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Abstract 

Background 

The concept of the “pan-genome”, which refers to the total complement of genes within a given 

sample or species, is well established in bacterial genomics. Rapid and scalable pipelines are 

available for managing and interpreting pan-genomes from large batches of annotated 

assemblies. However, despite overwhelming evidence that variation in intergenic regions in 

bacteria can directly influence phenotypes, most current approaches for analysing pan-

genomes focus exclusively on protein-coding sequences. 

Findings 

To address this we present Piggy, a novel pipeline that emulates Roary except that it is based 

only on intergenic regions. A key utility provided by Piggy is the detection of highly divergent 

(“switched”) IGRs upstream of genes. We demonstrate the use of Piggy on large datasets of 

clinically important lineages of Staphylococcus aureus and Escherichia coli. 

Conclusions 

For S. aureus, we show that highly divergent (“switched”) IGRs are associated with differences 

in gene expression, and we establish a multi-locus reference database of IGR alleles (igMLST; 

implemented in BIGSdb). Piggy is available at https://github.com/harry-thorpe/piggy. 

 

Findings 

Introduction 

Whole-genome sequencing has revealed that, in many bacteria, individual strains frequently 

recruit new genes from a seemingly endless genetic reservoir [1,2]. The total complement of 

genes observed across all strains, known as the pan-genome, often numbers tens of 

thousands, up to an order of magnitude more than the number of genes present in any single 

genome. In contrast, the “core-genome”, which refers to the complement of genes present in all 

(or the vast majority) of sampled isolates, can be significantly smaller than the total number of 

genes in any given genome [3,4]. For example, a study of 328 Klebsiella pneumoniae isolates, 

each of which harbour 4-5,000 genes, revealed a pan-genome of 29,886 genes; only 1,888 

(6.8%) of which were universally present (core) [5]. Similarly, genome data for 228 Escherichia 

coli ST131 isolates revealed a pan-genome of 11,401 genes, of which 2,722 (23.9%) were core 

[6]. The degree of gene content variation in the latter study is particularly striking as these 

isolates were all from the same sequence type (ST), thus show limited nucleotide divergence in 

core genes, and are descended from a recent common ancestor. More generally, the 

relationship between the size of the core and accessory genomes varies between species, with 
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ecologically diverse species having large accessory genomes, and ecologically restricted 

species (such as endosymbionts) having small accessory genomes [1,2]. 

 

There is growing recognition that the acquisition of new genes through horizontal gene transfer 

(HGT) has a central role in ecological adaptation [7]. The emergence and spread of antibiotic 

resistance, underpinned by the transfer of plasmids and other mobile genetic elements (MGEs), 

is a pertinent example. The increasing availability of datasets containing thousands of isolates 

thus offers an unprecedented opportunity for describing the genetic basis of bacterial 

adaptation, although the scale of these data presents serious logistic and conceptual challenges 

in terms of data management and analysis. 

 

Pioneering pan-genome analysis tools, such as PanOCT and PGAP relied on all-vs-all BLAST 

comparisons between protein sequences, and scaled approximately quadratically with the 

number of isolates [8,9]. LS-BSR introduced a pre-clustering step which substantially reduced 

the number of BLAST comparisons, enabling it to be feasibly run on thousands of samples [10]. 

More recently, the Roary pipeline has rapidly gained popularity for scalable, user-friendly, pan-

genome characterisation [4]. 

 

The concept of the pan-genome, as described above, places an exclusive emphasis on genes; 

or, more specifically, open reading frames with the potential to encode proteins. This gene-

centric perspective has both shaped, and been shaped by, the bioinformatics tools developed to 

interrogate the pan-genome. For example, Roary works by taking individual protein-coding 

sequences, pre-defined using Prokka annotation [11], and assigning each to a single cluster of 

homologous sequences. This approach thus excludes non protein-coding intergenic regions 

(IGRs) which typically account for approximately 15% of the genome [12,13]. This is clearly 

problematic for downstream attempts to identify genotype-phenotype links, as IGRs contain 

many important regulatory elements including, but not limited to, promoters, terminators, non-

coding RNAs, and regulatory binding sites. Moreover, we have recently shown that IGRs are 

subject to purifying selection in the core-genomes of diverse bacterial species, even when 

known major regulatory elements are excluded [14,15], and a recent study has shown that 

intergenic variation is positively selected during Pseudomonas aeruginosa infections [16]. 

