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A Data Collection, Sequencing, and Bioinformatics2

We collected larvae from outbreaking gypsy moth populations in Michigan between 20003

and 2003 (Fig S1, table S1), and we reared them until death or pupation at 26 ◦C in the lab in4

individual rearing cups containing an artificial wheat-germ diet [1]. Virus-killed larvae can often5

be identified visually, but in cases of uncertainty, we examined smears under the microscope for6

the presence of occlusion bodies, which are large enough to be apparent at 400× magnification7

[2]. Virus-killed cadavers were then transferred to 1.5 ml centrifuge tubes where they were8

stored in distilled water at -20 ◦C.9

We amplified each virus isolate by passaging it through larvae from the New Jersey Stan-10

dard Strain in the late third and early fourth instars (= developmental stages). As we describe11

below, we passaged virus through a large number of hosts to avoid introducing a population12

bottleneck. To amplify the virus, we used fine-tip transfer pipettes to apply four drops of each13

homogenized sample to three 6 oz. plastic rearing cups. Each cup contained approximately 214

oz. of artificial diet. The virus solution was spread across the diet using plastic-bristle paint-15

brushes, which were discarded after a single use. Cups were left open to dry for approximately16

15 minutes, after which 25 healthy larvae were added to each cup. To confirm that there was no17

cross contamination between virus cups, we also mock infected control larvae using distilled18

water. No virus-caused deaths occurred in the controls. Post-infection, larvae were inspected19

regularly from day 10 to day 18, and intact dead larvae were carefully transferred to 50 ml plas-20

tic centrifuge tubes using soft forceps. Following transfers from each cup, the soft forceps were21

disinfected with 10% bleach solution and wiped to avoid contamination between virus samples.22

Tubes of passaged virus were stored at 4 ◦C.23

We isolated virus from these samples using the following protocol. First, we shook each24

tube vigorously to release the virus from the cadavers. Second, we removed intact pieces of25

host insects by filtering each virus solution through muslin into 1.5 ml centrifuge tubes, after26

which the muslin was discarded. Third, we centrifuged each tube for 10 minutes at 5000 × g to27

pellet the virus, and we discarded the supernatant. Fourth, we added 1 ml of distilled water, we28

homogenized the solution through mixing on a tabletop vortex, and we repeated the centrifuge29

step. The pellet was then re-suspended in 500 µl of distilled water and stored at -20 ◦C.30

To extract DNA, we followed a modified version of the protocol of [3]. Briefly, we thawed31

each virus solution overnight at 4 ◦C. We then transferred 400 µl of the virus to a new 1.5 ml32

centrifuge tube, and added 400 µl of a solution of 2% sodium dodecyl sulfate in distilled water.33

Tubes were inverted repeatedly for 1 minute, and stored overnight at room temperature. The34

following day, we centrifuged each sample at 5000 × g for 15 minutes. We then discarded the35

supernatant, and we re-suspended each pellet in 1 ml of distilled water, before adding 500 µl36

of an alkaline solution (0.3 M sodium carbonate, 0.03 M EDTA, 0.51 M sodium chloride in37
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distilled water) to free the virions from the occlusion bodies. We incubated each solution for38

1 hour at 37 ◦C and then centrifuged it at 3000 × g for 5 minutes. Next, we transferred the39

supernatant to a new centrifuge tube, we centrifuged each tube at 14,000 × g for 30 minutes,40

and we discarded the supernatant. We then re-suspended each pellet in 200 µl of sterile TE41

buffer (0.01 M Tris-HCl, 0.001 M EDTA in distilled water) by gently pipetting up and down to42

break up the pellet. All samples were stored overnight at room temperature. Next, we released43

DNA from the virions by adding 200 µl of extraction buffer (0.01 M Tris-HCl, 0.001 M EDTA,44

0.2% potassium chloride, 0.2% sarkosyl in distilled water), and 4 µl proteinase K. We mixed45

the tubes by inverting them, and we incubated the solution at 65 ◦C for 3 hours.46

To recover the DNA, we used a phenol-chloroform DNA extraction. Following standard47

protocol [4], we added 404 µl of 25:24:1 phenol-chloroform isoamyl alcohol to each tube to48

generate a 1:1 ratio with the sample by volume. We mixed the tubes by gently inverting them49

for 2 minutes. We centrifuged the samples at 14,000 × g for 20 minutes, and we carefully50

transferred the top layer to new 1.5 ml centrifuge tubes. Next, we added 480 µl of isopropyl51

alcohol to the tubes, we mixed them for 2 minutes by gentle inversion, and we placed them52

on ice for 2 hours. We then centrifuged the samples at 3000 × g for 5 minutes and carefully53

discarded the supernatant. Next we added 500 µl of 70% ethanol, centrifuged at 3000 × g,54

and again discarded the supernatant. The samples were left open under a fume hood for 3055

minutes to allow the remaining ethanol to evaporate, after which 20 µl of water was added to56

the samples, and they were stored at -20 ◦C.57

We quantified the amount of DNA in our samples using a spectrophotometer (NanoDrop58

