
these cases when the IGR was truncated it could align equally well with multiple
original IGR sequences, depending on which section of the sequence was retained
during truncation. This may be a problem at the edge of contigs, but these IGRs are
(now) removed by default (updated in the newest version of Piggy on GitHub) -
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P7,L204-206. Due to the high number of incorrectly clustered IGRs when truncated to
10 bp, we recommend that these sequences are not included in the analysis at all.

2. page 16 line 27-39. Why did you use two different clusterings? One very loose
clustering for Fig 2 and 3 and one more rigid for the rest of the manuscript? I do not
see the point of using two different clusterings. Either two IGRs have the same origin or
not. There should be an optimal value for --len_id where the clustering is close to the
true relationship. And this one should be used for all subsequent analyses.

RESPONSE:With respect, we feel that there is no true --len_id which is appropriate for
all situations, in the same way that there is no true --nuc_id. Of course it is true that
either IGRs have the same origin or not, but when faced with real data the rules for
assigning clusters are essentially pragmatic rather than grounded in biological
certainties. Hence Piggy (and Roary, LS-BSR, PanOCT) use thresholds to define
clusters. An IGR may acquire a deletion in one strain which means it is no longer the
same length as the same IGR in other strains, despite sharing a common history.

The loose setting (--len_id 10) was used to enable a fair comparison with Roary results,
where genes of different lengths are frequently clustered together. These can be the
result of genuine truncations or assembly errors. Roary only requires that genes are
>120 bp in length, and does not require genes to be similar in length in order to cluster
together (fully explained on P5-6,L152-168). The stricter setting (--len_id 90) was used
to detect switching, as this enables downstream filtering based on either length or
nucleotide identity (P6,L166-168).

3. The text emphasizes that it is so far unknown whether genes and IGRs should be
considered as independent or closely linked units. Likely this will depend on the
context of the scientific question. Instead of separate genes g or IGRs i the set of both
(i,g) can be considered. In this case one could get a first impression on the linkage of
both. While the identification of switched IGRs in the manuscript uses the information
of the flanking genes, I would have loved to read a bit more about this link in the two
data examples. How many core genes are flanked by core IGRs? How many different
genes can be found next to the same IGR and how many different IGR does a gene
have? Even a first impression on these numbers would improve the quality of the
manuscript.

RESPONSE:We agree that this is an important consideration, and so have done an
analysis which is designed to be a first impression on these numbers. We analysed the
number of core and accessory genes which are immediately upstream of core and
accessory IGRs, and presented these data in a table (Table 2), and also in the text:

RESPONSE:P10,L302-312: We used the output of Piggy to investigate the degree of
linkage between genes and IGRs. We identified all genomic loci consisting of an IGR
flanked by two genes, and from these we identified all pairs of genes and IGRs where
the IGR was upstream of the gene. We then grouped these according to whether the
gene or IGR was core or accessory (Table 2). For the S. aureus ST22 data, 99.5% of
core genes were immediately downstream of a core IGR, and 92.9% of the accessory
genes were similarly downstream of an accessory IGR. When considering the wider S.
aureus dataset the figures were similar; 92.6% of core genes were downstream of a
core IGR, and 96.8% of accessory genes were downstream of an accessory IGR.
Thus, the assignment of an IGR as core or accessory is strongly predictive of the
corresponding assignment of the cognate downstream gene, which in turn points to
strong background linkage between genes in IGRs in the genome.

P10,L324-327: There was tight linkage between genes and IGRs, with 97.9% of core
genes being immediately downstream of core IGRs and 97.3% of accessory genes
being similarly downstream of accessory IGRs; these results are consistent with those
from S. aureus (Table 2).

In addition, please state how you proceeded with genes where a gene has an IGR >
30bp in one strain and an IGR < 30bp in another strain. Are those genes excluded from
your analysis?

RESPONSE:When an IGR was > 30 bp in one strain and < 30 bp in another, then
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those sequences > 30 bp would be included and the others would not. This is because
the IGRs are selected before the clustering is done, and so the relationships between
these sequences is not known.

4. The pan-genome can be studied at all levels of divergence from the level of single
lineages within pathogenic strains up to the level of all bacteria. Piggy has been
demonstrated in two closely related datasets based on a single lineage from S. aureus
and E. coli, respectively. I am wondering if this is the envisaged distance of genomes
to analyze and whether the pipeline can be used on more diverse datasets. In the
former case, the manuscript should state more precisely that piggy is intended only for
closely related bacterial strains. In the latter case, I would like to see the addition of
some further more distantly related strains of S. aureus and/or E. coli.

RESPONSE:We have now included an additional analysis consisting of a diverse
collection of 1500 S. aureus isolates (P9,L294, Fig 2b). This clearly shows that the size
of the species-wide S. aureus pan-genome is much greater than that of ST22 (fourfold
increase in the number of accessory genes, and fivefold increase in accessory IGRs)
(Table 1). There was also a corresponding decrease in the number of core elements,
although this was much more modest. That Piggy identified >2000 core genes and
>1000 core IGRs suggests that Piggy can cope with diverse datasets (Table 1).

5. paragraph starting at page 9 at line 44:
In this paragraph a resampling method is used to show that between certain strains of
S. aureus genes linked to a switched IGR are on average more differentially expressed
than other genes.
While the resampling approach is appropriate to produce p-values in this setting, I do
not understand how these p-values have been adjusted. The Benjamini-Hochberg
method is usually not used to change p-values, and one has to choose an acceptable
false discovery rate. Which FDR did you choose? In addition, the observations need to
be independent, which is clearly not the case in the 12 pairwise comparisons.
I would recommend to either just show the simulated p-values and choose a level of
significance below 0.05 or explain much more detailed what has been adjusted and
why.
In addition, please stick to lowercase "p" for the p-value. Also in Figure 4.