 

Given that variation in IGRs can have profound phenotypic consequences, it is timely to 

consider how best to incorporate these sequences into pan-genome analyses. A key question is 
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the degree to which protein-coding genes, and their cognate regulatory elements, should be 

considered a single “unit”, both selectively (in terms of co-adaptation) and in terms of physical 

linkage on the chromosome. If physical linkage is assumed to be highly robust, such that genes 

are mostly transferred along with their cognate IGRs, then in principle the definition of a “gene” 

could be expanded to include the upstream regulatory regions. On the other hand, if there is 

moderate or weak linkage between genes and IGRs, such that IGRs can occasionally transfer 

independently, then the purview of the pan-genome could be expanded to include the full 

complement of IGR alleles in addition to protein-coding sequences. 

 

Consistent with the second model, which allows for independent transfer of IGRs, a landmark 

study demonstrated that E. coli genes can apparently be regulated by alternative IGRs that 

frequently share no sequence similarity to each other [17]. Moreover, the distribution of these 

IGRs was incongruent with gene trees, suggesting that recombination can act to replace one 

IGR with another resulting in regulatory “switches”; a process they call horizontal regulatory 

transfer (HRT) [17]. It is important to note here that the term “switching” refers only to the 

replacement of an IGR by a non-homologous or highly divergent variant sequence. It does not 

specify that the replacement IGR has a particular origin, and could therefore correspond to a 

transfer from elsewhere in the same genome, or from another isolate. It was also noted that 

conserved flanking genes may facilitate this process by providing localised regions of homology. 

IGR switches can be accompanied by differential gene expression [17], and may provide a 

mechanism to offset the fitness costs of harbouring plasmids and other MGEs [6], pointing to a 

central role for this process in adaptation. 

 

Our current understanding of the evolutionary dynamics of IGRs in the context of bacterial pan-

genomes leaves many open questions. Specifically, it is unclear how IGRs are distributed 

among isolates within bacterial populations, how commonly IGRs and their cognate genes are 

co-transferred, or how the frequency of HRT relates to different functional gene categories. A 

more complete understanding of bacterial adaptation clearly requires a careful consideration of 

gene presence/absence alongside gene regulation. Here we address this by introducing a new 

pipeline called Piggy which closely emulates and complements the established pan-genome 

analysis pipeline Roary [4]. Input and output files for Piggy and Roary use the same format, and 

run in a similar time on modest computing resources. Piggy provides a means to rapidly identify 

IGR switches, and more broadly the means to examine the role of horizontal transfer in shaping 

the bacterial regulome. We demonstrate the utility of Piggy using large genome datasets for  
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two bacterial species, both of which are of high public health importance; Staphylococcus 

aureus and Escherichia coli. Conventional pan-genome analyses are applied to analyse and 

compare core and accessory IGRs/genes in these lineages. In S. aureus we show an 

association between IGR switching and changes in gene expression, and demonstrate proof-of-

principle by establishing a multilocus IGR scheme, (igMLST) in BIGSdb [18]. Piggy is available 

at (https://github.com/harry-thorpe/piggy) under the GPLv3 licence. 

 

Methods 

Datasets 

The S. aureus dataset was assembled from published genome sequences [19] available from 

the European Nucleotide Archive (ENA), study number ERP001012. The S. aureus RNA-seq 

data was previously published [20], and is available from the ENA, study number ERP009279. 

This was supplemented with the corresponding reference genomes, HO_5096_0412: 

HE681097, MRSA252: BX571856, Newman: AP009351, S0385: AM990992, available from the 

National Center for Biotechnology Information (NCBI). The E. coli ST131 dataset was from a 

previously published study [6], and is available at [21]. All complete genomes and assemblies 

were annotated with Prokka [11]. 

 

Roary and Piggy parameter settings 

Roary [4] was run using default parameters except for the following: -e -n (to produce 

alignments with MAFFT [22]); -i 90 (lower amino acid identity than the default); -s (to keep 

paralogs together); -z (to keep intermediate files). Piggy was run using default parameters 

except for --len_id, which controls the percentage of IGR sequences which must share similarity 

in order to be clustered together. For the S. aureus and E. coli ST131 datasets, Piggy was run 

twice, once with --len_id 10 and once with --len_id 90. The former was used for the pan-genome 

comparisons between genes and IGRs (Fig 2) in order to be comparable with Roary. Using a 

low length identity (--len_id 10) enabled homologous sequences of varying lengths (for example 

a truncated sequence) to cluster together. Roary does not provide a similar setting, and only 

requires that sequences have a minimum length of 120 bp. Genes in the same clusters defined 

by Roary may vary considerably in length, either due to genuine truncations or assembly errors. 