2000c). Because our DNA concentrations were low (< 20 pg/µl), we amplified our samples59

using the whole genome amplification REPLI-g UltraFast Mini kit from Qiagen, following the60

standard Qiagen protocol. After amplification, DNA concentrations were re-quantified in a61

spectrophotometer and then normalized to 50 ng/µl. We used the Nextera DNA Sample Prep62

Kit (Illumina-compatible, # GA0911-96), following the standard protocol for use with custom63

adaptors, to prepare libraries for Illumina sequencing with custom barcodes. We used the first64

96 indexes (table S2) proposed by Meyer and Kircher [5]. After prepping the samples using65

Nextera, we again quantified DNA concentrations using a spectrophotometer, and we combined66

the samples into 3 libraries, such that each index was used only once in each library.67

Illumina sequencing was performed at the University of Illinois at Urbana-Champaign. This68

sequencing was carried out as two sets of libraries, run on individual lanes of a HiSeq2000 at69

96- and 62-plex respectively, producing 100 cycle single-end reads. Samples were separated ac-70

cording to barcodes using the standard Illumina pipeline. Control, poor coverage, and duplicate71

libraries were excluded from further analysis, leaving us with 143 unique samples.72

Examination of the reads using FastQC73

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ )74

revealed Nextera adaptor contamination. These contaminated sequences were removed using75

the wrapper “trim galore” with default parameters76

(http://www.bioinformatics.babraham.ac.uk/projects/trim galore/).77

We then mapped the remaining sequences to the Lymantria dispar multiple nucleopolyhe-78
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drovirus (LdMNPV) reference genome [6] using “bowtie2” [7], with parameter set “very-fast”.79

The output “sam” files were converted to “bam” files using “samtools view” [8, 9]. “bam” files80

were sorted using “samtools sort”, and the sorted files were converted to “mpileup” files using81

“samtools mpileup” with minimum mapping quality 20 and minimum sequence base quality82

30. Consensus sequences were then generated and variant calling was simultaneously per-83

formed using the function “mpileup2cns” in the program “VarScan” version 2.3.9 [10]. Variant84

sequences were called at minimum coverage 100. Non-homozygosity was assigned if allele fre-85

quencies were between 0.025 and 0.975. The majority allele at every locus was recorded as the86

consensus sequence for each sample. Repeating our analyses ignoring adaptor contamination,87

and mapping reads with “bowtie” [11], yielded similar results.88

As is often the case, most sites were conserved both within and between our samples (i.e.89

individual infected hosts). Because conserved sites provide little information, we identified90

sites that were uniform within samples, but that segregated between at least 7 samples (≈ 5%).91

This criterion produced the 712 segregating sites that we focus on in the main text. In Fig S1,92

we show the pairwise similarity between each of our samples at these 712 sites. In Fig S2, we93

show that the population structure at these 712 sites is low (where populations are defined by94

the combination of location and year from which a sample was collected).95

This pipeline yielded an overall mean genome coverage of 886x per sample, with a range96

between samples of 202x to 1497x (Fig S3). In Fig S4, we show the average sequencing depth97

at each site in the genome, and we also show that the segregating sites are spread throughout98

the virus genome.99

We also performed BLAST searches for each of our 143 samples to quantify levels of non-100

target DNA in our sequence reads. To do this, we converted 10,000 reads from each of our101

adaptor trimmed FASTQ files into FASTA format. We ran a ‘blastn’ query for each FASTA102

file against the ‘nt’ database using the options ‘max target seqs 1’ and ‘max hsps 1’ to ensure103

reporting of only a single match for each read. We recorded the scientific name and the sub-104

ject title for each match. In each of our 143 samples, the most common hit was to the gypsy105

moth virus LdMNPV. Overall, 90.8% of all reads had their best hit classified as “viruses”. This106

percentage varied between samples with a standard deviation of 11.2%. Nevertheless 99.7% of107

all reads whose best hit was to a virus showed a best match to LdMNPV, suggesting negligi-108

ble contamination from non-LdMNPV viruses. In approximately two thirds of the remaining109

samples, the second most common hit was to Escherichia coli. To confirm that our estimates of110

nucleotide diversity were not influenced by DNA contamination in our samples, we performed111

a linear regression of nucleotide diversity on the fraction of reads that mapped to LdMNPV. We112

found no significant effect (Fig S5).113
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Figure S1: Virus strain collection information and pairwise similarity at segregating sites. Sam-
ples were collected from 7 sites over 4 years, although most were collected in 2000. Above,
each sample was assigned a column and a row, such that the nth column (read from left to right)
represents the same sample as the nth row (read from top to bottom). Red boxes outline sam-
ples collected from the same year, or the same year and collection site for samples collected in
2000. The intensity of the shading of each pixel shows the pairwise similarity between consen-
sus sequences at 712 segregating sites used for downstream analysis. The shading within the
red boxes is only slightly more intense than the shading outside the red boxes, indicating that
spatial structure in this pathogen is weak. Collection site information is provided in table S1.
Values underlying this figure can be calculated using data in S3 Data and S4 Data.
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Figure S2: Histogram of FST values for each of the 712 segregating sites. Populations here are
defined as the consensus sequences of samples collected from the same site in the same year.
Low FST values confirm previous work that there is little population structure in the gypsy moth
baculovirus across Michigan [12]. Values underlying histogram are provided in S5 Data.
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Figure S3: Mean genome coverage for each of the 143 sequenced samples. Values underlying
histogram are provided in S6 Data.
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Figure S4: Location of segregating sites, and mean sequencing depth across the genome. The
top panel shows the location of segregating sites across the genome, with locations correspond-
ing to GenBank accession number NC 001973.1 [6]. Each segregating site is marked by a
vertical slash in the middle of the figure. The bottom panel shows the mean sequencing depth
at each site in the genome. Instead of being restricted to sites of particularly high or particularly
low sequencing depth, segregating sites are spread throughout the virus genome. Plotted values
are provided in S7 Data.
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Figure S5: Nucleotide diversity versus the percentage of sequence reads with a best hit to
LdMNPV. The lack of correlation between these variables suggests that our conclusions are
unlikely to have been affected by the presence of non-target DNA. Plotted values are provided
in S8 Data.
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Table S1: Collection site information. All sites are in Michigan, USA. Latitudes and longitudes
were estimated using Google Maps, by the recollections of the second author and his field
assistant of last resort, Dr. Alison F. Hunter.