RESPONSE:P12,L384-393: The p-values have been left unadjusted, and those < 0.05
were deemed significant. Lowercase p was used throughout. “Independently” has been
removed from the text.

6. I understand that the data provided by Piggy can be directly used to create an allele
scheme. But I do not see the benefit of creating an allele scheme for IGRs compared to
the wgMLST schemes. Could you please clarify how this scheme could be used and
what would be the advantage compared to MLST, rMLST and wgMLST?

RESPONSE:The IGR scheme is not expected to be used in isolation, but rather can be
combined with a scheme based on genes which may offer increased resolution in very
closely related sets of strains. We have added some explanation of this:

P13,L421-424: “Although we do not expect a typing scheme based solely on IGRs to
be widely used, supplementing protein-coding regions with IGR alleles may provide
additional information regarding links between genotype and phenotype, as well as
increased epidemiological and phylogenetic resolution.”

Minor issues:

Please explain more clearly why IGRs < 30 bp are excluded. Is this due to problems
with the clustering and how did you determine the border at 30 bp?

RESPONSE:The exclusion of IGRs <30 bp is a conservative threshold as evidenced
by the clustering assessment as described above.

Figure 1: The text in the flow diagram should be much larger.

RESPONSE:We have increased the size of the text in this figure.
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Figure 2: In my opinion accumulation curves in pan-genome studies are not very
informative and could easily be replaced by a simple table with the average number
per genome and the total number in the pan-genome. I suggest to replace Fig 2b and
Fig 3b by such a table and use the opportunity to replace vague statements about the
gradient and the plateau of the accumulation curve in the text. The accumulation
curves could still appear in the supplemental material.

RESPONSE:Figures 2 and 3 have been merged into one (Figure 2), and the
accumulation curves and vague statements have been removed. A new table (Table 1)
has been created and the text adjusted.

Figure 4: You could highlight the points in Figure 4 corresponding to the genes from
Figure 5

RESPONSE:Figure 5 only serves as an illustration of the data using some example
genes. Highlighting these genes on Figure 4 may draw unnecessary attention to them,
and this is not the message we are trying to convey, which is that there is a moderate
and widespread effect of IGR divergence on gene expression which is not limited to a
few hand-picked genes.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials Yes
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All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?
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Abstract 34 

Despite overwhelming evidence that variation in intergenic regions (IGRs) in bacteria can 35 

directly influence phenotypes, most current approaches for analysing pan-genomes focus 36 

exclusively on protein-coding sequences. To address this we present Piggy, a novel pipeline 37 

that emulates Roary except that it is based only on IGRs. We demonstrate the use of Piggy for 38 

pan-genome analyses of Staphylococcus aureus and Escherichia coli using large genome 39 

datasets. For S. aureus, we show that highly divergent (“switched”) IGRs are associated with 40 

differences in gene expression, and we establish a multi-locus reference database of IGR 41 

alleles (igMLST; implemented in BIGSdb). Piggy is available at https://github.com/harry-42 

thorpe/piggy and registered with SciCrunch (RRID: SCR_015941). 43 

 44 

Background 45 

Whole-genome sequencing has revealed that, in many bacteria, individual strains frequently 46 

recruit new genes from a seemingly endless genetic reservoir (McInerney, McNally, and 47 

O’Connell 2017; Andreani, Hesse, and Vos 2017). The total complement of genes observed 48 

across all strains, known as the pan-genome, often numbers tens of thousands, up to an order 49 

of magnitude more than the number of genes present in any single genome. In contrast, the 50 

“core-genome”, which refers to the complement of genes present in all (or the vast majority) of 51 

sampled isolates, can be significantly smaller than the total number of genes in any given 52 

genome (Medini et al. 2005; Page et al. 2015). For example, a study of 328 Klebsiella 53 

pneumoniae isolates, each of which harbour 4-5,000 genes, revealed a pan-genome of 29,886 54 

genes; only 1,888 (6.8%) of which were universally present (core) (Holt et al. 2015). Similarly, 55 

genome data for 228 Escherichia coli ST131 isolates revealed a pan-genome of 11,401 genes, 56 

of which 2,722 (23.9%) were core (McNally et al. 2016). The degree of gene content variation in 57 

the latter study is particularly striking as these isolates were all from the same sequence type 58 

(ST), thus show limited nucleotide divergence in core genes, and are descended from a recent 59 

common ancestor. More generally, the relationship between the size of the core and accessory 60 

genomes varies between species, with ecologically diverse species having large accessory 61 

genomes, and ecologically restricted species (such as endosymbionts) having small accessory 62 

genomes (McInerney, McNally, and O’Connell 2017; Andreani, Hesse, and Vos 2017). 63 

 64 

There is growing recognition that the acquisition of new genes through horizontal gene transfer 65 

(HGT) has a central role in ecological adaptation (Vos et al. 2015). The emergence and spread 66 
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of antibiotic resistance, underpinned by the transfer of plasmids and other mobile genetic 67 

elements (MGEs), is a pertinent example. The increasing availability of datasets containing 68 

thousands of isolates thus offers an unprecedented opportunity for describing the genetic basis 69 

of bacterial adaptation, although the scale of these data presents serious logistic and 70 

conceptual challenges in terms of data management and analysis. 71 

 72 

Pioneering pan-genome analysis tools, such as PanOCT and PGAP relied on all-vs-all BLAST 73 

comparisons between protein sequences, and scaled approximately quadratically with the 74 

number of isolates (Fouts et al. 2012; Zhao et al. 2012). LS-BSR introduced a pre-clustering 75 

step which substantially reduced the number of BLAST comparisons, enabling it to be feasibly 76 

run on thousands of samples (Sahl et al. 2014). More recently, the Roary pipeline has rapidly 77 

gained popularity for scalable, user-friendly, pan-genome characterisation (Page et al. 2015). 78 