A relaxed --len_id setting of 10 was therefore used in Piggy to provide consistency with Roary 

and to ensure that homologous IGRs are not erroneously placed in different clusters. A --len_id 

setting of 90 was subsequently used whenever “switched” IGRs were detected, as this enabled 

sequences to be subsequently filtered by either nucleotide or length identity. 
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RNA-seq analysis 

Two biological replicates for each isolate were analysed. Kallisto [23] was used to quantify 

transcripts (--kmer-size 31 and --bootstrap-samples 100), and Sleuth [24] was used to normalise 

and filter the counts produced by Kallisto. These counts were then log10 transformed, and major 

axis (MA) regression was performed. Rockhopper2 [25] was used to produce an operon map for 

each strain by grouping adjacent genes with similar expression profiles together into operons. 

 

Clustering performance 

We examined the clustering performance of Piggy by producing truncated variants of IGRs of 

lengths 10,15,20,30,50 bp, and comparing how the lengths of the IGRs altered the resulting 

clustering. The IGRs were truncated from a random starting point in the sequence, and each 

length was analysed separately. From the starting pool of IGRs from 10 randomly selected 

isolates, 1000 IGRs were chosen and truncated. These truncated variants were then added to 

the pool of IGRs and Piggy was run on them. Clustering patterns based on the truncated and 

original IGRs were then compared, with truncated IGRs placed in the same cluster as their 

progenitor sequences being assigned as correctly clustered. This analysis was performed on 

both the S. aureus ST22 and E. coli ST131 datasets. 

 

Statistical analysis 

All statistical analysis was performed within R version 3.3.2 [26]. All plotting was performed with 

ggplot2 [27]. 

 

Results  

Overview of the Piggy pipeline 

Fig 1a shows an overview of the Piggy pipeline. The first step is to run Roary, as the gene 

presence absence output file from Roary is used as an input for Piggy. Piggy is then run using 

the same annotated assemblies as Roary, specifically GFF3 format files such as those 

produced by Prokka [11]. Piggy extracts intergenic sequences (IGRs) from these files, and uses 

the flanking gene names and their orientations to name the IGRs (Fig 1b). Each IGR name 

contains three pieces of information: the upstream gene, the downstream gene, and their 

relative orientations (CO - Co-Oriented, DP - Double Promoter, DT - Double Terminator). For 

example, the IGR “Gene_1 Gene_2 DP” is flanked by Gene_1 and Gene_2, which are both 

downstream of the IGR (i.e. they are transcribed in opposite directions). IGRs at the edge of 
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contigs are excluded by default, but when they are included (using the --edges flag) the missing 

information is denoted by NA, for example “Gene_1 NA NA”. Including the gene neighbourhood 

information gives context to the IGR and enables identification of “switched” IGRs. By default, 

only IGRs between 30-1000 bp in length are included by Piggy, though these lengths can be 

user-defined using the --size flag (minimum length = 30 bp). The IGRs are then clustered with 

CD-HIT [28] at user-defined identity thresholds (--nuc_id - nucleotide identity, --len_id - length 

identity). The nucleotide identity is defined as SNPs / aligned sites, and the length identity is 

defined as shared sites / alignment length. These two flags allow the user to set the level of 

stringency for clustering. For example, a conservative approach is to set high values for both 

nucleotide and length identity such that IGRs must be similar in both nucleotide and length 

identity to cluster together. By relaxing the length identify whilst maintaining a high nucleotide 

identity threshold, highly related sequences still cluster even if one is truncated. The longest 

sequence from each cluster is then used to perform an all-vs-all BLASTN search [29]. This is 

used to merge similar clusters (BLASTN defaults, except -word_size = 10), which did not cluster 

with CD-HIT. These clusters are then used to produce an IGR presence absence matrix 

(“IGR_presence_absence.csv”), in the same format as the gene presence absence matrix 

(“gene_presence_absence.csv”) produced by Roary. Up until this point, the pipeline is very 

similar to Roary [4]. 