Collection site Nearest metropolitan area Latitude Longitude
AL Allegan 42.53 −85.88
GL Gladwin 43.99 −84.40
JA Jackson 42.27 −84.36
KZ Kalmazoo 42.37 −85.52
MA Manistee 44.23 −86.04
MU Muskegon 43.27 −86.12
YS Yankee Springs 42.63 −85.45
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B Calculating Nucleotide Diversity114

To quantify pathogen diversity within individual hosts, we used average nucleotide diversity π,115

a standard population-genetic statistic used to summarize diversity [13]. In Supplemental In-116

formation I, we show that similar results are obtained when using alternative summary statistics117

such as the effective number of alleles Ae, the fraction of polymorphic loci P , and the relative118

nucleotide diversity π̂. Nucleotide diversity is the probability that any two randomly selected119

alleles at a particular site in a population would differ if the population were in Hardy-Weinberg120

equilibrium. It is defined as:121

π = 1− 1

n

n∑
j=1

kj∑
i=1

x2
ij. (1)

Here π is the nucleotide diversity, kj is the total number of allelic variants in the population at122

site j, xij is the frequency of allele i at site j, and n is the total number of focal sites. In our123

case, n is equal to the 712 segregating sites identified in Supplemental Information A.124

Fig S6 shows nucleotide diversity calculated across sites that did not segregate at the popu-125

lation level, demonstrating that nucleotide diversity is negligible at sites not segregating at the126

population level. Comparison to Fig 3 in the main text strongly suggests that the pathogen di-127

versity that we observed within hosts was due to exposures to multiple pathogen genotypes, and128

not to mutation or diversifying selection within hosts.129

This is not to say, however, that all variation present within hosts can be explained by130

coinfection, just that a large fraction of it can be. Because segregating sites comprise 0.4%131

of the genome, the mean nucleotide diversity across the entire genome can be calculated as132

πG = 0.996πNS + 0.004πS , where πG is the mean nucleotide diversity calculated across the133

entire genome, πNS is the nucleotide diversity at non-segregating sites and πS is the nucleotide134

diversity at segregating sites.135

The fraction of overall variation explained by segregating sites is therefore 0.004πS/πG. In136

the main text, we report the mean values πNS = 0.001 and πS = 0.07. Accordingly, approxi-137

mately 23% of the variation can be explained by just the 712 segregating sites. In Fig S7, we138

show this estimate for each of the 143 samples used in our study. Due to the way nucleotide di-139

versity is calculated, the fraction of variation attributable to segregating sites could only increase140

if we were more liberal in what we considered to be segregating sites (currently that threshold141

is somewhat strict, based on a frequency of alternative alleles above about 5% across consen-142

sus sequences), and so we are probably underestimating the fraction of variation attributable to143

coinfection.144

In addition, our estimate of nucleotide diversity at non-segregating sites is likely a strong145

overestimate. This overestimate arises because all next generation sequencing platforms, in-146

cluding the Illumina platform that we used, have high sequencing error rates, and such errors147

inflate estimates of nucleotide diversity. The low diversity levels at non-segregating sites in our148

samples (i.e. 0.001) are well within the plausible range for variation generated by sequencing149

errors alone.150
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Figure S6: Mean nucleotide diversity at sites that are not segregating at the population level.
Values underlying this figure can be calculated using data in S4 Data.
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Figure S7: Percent of total nucleotide diversity explained by segregating sites. Note that total
nucleotide diversity is probably overestimated due to sequencing error, and so the estimates of
variation explained by segregating sites are likely conservative. Values underlying this figure
can be calculated using data in S4 Data and S8 Data.
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C Nested Model Structure151

Our models are nonlinear generalizations of linear birth-death models [14], and so we begin the152

explanation of the models by first presenting a linear birth-death model. A birth-death model153

describes probabilistic changes in the size of a population over time, such that the probability154

of a birth or a death in a small period of time depends on the population size, and only integer155

population sizes are possible. In the linear case, the model is [15]:156

P (xt+∆t = xt + 1|xt) = rxt∆t+ o(∆t), (2)
P (xt+∆t = xt − 1|xt) = αxt∆t+ o(∆t), (3)