 79 

The concept of the pan-genome, as described above, places an exclusive emphasis on genes; 80 

or, more specifically, open reading frames with the potential to encode proteins. This gene-81 

centric perspective has both shaped, and been shaped by, the bioinformatics tools developed to 82 

interrogate the pan-genome. For example, Roary works by taking individual protein-coding 83 

sequences, pre-defined using Prokka annotation (Seemann 2014), and assigning each to a 84 

single cluster of homologous sequences. This approach thus excludes non protein-coding 85 

intergenic regions (IGRs) which typically account for approximately 15% of the genome 86 

(Ochman and Caro-Quintero 2016; McCutcheon and Moran 2011). This is clearly problematic 87 

for downstream attempts to identify genotype-phenotype links, as IGRs contain many important 88 

regulatory elements including, but not limited to, promoters, terminators, non-coding RNAs, and 89 

regulatory binding sites. Moreover, we have recently shown that IGRs are subject to purifying 90 

selection in the core-genomes of diverse bacterial species, even when known major regulatory 91 

elements are excluded (Thorpe et al. 2017; Molina and Van Nimwegen 2008), and a recent 92 

study has shown that intergenic variation is positively selected during Pseudomonas aeruginosa 93 

infections (Khademi and Jelsbak 2017). 94 

 95 

Given that variation in IGRs can have profound phenotypic consequences, it is timely to 96 

consider how best to incorporate these sequences into pan-genome analyses. A key question is 97 

the degree to which protein-coding genes, and their cognate regulatory elements, should be 98 

considered a single “unit”, both selectively (in terms of co-adaptation) and in terms of physical 99 
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linkage on the chromosome. If physical linkage is assumed to be highly robust, such that genes 100 

are mostly transferred along with their cognate IGRs, then in principle the definition of a “gene” 101 

could be expanded to include the upstream regulatory regions. On the other hand, if there is 102 

moderate or weak linkage between genes and IGRs, such that IGRs can occasionally transfer 103 

independently, then the purview of the pan-genome could be expanded to include the full 104 

complement of IGR alleles in addition to protein-coding sequences. 105 

 106 

Consistent with the second model, which allows for independent transfer of IGRs, a landmark 107 

study demonstrated that E. coli genes can apparently be regulated by alternative IGRs that 108 

frequently share no sequence similarity to each other (Oren et al. 2014). Moreover, the 109 

distribution of these IGRs was incongruent with gene trees, suggesting that recombination can 110 

act to replace one IGR with another resulting in regulatory “switches”; a process they call 111 

horizontal regulatory transfer (HRT) (Oren et al. 2014). It is important to note here that the term 112 

“switching” refers only to the replacement of an IGR by a non-homologous or highly divergent 113 

variant sequence. It does not specify that the replacement IGR has a particular origin, and could 114 

therefore correspond to a transfer from elsewhere in the same genome, or from another isolate. 115 

It was also noted that conserved flanking genes may facilitate this process by providing 116 

localised regions of homology. IGR switches can be accompanied by differential gene 117 

expression (Oren et al. 2014), and may provide a mechanism to offset the fitness costs of 118 

harbouring plasmids and other MGEs (McNally et al. 2016), pointing to a central role for this 119 

process in adaptation. 120 

 121 

Our current understanding of the evolutionary dynamics of IGRs in the context of bacterial pan-122 

genome leave many open questions. Specifically, it is unclear how IGRs are distributed among 123 

isolates within bacterial populations, how commonly IGRs and their cognate genes are co-124 

transferred, or how the frequency of HRT relates to different functional gene categories. A more 125 

complete understanding of bacterial adaptation clearly requires a careful consideration of gene 126 

presence/absence alongside gene regulation. Here we address this by introducing a new 127 

pipeline called Piggy which closely emulates and complements the established pan-genome 128 

analysis pipeline Roary (Page et al. 2015). Input and output files for Piggy and Roary use the 129 

same format, and run in a similar time on modest computing resources. Piggy provides a means 130 

to rapidly identify IGR switches, and more broadly the means to examine the role of horizontal 131 

transfer in shaping the bacterial regulome. We demonstrate the utility of Piggy using large 132 
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genome datasets for single lineages within two bacterial species, both of which are of high 133 

public health importance; Staphylococcus aureus and Escherichia coli. Conventional pan-134 

genome analyses are applied to analyse and compare core and accessory IGRs/genes in these 135 

lineages. In S. aureus we show an association between IGR switching and changes in gene 136 

expression, and demonstrate proof-of-principle by establishing a multilocus IGR scheme, 137 

(igMLST) in BIGSdb (Jolley and Maiden 2010). Piggy is available at (https://github.com/harry-138 

thorpe/piggy) under the GPLv3 licence. 139 

 140 

Methods 141 

Datasets 142 

The S. aureus dataset was assembled from published genome sequences (Reuter et al. 2015) 143 

available at http://www.ebi.ac.uk/ena (study number ERP001012). The S. aureus RNA-seq data 144 

was previously published (Warne et al. 2016), and is available at (http://www.ebi.ac.uk/ena, 145 

study number ERP009279). This was supplemented with the corresponding reference 146 

genomes, HO_5096_0412: HE681097, MRSA252: BX571856, Newman: AP009351, S0385: 147 

AM990992, available at (www.ncbi.nlm.nih.gov). The E. coli ST131 dataset was also from a 148 

previously published study (McNally et al. 2016), and is available at 149 

(http://datadryad.org/resource/doi:10.5061/dryad.d7d71). All complete genomes and assemblies 150 

were annotated with Prokka (Seemann 2014). 151 

 152 

Roary and Piggy parameter settings 153 

Roary (Page et al. 2015) was run using default parameters except for the following: -e -n (to 154 

produce alignments with MAFFT (Katoh and Standley 2013)); -i 90 (lower amino acid identity 155 

than the default); -s (to keep paralogs together); -z (to keep intermediate files). Piggy was run 156 

using default parameters except for --len_id, which controls the percentage of IGR sequences 157 

which must share similarity in order to be clustered together. For the S. aureus and E. coli 158 