 

Switched IGR detection 

Piggy identifies “switched” IGRs using two methods. For both methods, the term “switch” refers 

to two or more divergent IGR sequences occupy the same locus as defined by flanking genes, 

but does not specify an origin for the divergent IGR sequences [17]. The first method identifies 

adjacent genes on the same contig (gene-pairs), and searches for IGR clusters which lie 

between these gene-pairs (Fig 1c). Instances where multiple IGR clusters correspond to the 

same gene-pair are identified as candidate switched IGRs. The second method identifies 

instances where multiple IGR clusters occupy a locus upstream of a single gene cluster. This is 

a less conservative approach as only one of the two genes flanking the IGR is taken into 

account, (Fig 1c). The gene-pair method is used by default as it controls against detecting 

“switching” (recombination) events that encompass more than a single IGR, for example, cases 

where a mobile element has inserted between two genes. However such cases remain relevant 

as the regulation of the downstream gene may still be affected. 
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To ensure that differences in gene annotation between isolates, specifically artefactual variation 

in the start and end points of each gene, are not erroneously assigned as switching events, the 

first and last 30 bp of each flanking gene are searched against the IGRs with BLASTN. Any 

matches from these searches indicate differences in annotation of gene borders (rather than 

genuine differences between the IGRs), and these sequences are disregarded. In order to 

confirm that they represent genuine switching events, candidate switched IGRs are searched 

against each other with BLASTN with low complexity filtering turned off (-dust no). If there is no 

significant match they are classed as “switched”, and if there is a significant match they are 

aligned using MAFFT [22]. The resulting alignment is then used to calculate nucleotide identity 

(SNPs / shared sites), and length identity (number of shared sites / alignment length). These 

values can then be used to define an appropriate threshold to identify “switched” IGRs. To aid 

this, Piggy calculates within-cluster divergences for both genes and IGRs, and these 

divergences can be used to calibrate Piggy with Roary. 

 

Clustering performance 

The shorter lengths of IGRs compared with genes poses potential problems for alignment 

accuracy. We tested the clustering performance of Piggy by producing truncated variants of 

IGRs, adding these to the total complement of IGRs in an analysis, and then recording whether 

the truncated IGRs were clustered with their untruncated counterparts (Methods). For S. aureus 

ST22, 82% of IGRs truncated to 10 bp clustered together with the corresponding full length 

sequences, but this figure increased to > 99% when the length of the truncated sequences was 

20 bp. (Fig S1a). A similar increase was observed for the E. coli ST131 data, although in this 

case 50 bp was required for the percentage of correct assignments to be > 99%. (Fig S1b). 

 

An inspection of the incorrectly clustered sequences from both datasets revealed that their 

progenitor sequences shared high sequence similarity in parts of their sequence to other IGR 

clusters, but no sequence similarity in other parts of the sequence. This resulted in separate 

clusters which shared high sequence homology over parts of their sequences. When these 

sequences were truncated to assess the clustering, if the homologous part of the sequence was 

selected, then it could align to either of these progenitor IGR clusters. In many cases these 

alignments were perfect matches, and so the IGR could not be unambiguously placed. This 

problem is likely to be a result of non-homologous breaks at the edge of HGT events, and this is 

consistent with greater clustering accuracy in S. aureus ST22 compared with E. coli ST131, 

where the latter has a much larger pan-genome. 
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Staphylococcus aureus  

S. aureus is an important skin-associated bacterium which is commonly carried 

asymptomatically, but can also cause a wide range of infections from minor skin infections to 

fatal bacteraemias. It has a clonal population structure consisting of discrete lineages [30]. 

Although the core genome is relatively stable, phenotypic variation (e.g. resistance profiles, 

virulence traits, and host preference) is associated with a more dynamic accessory genome and 

the horizontal transfer of MGEs, such as the SCCmec element which confers resistance to β-

lactam antibiotics [31]. 

 

S. aureus ST22 (EMRSA-15) is a clinically important hospital-acquired methicillin resistant strain 

which is common in the UK and is rapidly expanding elsewhere in Europe and globally [32]. 

Previous work has shown that S. aureus ST22 is clonal and shows relatively little variation in 

gene content [19,32]. In order to compare the pan-genomes of S. aureus at different scales, we 

analysed a diverse dataset of 1552 isolates from many lineages, and a smaller dataset of 500 

ST22 isolates subsampled from the larger dataset [19]. The size of the gene and IGR pan and 

core-genomes were compared by analysing both datasets with Roary and Piggy. Frequency 

histograms were plotted for both genes and IGRs (Fig 2a-b). 

 

The gene-IGR frequency histogram for ST22 (Fig 2a) shows that there are 2,409 core genes 

and 1,556 core IGRs, where core is defined as gene presence in > 95% of isolates (Table 1). 

When the whole species is considered, these numbers drop to 2,129 and 1,134, respectively. 

The fact that there are fewer core IGRs than core genes is in part due to the exclusion of  IGRs 

< 30 bp (many of which are intra-operonic), but also likely reflects faster evolution of IGRs. Both 

distributions conform to the U-shape typically found in such analyses where the majority of 

genes/IGRs are either very common or very rare, however the distribution of genes and IGRs is 

shifted towards the rare sequences when the whole species is considered rather than only 

ST22. 