P (xt+∆t = xt|xt) = 1− (r + α)xt∆t+ o(∆t). (4)

Here x is the population size, so that the first equation describes the probability of a birth oc-157

curring in the time interval (t, t + ∆t]. Because each individual has the same probability of158

giving birth, the probability of a birth depends on the replication rate r, the number of individ-159

uals xt, and a term o(∆t) that describes the probability that multiple events occur in a single160

time interval ∆t. This latter term is assumed to go to zero very rapidly as ∆t becomes small161

(lim∆t→0
o(∆t)

∆t
= 0). The second equation describes the probability of a death occurring in the162

time interval (t, t + ∆t], which similarly depends on the death rate α, the number of individ-163

uals xt, and the probability that multiple events occur in a single time interval, which again164

goes to zero rapidly with ∆t. The third equation describes the probability that neither a birth165

nor a death occurs in (t, t + ∆t]. Because o(∆t) goes to zero with ∆t, the probabilities sum166

to 1 as ∆t goes to zero [15]. In practice, our models include processes that are not found in167

the linear birth-death model, notably the response of the immune system, but the linear model168

nevertheless provides a useful introduction to the overall approach of using birth-death models169

to represent within-host pathogen population growth.170

In birth-death models, the pathogen population is founded by the invasion of a discrete171

number of pathogen particles into the host. In the linear birth-death model in particular, each172

of these particles has a constant probability of reproducing or dying, and the resulting births173

and deaths lead to changes in the pathogen population size within the host. If the pathogen174

population size reaches 0, which might occur by chance if the initial population size is small,175

the host recovers, but if the pathogen population instead reaches an upper threshold, the host176

becomes ill. We can thus use the linear birth-death model to describe both the probability of177

host illness given exposure to the pathogen, and the incubation time, meaning the time between178

exposure and illness, as long as we specify the threshold at which symptoms occur [16]. As179

Fig S8 then shows, the model predicts that there will be variability in incubation times, and in180

the probability of illness, even if hosts are identical, simply because of the stochasticity inherent181

in the birth-death process. Note that most of the variability in outcomes is due to events that182

occur shortly after infection, when pathogen population sizes are small.183

In previous work with a colleague [17, 18], we extended the linear birth-death model to184

include the nonlinearities inherent in the insect immune response, thereby producing a model185

that provides a more realistic description of within-host baculovirus growth. In this model,186
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Figure S8: Realizations of the linear birth death model (eqs. 2-4). The solid horizontal line
is the threshold pathogen population size at which the host dies, and the dashed vertical lines
show times of host deaths. Blue lines show realizations in which the host ultimately dies of
the infection, and red lines show realizations in which the host recovers and the pathogen goes
extinct. Note that when pathogen populations are small, trajectories are highly variable, which
in turn creates variation in the time at which pathogen populations reach the size at which hosts
die. Parameters: initial pathogen population size x0 = 3, pathogen replication rate r = 0.7 per
hour, pathogen death rate α = 0.5 per hour, threshold for death C = 104 pathogen particles.
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after a few pathogen particles colonize the host, the particles may again reproduce, as in the187

linear model, but they may also be bound and destroyed by host immune cells. In insects and188

other invertebrates, immune cells release chemicals that activate the phenol-oxidase pathway,189

ultimately resulting in the encapsulation and destruction of pathogen particles [19, 20]. The190

pathogen population may therefore fall to zero because of interactions with the host immune191

system, in which case the host recovers from infection, but the immune system may also be192

overwhelmed by the pathogen, leading to runaway pathogen growth and host death. Accord-193

ingly, instead of the linear model probabilities in eqs. (2)-(4), we have:194

P (xt+∆t = xt + 1, yt+∆t = yt|xt, yt) = rxt∆t− o(∆t), (5)
P (xt+∆t = xt − 1, yt+∆t = yt − 1|xt, yt) = βxtyt∆t− o(∆t), (6)

P (xt+∆t = xt, yt+∆t = yt|xt, yt) = 1− rxt∆t− βxtyt∆t− o(∆t). (7)

Here, xt and yt are the respective population sizes of virus particles and immune cells at time t,195

r is the virus replication rate, and β is the rate at which immune cells encounter and encapsu-196

late pathogen particles. We extend this model, without changing the dynamics in any way, by197

replacing xt with
∑x0

i=1 xt,i where x0 is the initial number of virus particles (not the number of198

unique virus strains) that founded the infection, and xt,i denotes the population size resulting199

from founder virion i at time t. Note the distinction between xt, the total virus population size200

at time t, and xt,i, the population size of virus particles resulting from virus founder i at time t.201

The population size resulting from each founder virion can then be explicitly tracked by rewrit-202

ing eq. (5) as a set of x0 equations, where xt is replaced with xt,i. We set x0,i equal to 1 for all203

i, such that each of these x0 equations describes the population size resulting from a different204

founder. A crucial point is that multiple founder virus particles may be identical in terms of205

virus strain identity. To determine the fraction of a cadaver that is comprised of any particular206

virus strain therefore requires first determining which of the x0 virus lineages match the strain207

of interest. We similarly expand eq. (6). This formulation of the model allows us to explicitly208

capture changes in the virus population composition that are due to replicative genetic drift.209