ST131 datasets, Piggy was run twice, once with --len_id 10 and once with --len_id 90. The 159 

former was used for the pan-genome comparisons between genes and IGRs (Fig 2) in order to 160 

be comparable with Roary. Using a low length identity (--len_id 10) enabled homologous 161 

sequences of varying lengths (for example a truncated sequence) to cluster together. Roary 162 

does not provide a similar setting, and only requires that sequences have a minimum length of 163 

120 bp. Genes in the same clusters defined by Roary  may vary considerably in length, either 164 

due to genuine truncations or assembly errors. A relaxed --len_id setting of 10 was therefore 165 
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used in Piggy to provide consistency with Roary and to ensure that homologous IGRs are not 166 

erroneously placed in different clusters. A --len_id setting of 90 was subsequently used 167 

whenever “switched” IGRs were detected, as this enabled sequences to be subsequently 168 

filtered by either nucleotide or length identity. 169 

 170 

RNA-seq analysis 171 

Two biological replicates for each isolate were analysed. Kallisto (Bray et al. 2016) was used to 172 

quantify transcripts (--kmer-size 31 and --bootstrap-samples 100), and Sleuth (Pimentel et al. 173 

2017) was used to normalise and filter the counts produced by Kallisto. These counts were then 174 

log10 transformed, and major axis (MA) regression was performed. Rockhopper2 (Tjaden 2015) 175 

was used to produce an operon map for each strain by grouping adjacent genes with similar 176 

expression profiles together into operons. 177 

 178 

Clustering performance 179 

We examined the clustering performance of Piggy by producing truncated variants of IGRs of 180 

lengths 10, 15, 20, 30, 50 bp, and comparing how the lengths of the IGRs altered the resulting 181 

clustering. The IGRs were truncated from a random starting point in the sequence, and each 182 

length was analysed separately. From the starting pool of IGRs from 10 randomly selected 183 

isolates, 1000 IGRs were chosen and truncated. These truncated variants were then added to 184 

the pool of IGRs and Piggy was run on them. Clustering patterns based on the truncated and 185 

original IGRs were then compared, with truncated IGRs placed in the same cluster as their 186 

progenitor sequences being assigned as correctly clustered. This analysis was performed on 187 

both the S. aureus ST22 and E. coli ST131 datasets. 188 

 189 

Statistical analysis 190 

All statistical analysis was performed within R version 3.3.2 (https://www.r-project.org). All 191 

plotting was performed with ggplot2 (Wickham 2009). 192 

 193 

Results  194 

Overview of the Piggy pipeline 195 

Fig 1a shows an overview of the Piggy pipeline. The first step is to run Roary, as the gene 196 

presence absence output file from Roary is used as an input for Piggy. Piggy is then run using 197 

the same annotated assemblies as Roary, specifically GFF3 format files such as those 198 
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produced by Prokka (Seemann 2014). Piggy extracts intergenic sequences (IGRs) from these 199 

files, and uses the flanking gene names and their orientations to name the IGRs (Fig 1b). 200 

 201 

Each IGR name contains three pieces of information: the upstream gene, the downstream gene, 202 

and their relative orientations (CO - co-oriented, DP - double promoter, DT - double terminator). 203 

For example, the IGR “Gene_1 Gene_2 DP” is flanked by Gene_1 and Gene_2, which are both 204 

downstream of the IGR (i.e. they are transcribed in opposite directions). IGRs at the edge of 205 

contigs are excluded by default, but when they are included (using the --edges flag) the missing 206 

information is denoted by NA, for example “Gene_1 NA NA”. Including the gene neighbourhood 207 

information gives context to the IGR and enables identification of “switched” IGRs. By default, 208 

only IGRs between 30-1000 bp in length are included by Piggy, though these lengths can be 209 

user-defined using the --size flag (minimum length = 30 bp). The IGRs are then clustered with 210 

CD-HIT (Fu et al. 2012) at user-defined identity thresholds (--nuc_id - nucleotide identity, --211 

len_id - length identity). The nucleotide identity is defined as SNPs / aligned sites, and the 212 

length identity is defined as shared sites / alignment length. These two flags allow the user to 213 

set the level of stringency for clustering. For example, a conservative approach is to set high 214 

values for both nucleotide and length identity such that IGRs must be similar in both nucleotide 215 

and length identity to cluster together. By relaxing the length identify whilst maintaining a high 216 

nucleotide identity threshold, highly related sequences still cluster even if one is truncated. The 217 

longest sequence from each cluster is then used to perform an all-vs-all BLASTN search 218 

(Camacho et al. 2009). This is used to merge similar clusters (BLASTN defaults, except -219 

word_size = 10), which did not cluster with CD-HIT. These clusters are then used to produce an 220 

IGR presence absence matrix (“IGR_presence_absence.csv”), in the same format as the gene 221 

presence absence matrix (“gene_presence_absence.csv”) produced by Roary. Up until this 222 

point, the pipeline is very similar to Roary (Page et al. 2015). 223 

 224 

Switched IGR detection 225 

Piggy identifies “switched” IGRs using two methods. For both methods, the term “switch” refers 226 

to two or more divergent IGR sequences occupying the same locus as defined by flanking 227 

genes, but does not specify an origin for the divergent IGR sequences (Oren et al. 2014). The 228 

first method identifies adjacent genes on the same contig (gene-pairs), and searches for IGR 229 

clusters which lie between these gene-pairs (Fig 1c). Instances where multiple IGR clusters 230 

correspond to the same gene-pair are identified as candidate switched IGRs. The second 231 
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method identifies instances where multiple IGR clusters occupy a locus upstream of a single 232 

gene cluster. This is a less conservative approach as only one of the two genes flanking the 233 