 

We used the output of Piggy to investigate the degree of linkage between genes and IGRs. We 

identified all genomic loci consisting of an IGR flanked by two genes, and from these we 

identified all pairs of genes and IGRs where the IGR was upstream of the gene start. We then 

grouped these according to whether the gene or IGR was core or accessory (Table 2). For the 

S. aureus ST22 data, 99.5% of core genes were immediately downstream of a core IGR, and 
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92.9% of the accessory genes were similarly downstream of an accessory IGR. When 

considering the wider S. aureus dataset the figures were similar; 92.6% of core genes were 

downstream of a core IGR, and 96.8% of accessory genes were downstream of an accessory 

IGR. Thus, the assignment of an IGR as core or accessory is strongly predictive of the 

corresponding assignment of the cognate downstream gene, which in turn points to strong 

background linkage between genes in IGRs in the genome. 

 

Escherichia coli ST131 

The utility of Piggy was further validated by re-analysing data from a recent study on the 

widespread and clinically important E. coli lineage ST131 [6]. This dataset contains 228 clinical 

E. coli ST131 isolates from human, domesticated animal, and avian hosts. E. coli is a more 

genetically diverse species than S. aureus, and unsurprisingly E. coli ST131 has a larger pan-

genome than S. aureus ST22, with 12,806 genes and 16,429 IGRs (Fig 2c, Table 1). More 

surprisingly, E. coli ST131 has a larger pan-genome than the whole S. aureus species. Within 

E. coli ST131, 3,930 genes and 2,296 IGRs were core out of an average of 4,689 genes and 

2,984 IGRs per isolate. Thus despite the differences between the two species in their level of 

diversity there was a consistent signal of a lower number of core IGRs than core genes, and a 

high number of accessory IGRs compared to accessory genes. There was tight linkage between 

genes and IGRs, with 97.9% of core genes being immediately downstream of core IGRs and 

97.3% of accessory genes being similarly downstream of accessory IGRs; these results are 

consistent with those from S. aureus (Table 2). 

 

The data from S. aureus and E. coli shows a background of strong linkage between core genes 

and IGRs. However, this linkage is not perfect; some core genes are associated with accessory 

IGRs (and vice-versa), and the linkage is weaker over long timescales (across the whole S. 

aureus species compared to within ST22). Previous work has examined this linkage and found 

evidence of widespread IGR regulatory switching, where genes are regulated by alternative 

IGRs in different isolates [17]. Piggy provides a list of candidate switching events together for 

both “gene-pair” and “upstream” approaches (see Methods) at different thresholds of nucleotide 

identity. For the E. coli ST131 data, the pipeline detected 61 cases of putative IGR switching 

using the most conservative settings (i.e. the conservative gene-pair method, and the alternative 

IGRs showing no sequence similarity by BLASTN). Relaxing the threshold of sequence identity 

to < 90% resulted in the identification of an additional 317 candidate switching events, though 

these possibly reflect either relaxed or positive selection. 
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Switched IGRs influence gene expression in S. aureus 

To examine whether switches in IGRs affect the expression of cognate (downstream) genes, we 

used a previously published RNA-seq dataset based on four reference S. aureus isolates 

HO_5096_0412 (ST22), Newman (CC8), MRSA252 (CC36), and S0385 (CC398) [20]. Each of 

these S. aureus references isolate represents a distinct major clonal complex, and all were 

grown under identical conditions with each experiment being replicated. Thus these data 

provide evidence of the natural variation in gene expression within the S. aureus population. By 

analysing these data alongside the output from Piggy, it is possible to test the extent to which 

IGR switches between these four genomes can account for the observed variation in gene 

expression between clonal complexes. First Roary was used to identify a set of 2094 single 

copy core genes present in all four isolates, and then expression of these core genes was 

quantified using Kallisto [23]. To do this we used RNA-seq data for two replicates for each of the 

four reference genomes. The tpm (Transcripts per Kilobase Million) values for each gene are 

given in Table S1. We then used Sleuth [24] to normalise and filter these counts. 