The model defined by the above probabilities describes the stochastic population growth that210

underlies the genetic drift of pathogen populations inside their hosts. To allow for transmission211

bottlenecks, we include a submodel that describes the reduction in the pathogen population size212

that occurs at transmission. In the gypsy moth baculovirus, for example, an infected cadaver213

releases on the order of 109 infectious occlusion bodies [21], but the number of virus particles214

that successfully invade a host is only 10–100, reflecting a transmission bottleneck [17]. We215

therefore assume that the initial number of pathogen particles follows a Poisson distribution,216

according to;217

x0 ∼ Poisson
(

c1D

c2 +D

)
, (8)

Here x0 is again the initial number of virus particles that colonize a host. To allow for saturation218

of pathogen invasion sites, the mean of this distribution is calculated from a Michaelis-Menten219
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function, such that the mean number of colonizing particles is a saturating function of the dose220

D, with parameters c1 and c2. By defining the initial number of immune cells y0 ≡ m, and221

specifying the virus population size C at which host death occurs, we have fully described222

the dynamics of our within-host model. To explicitly model genetic drift due to transmission223

bottlenecks, we randomly sample x0 virus genomes with replacement from the population of224

virions that comprises the infectious cadaver to which a host was exposed. Specifically, virus225

strains are sampled using a multinomial distribution, in which the probability of sampling a226

particular strain depends on its frequency in the infectious cadaver. This produces x0 virus227

particles that can then be tracked using eqs. (5)-(7). Reinfections are treated in the same way228

as primary infections. If multiple host exposures occur, the host dies at the time that the total229

number of particles first exceeds the host-death threshold. The frequency of each virus strain at230

the time of host death then becomes the frequency of each strain in the newly generated cadaver.231

We allowed for 50 unique virus genotypes, but using larger numbers of strains had negligible232

effects on our results.233

The above text describes the model that includes drift due to both transmission bottlenecks234

and replicative genetic drift. To remove replicative genetic drift, we again used eqs. (5)-(7)235

to determine the time of death, but we no longer tracked the identity of each individual virus236

particle during growth within hosts. The time to death is therefore the same, but the composition237

of the virus population is unaffected by stochasticity during growth within hosts. To eliminate238

transmission bottlenecks, we removed the sampling process during virus colonization, such that239

the virus community infecting a host was identical in composition to the community to which240

the host was exposed. Finally, to add purifying selection, we allowed hosts to be resistant to a241

subset of virus strains. The three alternative models are described in more detail later in this242

section.243

We tracked a fixed number of virus strains (i.e. 50) that changed in relative and absolute244

frequency over time, but otherwise did not change. These simulated strains varied at 712 loci,245

to match the variability in our sequence data (further described in Supplemental Information F).246

We therefore did not include mutation or recombination in any of the models presented in the247

main text. These simplifications are justified by the biology of the system, and they allowed us248

to greatly improve the tractability of the system, by tracking a fixed number of strains (i.e. 50).249

Although there are no estimates of baculovirus mutation rates, data from other double stranded250

DNA viruses suggests that mutation rates are likely to be on the order of 10−7 substitutions251

per locus per infected cell [22]. In Supplemental Information E, we show that this mutation252

rate generates too little variation to explain our data, and that in fact, no mutation rate can253

simultaneously explain both the high and low diversity infections seen in our data. We also are254

unaware of any estimates of baculovirus recombination rates, but given that recombination is255

not a necessary part of the baculovirus lifecycle, the frequency of recombination is probably256

small over ecological timescales.257

Realizations of our within-host model show that most of the variability in the time at death258

is due to events that occur early on in the infection (Fig S9), as in the linear birth-death model259

(Fig S8). Comparison of Fig S9 and Fig S8, however, makes clear that allowing for the non-260
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linearities inherent in the immune system slows the growth of the virus population early in the261

infection. Because the immune system thus keeps pathogen population sizes low for longer, it262

strengthens the effects of drift.263

The nonlinear birth-death model is used once a host becomes infected, to determine whether264

the host will die of the infection, and if so, when death will occur. To determine whether a host265

becomes infected in the first place, we use a stochastic SEIR model, modified to allow for host266

variation in infection risk [23,24], and to allow the birth-death model to determine the time until267

death, and the probability of death. In our selection model, a host only dies if the cadaver that268

initiated the infection also contains at least one virus strain to which that the host is susceptible.269

Allowing our birth-death model to determine virus dynamics within hosts is crucial, because270

the within host dynamics drive replicative drift. The resulting distribution of times to death is271

nevertheless roughly similar to a gamma distribution [17], which determines the time to death272

in standard SEIR models. It is therefore worth observing that, if incubation times within hosts273

did follow a gamma distribution, then the deterministic equivalent of our stochastic SEIR model274

would be:275

dS

dt
= −ν̄SP

[
S(t)

S(0)

]V
, (9)

dE1

dt
= ν̄SP

[
S(t)

S(0)

]V
− kδE1, (10)

dEi

dt
= kδEi−1 − kδEi, for i = 2, . . . k, (11)

dP

dt
= kδEk − µP. (12)

Here, S and P are the densities of healthy hosts and infectious cadavers, respectively, while276