IGR is taken into account, (Fig 1c). The gene-pair method is used by default as it controls 234 

against detecting “switching” (recombination) events that encompass more than a single IGR, 235 

for example, cases where a mobile element has inserted between two genes. However such 236 

cases remain relevant as the regulation of the downstream gene may still be affected. 237 

 238 

To ensure that differences in gene annotation between isolates, specifically artifactual variation 239 

in the start and end points of each gene, are not erroneously assigned as switching events, the 240 

first and last 30 bp of each flanking gene are searched against the IGRs with BLASTN. Any 241 

matches from these searches indicate differences in annotation of gene borders (rather than 242 

genuine differences between the IGRs), and these sequences are disregarded. In order to 243 

confirm that they represent genuine switching events, candidate switched IGRs are searched 244 

against each other with BLASTN with low complexity filtering turned off (-dust no). If there is no 245 

significant match they are classed as “switched”, and if there is a significant match they are 246 

aligned using MAFFT (Katoh and Standley 2013). The resulting alignment is then used to 247 

calculate nucleotide identity (SNPs / shared sites), and length identity (number of shared sites / 248 

alignment length). These values can then be used to define an appropriate threshold to identify 249 

“switched” IGRs. To aid this, Piggy calculates within-cluster divergences for both genes and 250 

IGRs, and these divergences can be used to calibrate Piggy with Roary. 251 

 252 

Clustering performance 253 

The shorter lengths of IGRs compared with genes poses potential problems for alignment 254 

accuracy. We tested the clustering performance of Piggy by producing truncated variants of 255 

IGRs, adding these to the total complement of IGRs in an analysis, and then recording whether 256 

the truncated IGRs were clustered with their untruncated counterparts (Methods). For S. aureus 257 

ST22, 82% of IGRs truncated to 10 bp clustered together with the corresponding full length 258 

sequences, but this figure increased to > 99% when the length of the truncated sequences was 259 

20 -bp. (Fig S1a). A similar increase was observed for the E. coli ST131 data, although in this 260 

case 50 bp was required for the percentage of correct assignments to be > 99%. (Fig S1b). 261 

 262 

An inspection of the incorrectly clustered sequences from both datasets revealed that their 263 

progenitor sequences shared high sequence similarity in parts of their sequence to other IGR 264 
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clusters, but no sequence similarity in other parts of the sequence. This resulted in separate 265 

clusters which shared high sequence homology over parts of their sequences. When these 266 

sequences were truncated to assess the clustering, if the truncated part of the sequence was 267 

selected, then it could align to either of these IGR clusters. In many cases these alignments 268 

were perfect matches, and so the IGR could not be unambiguously placed. This problem is 269 

likely to be a result of non-homologous breaks at the edge of HGT events, and this is consistent 270 

with greater clustering accuracy in S. aureus ST22 compared with E. coli ST131, where the 271 

latter has a much larger pan-genome. 272 

 273 

Staphylococcus aureus  274 

S. aureus is an important skin-associated bacterium which is commonly carried 275 

asymptomatically, but can also cause a wide range of infections from minor skin infections to 276 

fatal bacteraemias. It has a clonal population structure consisting of discrete lineages (Feil et al. 277 

2003). Although the core genome is relatively stable, phenotypic variation (e.g. resistance 278 

profiles, virulence traits, and host preference) is associated with a more dynamic accessory 279 

genome and the horizontal transfer of MGEs, such as the SCCmec element which confers 280 

resistance to β-lactam antibiotics (Lindsay and Holden 2004). 281 

 282 

S. aureus ST22 (EMRSA-15) is a clinically important hospital-acquired methicillin resistant strain 283 

which is common in the UK and is rapidly expanding elsewhere in Europe and globally (Holden 284 

et al. 2013). Previous work has shown that S. aureus ST22 is clonal and shows relatively little 285 

variation in gene content (Holden et al. 2013; Reuter et al. 2015). In order to compare the pan-286 

genomes of S. aureus at different scales, we analysed a diverse dataset of 1552 isolates from 287 

many lineages, and a smaller dataset of 500 ST22 isolates subsampled from the larger dataset 288 

(Reuter et al. 2015). The size of the gene and IGR pan and core-genomes were compared by 289 

analysing both datasets with Roary and Piggy. Frequency histograms were plotted for both 290 

genes and IGRs (Fig 2a-b). 291 

 292 

The gene-IGR frequency histogram for ST22 (Fig 2a) shows that there are 2,409 core genes 293 

and 1,556 core IGRs, where core is defined as gene presence in > 95% of isolates (Table 1). 294 

When the whole species is considered, these numbers drop to 2,129 and 1,134, respectively. 295 

The fact that there are fewer core IGRs than core genes is in part due to the exclusion of  IGRs 296 

< 30 bp (many of which are intra-operonic), but also likely reflects faster evolution of IGRs. Both 297 
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distributions conform to the U-shape typically found in such analyses where the majority of 298 

genes/IGRs are either very common or very rare, however the distribution of genes and IGRs is 299 

shifted towards the rare sequences when the whole species is considered rather than only 300 

ST22. 301 

 302 

We used the output of Piggy to investigate the degree of linkage between genes and IGRs. We 303 

identified all genomic loci consisting of an IGR flanked by two genes, and from these we 304 

identified all pairs of genes and IGRs where the IGR was upstream of the gene start. We then 305 

grouped these according to whether the gene or IGR was core or accessory (Table 2). For the 306 

S. aureus ST22 data, 99.5% of core genes were immediately downstream of a core IGR, and 307 

92.9% of the accessory genes were similarly downstream of an accessory IGR. When 308 

considering the wider S. aureus dataset the figures were similar; 92.6% of core genes were 309 

downstream of a core IGR, and 96.8% of accessory genes were downstream of an accessory 310 