 

To check the consistency of the data between biological replicates, we first plotted two 

replicates for each isolate against each other (e.g. Newman replicate 1 vs Newman replicate 2) 

(Fig 3). These plots were tightly correlated (mean R2 = 0.98), confirming that the expression 

values for individual genes were consistent between replicates. We then plotted between-isolate 

comparisons, again using both replicates for each genome (e.g. Newman replicate 1 vs 

MRSA252 replicate 1, and Newman replicate 2 vs MRSA252 replicate 2) (Fig 3). These 

comparisons revealed considerably more scatter, with R2 values ranging from 0.76 to 0.9. Given 

the extremely high R2 values for within-isolate comparisons, the decrease in R2 for between-

isolate comparisons reflects genuine differences in expression between the isolates. We note 

that a small number of genes show very striking differences in expression between the clonal 

complexes. For example, the expression of mepA, which encodes a multidrug efflux pump, was 

~250 fold higher in Newman compared with the other isolates. 

 

The genomes of each pair of isolates were analysed using Roary and Piggy to identify switched 

IGRs with a nucleotide identity threshold of < 90% for IGR clusters. For each pair of isolates, we 

then identified all genes immediately downstream of a switched IGR. As a single switched IGR 

might impact on the expression of more than one co-transcribed downstream genes we also 

considered all genes linked in a single operon that could be impacted by a single switching 
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event upstream affecting a shared promoter. For each pair of isolates, we thus identified all core 

genes putatively affected by upstream IGR switches. We then tested whether these genes 

showed a higher degree of differential expression by conducting Monte Carlo permutation tests 

on the residuals from the regressions (Fig 3). For each pairwise comparison of isolates, we 

summed the residuals of the genes with switched IGRs (shown as red points in Fig 3), and 

compared this to a distribution obtained by resampling (without replacement) 100,000 random 

sets of the same number of genes and summing their residuals. We computed a one-tailed p-

value by dividing the number of permutations with summed residuals greater than the observed 

value by 100,000 (Fig 3). Because we used both replicates separately (e.g. Newman replicate 1 

vs S0385 replicate 1, and Newman replicate 2 vs S0385 replicate 2), each comparison between 

pairs of isolates was tested twice. In 9/12 pairwise comparisons, the observed residuals of the 

genes downstream of switched IGRs were significantly (p < 0.05) greater than expected from 

the resampled data, indicating that genes with switched IGRs were more differentially 

expressed than those without. Of the three remaining comparisons, two corresponded to 

comparisons between HO_5096_0412 and S0385 (p = 0.17, and p = 0.055), and one between 

HO_5096_0412 and Newman (p = 0.054). The second comparison between HO_5096_0412 

and Newman was the most weakly significant result (p = 0.025). Thus, the two replicates for 

each individual pairwise comparison were largely concordant with each other. 

 

Our analysis confirms that genes downstream of switched IGRs are on average more likely to 

be differentially expressed than genes not associated with IGR switches as identified using 

Piggy. To illustrate the genomic context and expression differences of genes with switched 

IGRs, we selected three of the most differentially expressed genes with IGR switches for the 

Newman vs MRSA252 comparison, and plotted nucleotide identity across the IGR (calculated 

as a 20-bp sliding window) alongside gene expression (Fig 4). 

 

Compatibility and scalability 

We have so far demonstrated that Piggy can be used to analyse the intergenic component of 

the pan-genome and identify IGR switches, and shown that these switches have biological 

relevance with respect to gene expression. Importantly, Piggy is designed such that the output 

files are compatible with existing software and databases. The “IGR_presence_absence.csv” 

file has an identical format to the “gene_presence_absence.csv” file produced by Roary, and 

can be loaded directly into the interactive browser-based viewer Phandango [33] (Fig S2). It can 

also be used as input, along with a traits file, to Scoary [34] to test for associations between 
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IGRs and phenotypic traits. Moreover, the “representative_clusters_merged.fasta” file can be 

loaded directly into BIGSdb [18] to create an allele scheme for IGRs. In order to provide proof-

of-principle, we created a multilocus IGR (igMLST) scheme in BIGSdb. Briefly, 2,631 unique 

IGR sequences with length ≥ 30bp, from 7 S. aureus reference genomes, were entered into the 

database locus list. Using functionality within the database, these sequences were grouped as a 

searchable scheme (S_aureus_Intergenic_PIGGY), comparable to MLST, rMLST and wgMLST 

schemes [35–37]. The distribution of IGRs was analysed for all isolates in the database, 

identifying IGRs as present in the respective genome if a hit was recorded with nucleotide 

identity ≥ 70% over ≥ 50% of the sequence using a BLAST word size of 7 bp. The scheme can 

be found at [38]. Although we do not expect a typing scheme based solely on IGRs to be widely 

used, supplementing protein-coding regions with IGR alleles may provide additional information 

regarding links between genotype and phenotype, as well as increased epidemiological and 

phylogenetic resolution. 