Ei is the density of exposed but not yet infectious hosts in exposure class i. Allowing for k277

exposed classes produces a gamma distribution of times to death, with mean 1/δ and coefficient278

of variation (C.V.) 1/
√
k [25]. Previous work has shown that infection risk varies greatly across279

individuals, in both gypsy moths [23, 24, 26, 27] and other insects [28], and this variation is280

represented by the transmission term ν̄

[
S(t)

S(0)

]V
, such that the initial mean transmission rate is281

ν̄ and the squared C.V. of transmission rates is V [29].282

Using a Gillespie algorithm, it is straightforward to simulate a version of this SEIR model283

that allows for the effects of demographic stochasticity [25], the stochasticity due to small284

population sizes during the epizootic. Such a model, however, would not allow for the effects285

of drift due to population bottlenecks, or for stochastic population growth inside the host, nor286

would it allow for the possibility that hosts become infected by more than one virus strain.287

In allowing for demographic stochasticity, we therefore modified the stochastic version of the288

SEIR model such that the times between infection and death for individual hosts are generated289

through simulation of the within-host growth model, instead of being drawn from a gamma290

distribution. Also, the SEIR model assumes that all exposed hosts die, but in our stochastic291

21



100

101

102

103

104

0 50 100 150 200 250

V
iru

s 
po

pu
la

tio
n 

si
ze

Time

V
iru

s 
po

pu
la

tio
n 

si
ze

Time

V
iru

s 
po

pu
la

tio
n 

si
ze

Time

V
iru

s 
po

pu
la

tio
n 

si
ze

Time

V
iru

s 
po

pu
la

tio
n 

si
ze

Time

Figure S9: Realizations of the nonlinear birth death model (eqs. 5-8). In contrast to Fig S8, this
model includes effect of the immune system. Parameter values are the same as in the nested-
model simulations in the main text (table S3), except that to aid visualization, here we set the
pathogen population size at host death C = 104 pathogen particles.
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model, whether an exposed host dies or recovers is instead determined by the within-host growth292

model. The effect is that our within-host pathogen growth model is nested inside our version of293

the stochastic SEIR model. A final difference from the standard SEIR model is that we allow294

pathogen haplotypes to infect not just uninfected hosts, but also infected hosts, to allow for the295

possibility of multiple exposure events in the same host individual.296

The Gillespie algorithm relies on the memorylessness of the exponential distribution, but297

in our nested model, the time until host death depends on the virus population within the host,298

leading to a distribution of times to death that is not memoryless. To simulate our model, we299

therefore instead use an algorithm developed by [30], which generalizes the Gillespie algorithm300

to allow for non-exponential event times. The steps in this algorithm are as follows: 1) Cal-301

culate the time at which the next exponentially distributed event will occur, as in the Gillespie302

algorithm; 2) Calculate the time at which the next non-exponentially distributed event will oc-303

cur; 3) Use the minimum of 1 and 2 to determine the next event to occur, and update the time304

and the population sizes accordingly; 4) Return to step 1.305

In the resulting model, there are three types of events; a host can contact the virus, a previ-306

ously exposed host can die of an infection, or an infectious cadaver can cease to be infectious.307

The times to these respective events are;308

te ∼ Exponential(
nt∑
i=1

ν̄hiIt), (13)

td = Min(T1, . . . , Tl)− t, (14)
tr ∼ Exponential(µIt). (15)

Here T1, . . . , Tl are the times of death as predicted by the within-host model. Also, te is the309

time until the next host is exposed to the pathogen, td is the time until the next host dies of the310

pathogen, and tr is the time until the next infectious cadaver decays and is therefore removed311

from the system.312

Previous work has shown that constructing models that accurately describe baculovirus epi-313

zootics in gypsy moth populations requires an allowance for variation in infection risk across314

individuals, as in eqs. (9)-(12) [23, 29]. To adapt that model to allow for stochasticity, here we315

assume that ν̄hi is the infection risk of individual i, such that ν̄ is the average transmission rate,316

and hi is a gamma-distributed random variate with mean 1 and coefficient of variation CV . The317

symbol It is the number of infectious cadavers at time t, nt is the number of hosts that are alive318

at time t, l is the total number of exposed hosts in the population, and µ is the decay rate of the319

virus. Given these definitions, we calculate the time to the next event as the minimum of te, td320

and tr.321

Generating even a single realization of the full model requires a great deal of computing322

time. To increase computational efficiency, we therefore calculated times to death Tj and the323

accompanying within host virus dynamics by selecting within-host trajectories from a sample324

of 106 trajectories simulated before we simulated the full model. With this change, single325

realizations of the model can be completed within two days.326
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The nested epizootic model can be used to simulate the dynamics of the system within a327

single year, but to allow for long-term host-pathogen population dynamics, and thus pathogen328

evolution, we extended the model to allow for multiple host generations. Like many outbreaking329

forest insects [31], the gypsy moth has only one generation per year, and so our long-term model330

is based on a set of difference equations, which allow for natural selection and genetic drift in the331

host, over-wintering in the pathogen, and more generally for the long-term population dynamics332

of the host and the pathogen [24, 29]:333

Ng+1 = 1 +

Ng∑
i=1

(ν̄ghiλ+ b)ψi, (16)

Zg+1 = 1 + γZg + φ

Ng∑
i=1

|ψi − 1|, (17)