IGR. Thus, the assignment of an IGR as core or accessory is highly predictive of the 311 

corresponding assignment of the cognate downstream gene, which in turn points to strong 312 

background linkage between genes in IGRs in the genome. 313 

 314 

Escherichia coli ST131 315 

The utility of Piggy was further validated by re-analysing data from a recent study on the 316 

widespread and clinically important E. coli lineage ST131 (McNally et al. 2016). This dataset 317 

contains 236 clinical E. coli ST131 isolates from human, domesticated animal, and avian hosts. 318 

E. coli is a more genetically diverse species than S. aureus, and unsurprisingly E. coli ST131 319 

has a larger pan-genome than S. aureus ST22, with 12,806 genes and 16,429 IGRs (Fig 2c, 320 

Table 1). More surprisingly, E. coli ST131 has a larger pan-genome than the whole S. aureus 321 

species. Within E. coli ST131, 3,930 genes and 2,296 IGRs were core out of an average of 322 

4,689 genes and 2,984 IGRs per isolate. Thus despite the differences between the two species 323 

in their level of diversity there was a consistent signal of a lower number of core IGRs than core 324 

genes, and a high number of accessory IGRs compared to accessory genes. There was tight 325 

linkage between genes and IGRs, with 97.9% of core genes being immediately downstream of 326 

core IGRs and 97.3% of accessory genes being similarly downstream of accessory IGRs; these 327 

results are consistent with those from S. aureus (Table 2). 328 

 329 
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The data from S. aureus and E. coli shows a background of strong linkage between genes and 330 

IGRs. However, this linkage is not perfect; some core genes are associated with accessory 331 

IGRs (and vice-versa), and the linkage is weaker over long timescales (across the whole S. 332 

aureus species compared to within ST22). Previous work has examined this linkage and found 333 

evidence of widespread IGR regulatory switching, where genes are regulated by alternative 334 

IGRs in different isolates (Oren et al. 2014). Piggy provides a list of candidate switching events 335 

together for both “gene-pair” and “upstream” approaches (see Methods) at different thresholds 336 

of nucleotide identity. For the E. coli ST131 data, the pipeline detected 61 cases of putative IGR 337 

switching using the most conservative settings (i.e. the conservative gene-pair method, and the 338 

alternative IGRs showing no sequence similarity by BLASTN). Relaxing the threshold of 339 

sequence identity to < 90% resulted in the identification of an additional 317 candidate switching 340 

events, though these possibly reflect either relaxed or positive selection. 341 

 342 

Switched IGRs influence gene expression in S. aureus 343 

To examine whether switches in IGRs affect the expression of cognate (downstream) genes, we 344 

used a previously published RNA-seq dataset based on four reference S. aureus isolates 345 

HO_5096_0412 (ST22), Newman (CC8), MRSA252 (CC36), and S0385 (CC398) (Warne et al. 346 

2016). Each of these S. aureus references isolate represents a distinct major clonal complex, 347 

and all were grown under identical conditions with each experiment being replicated. Thus these 348 

data provide evidence of the natural variation in gene expression within the S. aureus 349 

population. By analysing these data alongside the output from Piggy, it is possible to test the 350 

extent to which IGR switches between these four genomes can account for the observed 351 

variation in gene expression between clonal complexes. First Roary was used to identify a set of 352 

2094 single copy core genes present in all four isolates, and then expression of these core 353 

genes was quantified using Kallisto (Bray et al. 2016). To do this we used RNA-seq data for two 354 

replicates for each of the four reference genomes. The tpm (Transcripts per Kilobase Million) 355 

values for each gene are given in Table S1. We then used Sleuth (Pimentel et al. 2017) to 356 

normalise and filter these counts. 357 

 358 

To check the consistency of the data between biological replicates, we first plotted two 359 

replicates for each isolate against each other (e.g. Newman replicate 1 vs Newman replicate 2) 360 

(Fig 3). These plots were tightly correlated (mean R2 = 0.98), confirming that the expression 361 

values for individual genes were consistent between replicates. We then plotted between-isolate 362 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://paperpile.com/c/n4HOJu/BURAN
https://paperpile.com/c/n4HOJu/tywnk
https://paperpile.com/c/n4HOJu/tywnk
https://paperpile.com/c/n4HOJu/zod19
https://paperpile.com/c/n4HOJu/BUXqO


12 

comparisons, again using both replicates for each genome (e.g. Newman replicate 1 vs 363 

MRSA252 replicate 1, and Newman replicate 2 vs MRSA252 replicate 2) (Fig 3). These 364 

comparisons revealed considerably more scatter, with R2 values ranging from 0.76 to 0.9. Given 365 

the extremely high R2 values for within-isolate comparisons, the decrease in R2 for between-366 

isolate comparisons reflects genuine differences in expression between the isolates. We note 367 

that a small number of genes show very striking differences in expression between the clonal 368 

complexes. For example, the expression of mepA, which encodes a multidrug efflux pump, was 369 

~250 fold higher in Newman compared with the other isolates. 370 

 371 

The genomes of each pair of isolates were analysed using Roary and Piggy to identify switched 372 

IGRs with a nucleotide identity threshold of < 90% for IGR clusters. For each pair of isolates, we 373 

then identified all genes immediately downstream of a switched IGR. As a single switched IGR 374 

might impact on the expression of more than one co-transcribed downstream genes we also 375 

considered all genes linked in a single operon that could be impacted by a single switching 376 

event upstream affecting a shared promoter. For each pair of isolates, we thus identified all core 377 

genes putatively affected by upstream IGR switches. We then tested whether these genes 378 

showed a higher degree of differential expression by conducting Monte Carlo permutation tests 379 

on the residuals from the regressions (Fig 3). For each pairwise comparison of isolates, we 380 

summed the residuals of the genes with switched IGRs (shown as red points in Fig 3), and 381 

compared this to a distribution obtained by resampling (without replacement) 100,000 random 382 

sets of the same number of genes and summing their residuals. We computed a one-tailed p-383 

value by dividing the number of permutations with summed residuals greater than the observed 384 

value by 100,000 (Fig 3). Because we used both replicates separately (e.g. Newman replicate 1 385 

vs S0385 replicate 1, and Newman replicate 2 vs S0385 replicate 2), each comparison between 386 

pairs of isolates was tested twice. In 9/12 pairwise comparisons, the observed residuals of the 387 

genes downstream of switched IGRs were significantly (p < 0.05) greater than expected from 388 

the resampled data, indicating that genes with switched IGRs were more differentially 389 

expressed than those without. Of the three remaining comparisons, two corresponded to 390 

comparisons between HO_5096_0412 and S0385 (p = 0.17, and p = 0.055), and one between 391 