 

Discussion 

Whole-genome sequence datasets consisting of hundreds or even thousands of bacterial 

isolates have revealed pan-genomes of many thousands of genes and large differences in gene 

content between isolates of the same species. Currently, pan-genome diversity is considered 

almost exclusively in terms of protein-coding genes, despite overwhelming evidence that 

variation within IGRs impacts on phenotypes. Here we address this by introducing Piggy, a 

pipeline specifically designed to incorporate IGRs into routine pan-genome analyses by working 

in close conjunction with Roary [4]. 

 

The utility of this approach is demonstrated using large datasets of S. aureus and E. coli ST131. 

Consistent with previous analyses of protein-coding regions [6,32], the IGR component of the 

ST131 pan-genome is considerably larger than that for ST22, and surprisingly is also larger 

than the pan-genome of the whole S. aureus species. There was more diversity within IGRs 

than genes in both species. While some IGRs may be essential for expression of multiple 

genes, IGRs are broadly subject to weaker purifying selection than protein coding genes [14]. 

The maintenance of core IGRs in both bacterial genome datasets is consistent with selection 

acting to conserve them and allows alignment and analysis in much the same way as protein-

coding regions. 
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The current exclusion of IGRs from routine pan-genome or cgMLST analyses may in part reflect 

perceived difficulties in the alignment and subsequent cluster definition, particularly if the 

sequences are very short. We therefore validated the pipeline by investigating clustering 

accuracy as a function of sequence length by truncating the IGR sequences and recording 

whether they remained in the same cluster as their full-length counterparts. For S. aureus, the 

data showed that truncated IGRs > 20 bp almost always remained in the original cluster, 

confirming that the minimum length permitted in the pipeline of 30-bp is conservative. For E. 

coli, truncating the sequences had greater impact on cluster assignments, and a minimum 

length of 50 bp would be a safer setting in this case. The problems with clustering shorter 

sequences in E. coli, compared to S. aureus, are not due to the length of the sequence per se 

but reflect the higher rate of horizontal gene transfer in this species. This means that the IGRs 

are more likely to be chimeric in structure, with localised regions within the IGRs showing a high 

level of homology to different clusters. This lead to cluster assignment being dependant not so 

much on length, but on which part of the truncated sequence happened to be retained. 

 

Variation within regulatory elements located within IGRs can impact on the expression of the 

downstream gene [17]. Piggy (alongside Roary) provides the means to combine information on 

genes and their cognate IGRs thus facilitating the detection of “switched” IGRs and downstream 

genes that are potentially affected. We have shown that in S. aureus, genes with switched 

upstream IGRs show a higher degree of differential expression than those without. This is 

consistent with previous work on E. coli [17], and suggests that the identification of IGR 

switches using Piggy can provide a useful indication of differential gene expression, even in the 

absence of RNA-seq data. However, we note that high divergence within IGRs does not 

necessarily imply selection for differential gene expression, and may instead simply reflect 

weaker selective constraints. A clear direction for future work is to make constructs consisting of 

genes with alternative IGRs, in order to directly measure the effect of natural IGR variants on 

gene expression. Similar experiments have previously been performed in E. coli based on 

variation within promoters [39], and IGRs more broadly [17]. The importance of changes in gene 

expression mediated by intergenic variation as a route of adaptation is currently unknown, but 

one recent study suggested that intergenic changes are strongly positively selected in 

Pseudomonas aeruginosa during infection in patients with cystic fibrosis, and more work is 

required to test the generality of these findings [16]. 

 

Conclusions 
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Driven by recent technical advances in high-throughput sequencing, large whole-genome 

datasets have provided powerful evidence concerning the genetic determinants that underlie 

complex multifactorial phenotypes such as virulence. Moreover, associating variation in core 

and accessory genes with phenotype data is providing new fundamental insight into the ecology 

and evolution of bacteria. However, in much the same way that non-protein coding DNA in the 

human genome was initially dismissed as “junk”, omitting IGRs from bacterial genome analysis 

severely limits our ability to draw inferences on the regulation of gene expression and 

associated phenotypic consequences. By developing Piggy as an easy-to-use bioinformatics 

tool with output files that are compatible with existing software and databases (eg Roary, 

Phandango; Figure S1, Scoary, BIGSdb) we envisage that combined information from genes 

and their cognate IGRs will vastly improve our understanding of genome evolution in bacteria. 