ν̄g+1 =
1

Ng+1 − 1

Ng∑
i=1

ν̄ghi(ν̄ghiλ+ b)ψi. (18)

Here, Ng and Zg are the number of susceptible hosts and infectious cadavers in generation g,334

and ν̄g is the mean exposure risk of hosts in generation g. To explain the model, we begin with335

equations (16) and (17). On the right-hand side of these equations, we include a 1 to allow for336

the immigration of a single host and a single infectious cadaver in each host generation. Given337

that the number of uninfected hosts and infectious cadavers is generally above 103, this low338

level of migration had only very modest effects on the dynamics of the model, while neverthe-339

less serving to prevent extinction of the host and the pathogen, which would otherwise have340

happened at least sporadically. In the host equation (16), the symbol combination ν̄ghi is the341

realized exposure risk of host i in generation g, while b is the baseline reproductive rate of the342

host. Also, λ is the rate at which host fecundity increases with increasing host susceptibility,343

representing a tradeoff between fecundity and resistance that has been shown to occur in the344

gypsy moth [32,33]. The symbol ψi is an indicator variable, such that ψi = 0 indicates that host345

i has died from infection and ψi = 1 indicates that host i has survived to reproductive age, so346

that the term
∑Ng

i=1(ν̄ghiλ+ b)ψi is the total reproductive output of the surviving hosts.347

We use ψi again in equation (17), in which the summation
∑Ng

i=1 |ψi − 1|, is the total num-348

ber of virus-killed hosts in generation g. The symbol φ describes the effective overwintering349

survival of cadavers produced in generation g, by which we mean that φ takes into account both350

the over-winter survival of infectious cadavers, and the high susceptibility of hatchling larvae351

in generation g + 1 [27], following previous work that showed that φ > 1 [34]. The symbol γ352

is the overwintering survival of cadavers over longer time intervals.353

Equation (18) describes the change in the mean exposure risk in the host population, which354

may be due either to selection for increased resistance during the epizootic, or to selection for355

increased fecundity during host reproduction (for simplicity, we assume that the host variation356

parameter CV is constant). Accordingly, the term (ν̄ghiλ + b)ψi is the number of offspring357
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produced by host i. We then calculate the average exposure risk in the next generation by358

summing the expected risk for each of these offspring, ν̄ghi, and dividing by the total number359

of new offspring, Ng+1 − 1, where the one accounts for the immigrant host.360

It it is important to emphasize that our long-term model uses our stochastic SEIR model to361

calculate the number of hosts that survive the epizootic, and to calculate the number of hosts362

that are converted into infectious cadavers. The stochastic SEIR model is thus nested inside363

the long-term model, just as the within-host pathogen growth model is nested inside the SEIR364

model.365

We simulated our models for 100 generations, because longer realizations produced nearly366

identical results. Because larvae can only be collected during outbreak years, when gypsy367

moth populations are at high densities, we extended each realization until the host population368

exceeded 104 and at least 2× 103 hosts had died of the pathogen, to mimic the conditions under369

which our samples were collected. At the end of each realization, we recorded the composition370

of virus strains that comprised the pathogen population of each simulated virus-killed host.371

To simulate within-host dynamics, we used parameter estimates from our previous work372

with a colleague [18], in which we fit the within-host model to speed of kill data from a dose-373

response experiment. Because the previous work was carried out in the lab, it did not provide374

an estimate of typical virus doses under field conditions. We therefore assumed an initial dose375

of D = 10000, which corresponds to ≈ 90% of the maximum effective dose. This value of376

D is consistent with the observation that virus doses in the field tend to be very high [35], and377

our conclusions are nevertheless robust to this value (Supplemental Information D). All model378

parameters and their values are listed in table S3.379

To simulate host-pathogen population dynamics, we used parameter estimates from previ-380

ous work [24, 27]. The duration of each epizootic was 8 weeks, matching epizootics seen in381

gypsy moth populations in nature [36]. The value of the parameter λ determines the strength382

of selection for the increased fecundity that results from increased host infection risk, and it383

therefore affects the value of the average transmission rate ν̄g in generation g. Because the384

value of λ is poorly known, we selected λ = 108, which gave average fecundity values between385

0.3 and 260 offspring per host, similar to the range in egg mass sizes typically observed in386

nature [37]. We set the host heterogeneity in susceptibility CV = 2.5, and the effective virus387

over-wintering parameter φ = 20, each falling within the range of values calculated from pre-388

vious work [24, 27]. These values produced population cycles with a period of roughly 8 years389

and an amplitude of 3 orders of magnitude, matching the period and amplitude of cycles seen390

in nature [38, 39].391

In the purifying selection model, the probability of a host being susceptible to a particular392

virus strain was set to ρ = 0.9, based on previous dose-response data, which showed that the393

probability of a host being susceptible to a particular virus strain is at least ρ = 0.97, plus or394

minus 0.03 [40]. This estimate is close to ρ = 1, which would exactly replicate the model that395

lacks both transmission bottlenecks and replicative drift. To distinguish our selection model396

from this other model, we therefore assumed a value of ρ that was approximately 2 standard397

errors lower than its best empirical estimate. In Supplemental Information G, we show that398
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reducing the value of ρ improves the fit of the model to the data, but the selection model cannot399

compete with our best drift model for any reasonable value of ρ.400

Note that all parameters were chosen before we compared the output of our models to our401

nucleotide-diversity data, and that the value of each parameter was the same in each of the four402

models that we compared to the nucleotide diversity data, with the exception of ρ, which was403

set to 1 in the neutral models and 0.9 in the purifying selection model. Adjusting the model404

likelihood values to allow for differences in the number of model parameters would therefore405

have no effect on model selection, since none of the model parameters are free parameters.406