HO_5096_0412 and Newman (p = 0.054). The second comparison between HO_5096_0412 392 

and Newman was the most weakly significant result (p = 0.025). Thus, the two replicates for 393 

each individual pairwise comparison were largely concordant with each other. 394 
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Our analysis confirms that genes downstream of switched IGRs are on average more likely to 396 

be differentially expressed than genes not associated with IGR switches as identified using 397 

Piggy. To illustrate the genomic context and expression differences of genes with switched 398 

IGRs, we selected three of the most differentially expressed genes with IGR switches for the 399 

Newman vs MRSA252 comparison, and plotted nucleotide identity across the IGR (calculated 400 

as a 20-bp sliding window) alongside gene expression (Fig 4). 401 

 402 

Compatibility and scalability 403 

We have so far demonstrated that Piggy can be used to analyse the intergenic component of 404 

the pan-genome and identify IGR switches, and shown that these switches have biological 405 

relevance with respect to gene expression. Importantly, Piggy is designed such that the output 406 

files are compatible with existing software and databases. The “IGR_presence_absence.csv” 407 

file has an identical format to the “gene_presence_absence.csv” file produced by Roary, and 408 

can be loaded directly into the interactive browser-based viewer phandango (Hadfield et al. 409 

2017) (Fig S2). It can also be used as input, along with a traits file, to Scoary (Brynildsrud et al. 410 

2016) to test for associations between IGRs and phenotypic traits. Moreover, the 411 

“representative_clusters_merged.fasta” file can be loaded directly into BIGSdb (Jolley and 412 

Maiden 2010) to create an allele scheme for IGRs. In order to provide proof-of-principle, we 413 

created a multilocus IGR (igMLST) scheme in BIGSdb. Briefly, 2631 unique IGR sequences 414 

with length ≥ 30bp, from 7 S. aureus reference genomes, were entered into the database locus 415 

list. Using functionality within the database, these sequences were grouped as a searchable 416 

scheme (S_aureus_Intergenic_PIGGY), comparable to MLST, rMLST and wgMLST schemes 417 

(Maiden et al. 2013; Jolley et al. 2012; Sheppard, Jolley, and Maiden 2012). The distribution of 418 

IGRs was analysed for all isolates in the database, identifying IGRs as present in the respective 419 

genome if a hit was recorded with nucleotide identity ≥ 70% over ≥ 50% of the sequence using a 420 

BLAST word size of 7 bp. The scheme can be found at https://sheppardlab.com/resources/. 421 

Although we do not expect a typing scheme based solely on IGRs to be widely used, 422 

supplementing protein-coding regions with IGR alleles may provide additional information 423 

regarding links between genotype and phenotype, as well as increased epidemiological and 424 

phylogenetic resolution. 425 

 426 
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Whole-genome sequence datasets consisting of hundreds or even thousands of bacterial 428 

isolates have revealed pan-genomes of many thousands of genes and large differences in gene 429 

content between isolates of the same species. Currently, pan-genome diversity is considered 430 

almost exclusively in terms of protein-coding genes, despite overwhelming evidence that 431 

variation within IGRs impacts on phenotypes. Here we address this by introducing Piggy, a 432 

pipeline specifically designed to incorporate IGRs into routine pan-genome analyses by working 433 

in close conjunction with Roary (Page et al. 2015). 434 

 435 

The utility of this approach is demonstrated using large datasets of S. aureus and E. coli ST131. 436 

Consistent with previous analyses of protein-coding regions (Holden et al. 2013; McNally et al. 437 

2016), the IGR component of the ST131 pan-genome (the “panIGRome”) is considerably larger 438 

than that for S. aureus ST22, and surprisingly is also larger than the pan-genome of the whole 439 

S. aureus species. There was more diversity within IGRs than genes in both species. While 440 

some IGRs may be essential for expression of multiple genes, IGRs are broadly subject to 441 

weaker purifying selection than protein coding genes (Thorpe et al. 2017). The maintenance of 442 

core IGRs in both bacterial genome datasets is consistent with selection acting to conserve 443 

them and allows alignment and analysis in much the same way as protein-coding regions. 444 

 445 

The current exclusion of IGRs from routine pan-genome or cgMLST analyses may in part reflect 446 

perceived difficulties in the alignment and subsequent cluster definition, particularly if the 447 

sequences are very short. We therefore validated the pipeline by investigating clustering 448 

accuracy as a function of sequence length by truncating the IGR sequences and recording 449 

whether they remained in the same cluster as their full-length counterparts. For S. aureus, the 450 

data showed that truncated IGRs > 20 bp almost always remained in the original cluster, 451 

confirming that the minimum length permitted in the pipeline of 30-bp is conservative. For E. 452 

coli, truncating the sequences had greater impact on cluster assignments, and a minimum 453 

length of 50 bp would be a safer setting in this case. The problems with clustering shorter 454 

sequences in E. coli, compared to S. aureus, are not due to the length of the sequence per se 455 

but reflect the higher rate of recombination in this species. This means that the IGRs are more 456 

likely to be chimeric in structure, with localised regions within the IGRs showing a high level of 457 

homology to different clusters. This leads to cluster assignment being dependant not so much 458 

on length, but on which part of the truncated sequence happened to be retained. 459 