 

Availability of supporting source code 

Project name: Piggy 

Project home page: https://github.com/harry-thorpe/piggy 

Operating system(s): Linux 

Programming language: Perl, R 

Other requirements: Roary 

License: GPLv3 

RRID: (Piggy, RRID:SCR_015941) 

 

 

Availability of supporting data 

The S. aureus dataset was assembled from published genome sequences [19] available from 

the European Nucleotide Archive (ENA), study number ERP001012. The S. aureus RNA-seq 

data was previously published [20], and is available from the ENA, study number ERP009279. 

This was supplemented with the corresponding reference genomes, HO_5096_0412: 

HE681097, MRSA252: BX571856, Newman: AP009351, S0385: AM990992, available from the 

National Center for Biotechnology Information (NCBI). The E. coli ST131 dataset was from a 

previously published study [6], and is available at [21]. An archival copy of the Piggy source 

code is available via the GigaScience repository GigaDB[40]. 
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Figure legends 

 

Fig 1: An overview of the Piggy pipeline. a) A schematic to illustrate the Piggy pipeline and 

how it works alongside Roary [4]. b) IGRs are named according to their flanking genes and their 

orientations (CO_F - Co-Oriented Forward, CO_R - Co-Oriented Reverse, DP - Double 

Promoter, DT - Double Terminator). This naming scheme enables Piggy to link genes with their 

associated IGRs, and provides information on their orientations. c) A schematic to illustrate the 

difference between the “gene-pair” and “upstream” methods used to identify candidate switched 

IGRs. For the “gene-pair” method, only the IGR between the two genes is non-homologous 

(“switched”), and for the “upstream” method both the upstream IGR and gene may be non-

homologous to the downstream gene. 

 

Fig 2: Properties of the pan-genomes. Genes (red) and IGRs (blue) were analysed with 

frequency histograms (the number of genes/IGRs present in any given number of isolates). The 

vast majority of genes / IGRs are either very rare or very common. a) S. aureus ST22 b) S. 

aureus c) E. coli ST131. 

 

Fig 3: S. aureus gene expression data. Pairwise RNA-seq comparisons between four S. 

aureus isolates, where two biological replicates were used for each isolate. The top-left of the 

diagonal corresponds to comparisons between replicate 1 from different isolates (e.g. SO385 

replicate 1 vs HO_5096_0412 replicate 1). The bottom-right of the diagonal corresponds to 

comparisons between replicate 2 from different isolates (e.g. SO385 replicate 2 vs 

HO_5096_0412 replicate 2). The diagonal corresponds to comparisons between the two 

biological replicates from the same isolate. 2094 core genes were analysed in each comparison, 

and tpm (Transcripts per Kilobase Million) was used to quantify expression. The genes were 

separated into two categories: Switched (red), and Not-switched (grey), based on their 

upstream IGRs. The R2 value corresponds to all the genes. The P-value corresponds to a 

Monte Carlo permutation test comparing the residuals of the two groups of genes, where a 

significant score indicates that the genes downstream of switch IGRs are associated with a 

higher degree of differential expression (ie higher residuals). 

 

Fig 4: A detailed view of the genomic neighbourhood and expression data for selected 

genes in Newman vs MRSA252. Nucleotide identity was calculated using a 20 bp sliding 

window across the IGR, and this is shown alongside the flanking genes in their correct 
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orientation (left). The corresponding expression data for the gene of interest was also shown 

(right), with the two boxplots per isolate corresponding to the two biological replicates. a) dapE 

b) ssaA_1 c) ytrA. 

 

Fig. S1: Clustering performance. The clustering performance was assessed by truncating IGR 

sequences and reclustering them with the pool of original sequences. Truncated IGRs which 

were placed into the same cluster as their progenitor sequences were deemed to be correctly 

clustered. a) S. aureus b) E. coli. 

 

Fig S2: The IGR pan-genome as visualised using Phandango. A neighbour-joining 

phylogenetic tree was imported into Phandango [33] alongside the IGR_presence_absence.csv 

file. Each row corresponds to an isolate, and each column corresponds to an IGR, with the IGRs 

ordered from the left in order of decreasing frequency within the sample. The line graph at the 

bottom shows the frequency of the IGRs within the sample. a) S. aureus ST22 b) E. coli ST131. 
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Species Core genes Core IGRs

Accessory 

genes

Accessory 

IGRs

Percentage 

core genes

Percentage 

core IGRs

S. aureus  ST22 2409 1556 816 1543 95 95

S. aureus 2129 1134 3446 8033 85 69

E. coli  ST131 3930 2296 8876 14133 84 77
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