 460 
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Variation within regulatory elements located within IGRs can impact on the expression of the 461 

downstream gene (Oren et al. 2014). Piggy (alongside Roary) provides the means to combine 462 

information on genes and their cognate IGRs thus facilitating the detection of “switched” IGRs 463 

and downstream genes that are potentially affected. We have shown that in S. aureus, genes 464 

with switched upstream IGRs show a higher degree of differential expression than those 465 

without. This is consistent with previous work on E. coli (Oren et al. 2014), and suggests that the 466 

identification of IGR switches using Piggy can provide a useful indication of differential gene 467 

expression, even in the absence of RNA-seq data. However, we note that high divergence 468 

within IGRs does not necessarily imply selection for differential gene expression, and may 469 

instead simply reflect weaker selective constraints. A clear direction for future work is to make 470 

constructs consisting of genes with alternative IGRs, in order to directly measure the effect of 471 

natural IGR variants on gene expression. Similar experiments have previously been performed 472 

in E. coli based on variation within promoters (Shimada et al. 2014), and IGRs more broadly 473 

(Oren et al. 2014). The importance of changes in gene expression mediated by intergenic 474 

variation as a route of adaptation is currently unknown, but one recent study suggested that 475 

intergenic changes are strongly positively selected in Pseudomonas aeruginosa during infection 476 

in patients with cystic fibrosis, and more work is required to test the generality of these findings 477 

(Khademi and Jelsbak 2017). 478 

 479 

Conclusions 480 

Driven by recent technical advances in high-throughput sequencing, large whole-genome 481 

datasets have provided powerful evidence concerning the genetic determinants that underlie 482 

complex multifactorial phenotypes such as virulence. Moreover, associating variation in core 483 

and accessory genes with phenotype data is providing new fundamental insight into the ecology 484 

and evolution of bacteria. However, in much the same way that non-protein coding DNA in the 485 

human genome was initially dismissed as “junk”, omitting IGRs from bacterial genome analysis 486 

severely limits our ability to draw inferences on the regulation of gene expression and 487 

associated phenotypic consequences. By developing Piggy as an easy-to-use bioinformatics 488 

tool with output files that are compatible with existing software and databases (eg Roary, 489 

Phandango; Figure S1, Scoary, BIGSdb) we envisage that combined information from genes 490 

and their cognate IGRs will vastly improve our understanding of genome evolution in bacteria. 491 
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Figures 636 

 637 

 638 

Fig 1: An overview of the Piggy pipeline. a) A schematic to illustrate the Piggy pipeline and 639 

how it works alongside Roary. b) IGRs are named according to their flanking genes and their 640 

orientations. This naming scheme enables Piggy to link genes with their associated IGRs, and 641 

provides information on their orientations. c) A schematic to illustrate the difference between the 642 

“gene-pair” and “upstream” methods used to identify candidate switched IGRs. 643 
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 646 

 647 

Fig 2: Properties of the pan-genomes. Genes (red) and IGRs (blue) were analysed with 648 

frequency histograms (the number of genes/IGRs present in any given number of isolates). The 649 

vast majority of genes / IGRs are either very rare or very common. a) S. aureus ST22 b) S. 650 

aureus c) E. coli ST131. 651 
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 653 

 654 

Fig 3: S. aureus gene expression data. Pairwise RNA-seq comparisons between four S. 655 

aureus isolates, where two biological replicates were used for each isolate. The top-left of the 656 

diagonal corresponds to comparisons between replicate 1 from different isolates (e.g. SO385 657 

replicate 1 vs HO_5096_0412 replicate 1). The bottom-right of the diagonal corresponds to 658 

comparisons between replicate 2 from different isolates (e.g. SO385 replicate 2 vs 659 

HO_5096_0412 replicate 2). The diagonal corresponds to comparisons between the two 660 

biological replicates from the same isolate. 2094 core genes were analysed in each comparison, 661 
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and tpm (Transcripts per Kilobase Million) was used to quantify expression. The genes were 662 

separated into two categories: Switched (red), and Not-switched (grey), based on their 663 

upstream IGRs. The R2 value corresponds to all the genes. The P-value corresponds to a 664 

Monte Carlo permutation test comparing the residuals of the two groups of genes, where a 665 

significant score indicates that the genes downstream of switch IGRs are associated with a 666 

higher degree of differential expression (ie higher residuals). 667 
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 669 

 670 

Fig 4: A detailed view of the genomic neighbourhood and expression data for selected 671 

genes in Newman vs MRSA252. Nucleotide identity was calculated using a 20 bp sliding 672 

window across the IGR, and this is shown alongside the flanking genes in their correct 673 

orientation (left). The corresponding expression data for the gene of interest was also shown 674 

(right), with the two boxplots per isolate corresponding to the two biological replicates. a) dapE 675 

b) ssaA_1 c) ytrA. 676 
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 678 

 679 

Fig S1: Clustering performance. The clustering performance was assessed by truncating IGR 680 

sequences and reclustering them with the pool of original sequences. Truncated IGR which 681 

were placed into the same cluster as their progenitor sequences were deemed to be correctly 682 

clustered. a) S. aureus b) E. coli. 683 
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 685 

 686 

Fig S2: The IGR pan-genome (“panIGRome”) as visualised using Phandango. A 687 

neighbour-joining phylogenetic tree was imported into Phandango alongside the 688 

IGR_presence_absence.csv file. Each row corresponds to an isolate, and each column 689 

corresponds to an IGR, with the IGRs ordered from the left in order of decreasing frequency 690 
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within the sample. The line graph at the bottom shows the frequency of the IGRs within the 691 

sample. a) S. aureus ST22 b) E. coli ST131. 692 
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