As we described in the main text, we considered four models. The most complex model407

includes both transmission bottlenecks and replicative drift, but we also constructed three al-408

ternative models by sequentially removing these two sources of genetic drift from the most409

complex model, and by adding purifying selection. First, we eliminated replicative drift by410

assuming that the ratio of pathogen strains at host death is the same as the ratio of pathogen411

strains that results from the transmission bottleneck. The resulting model thus assumes that,412

during the birth and death of virus particles within hosts, gene frequencies do not drift. This is413

often an implicit assumption in the literature, for example when changes in genetic diversity be-414

tween transmission events are used to estimate infectious doses [41] or transmission bottleneck415

sizes [42, 43].416

Second, we additionally eliminated the genetic drift caused by transmission bottlenecks, by417

assuming that the ratio of virus strains released at death is identical to the ratio of virus strains418

found in the cadaver that caused exposure. This latter model therefore assumes that the fre-419

quency of different virus strains are unchanged by either transmission bottlenecks or replicative420

drift, which is an implicit assumption whenever deterministic models are used to describe pat-421

terns of diversity [44]. Note that it is not possible to construct a model with replicative drift but422

without a transmission bottleneck, because replicative drift requires virus population sizes to be423

integer values, and forcing the virus population to have an integer value necessarily imposes a424

form of bottleneck.425

Third, we added purifying selection into the model that lacked both transmission bottlenecks426

and replicative drift to determine whether non-neutral evolution is a better explanation for our427

data than drift. To implement purifying selection, as we described earlier, we added a single428

parameter ρ, which describes the probability that a host will be susceptible to a particular virus429

strain. Each host is therefore susceptible to a subset of x virus strains from the full set of 50430

simulated virus strains, where x is binomial(50, ρ). If the cadaver that a host feeds on contains431

one or more strains to which the host is susceptible, then the host dies and the virus that it432

releases is a composite of the strains to which it was susceptible, with relative frequencies that433

match the relative frequencies in the cadaver. The model thus allows for selection within hosts,434

but neglects drift within hosts. Coinfections are implemented in the same way for all of our435

models.436
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437

D Sensitivity of results to bottleneck size438

In the main text, we assumed a mean bottleneck size of 38 virus particles (table S3) based439

on previous studies of baculovirus infections in the gypsy moth [18, 35]. When using this440

bottleneck size, the model that included transmission bottlenecks but not replicative drift was441

unable to explain our data, because virus populations within hosts tended to be too diverse. But442

tighter bottlenecks could reduce this diversity, and our estimate of bottleneck size of course has443

error associated with it. Here we show that the bottleneck-only model gives a relatively poor fit444

to the data even when bottleneck sizes are reduced by almost an order of magnitude.445

The bottleneck size that we use to test the sensitivity of our model is derived from [42]. In446

this study, Zwart et al. infected Spodoptera exigua larvae with tagged strains of Autographica447

california multiple nucleopolyhedrovirus. Using a statistical model that related loss of virus448

diversity to bottleneck size, Zwart et al. found that the mean bottleneck size was approximately449

4.8 virus particles.450

To test the bottleneck-only model with this narrower bottleneck estimate, we made two451

adjustments to our original bottleneck-only model. First, we altered the dose of virus that452

hosts consume from 10,000 occlusion bodies to 156 occlusion bodies (see table S3). This453

change reduced the average bottleneck size from 38 to 4.8, thereby implementing the Zwart454

et al. estimate of the bottleneck. This reduction in dose, however, also caused mortality rates455

given exposure to drop from 98% to 34%. This reduction is highly unrealistic given that, in the456

Zwart et al. data, the mortality rate given exposure was near 100%, as mortality rates typically457

are for baculovirus experiments that use field-relevant virus doses. We therefore also altered458

the model to maintain our original rate of mortality given exposure (≈ 98%). To do this, we459

identified simulated pathogen trajectories that resulted in host survival, and we replaced them460

with new simulated trajectories in which death occurred, as necessary to maintain a recovery461

rate of no more than 2%.462

In Fig S10, we show that the distribution of within host diversity for this model can indeed463

explain the data better than our original bottleneck-only model (compare to Fig 3). Even using464

this tighter-bottleneck, however, the bottleneck-only model does not explain the data as well465

as the full model, which also includes replicative drift, because the tighter-bottleneck model466

predicts that more samples will have high nucleotide diversity (≈ 0.2) and fewer samples will467

have intermediate levels of nucleotide diversity (≈ 0.04−0.09) than compared to the data. This468

lack of fit is reflected in the likelihood estimates (median log likelihood estimates: Original469

bottleneck (38) = −266.7, Zwart et al. bottleneck (4.8) = −72.7, Full model = −63.9). The470

likelihood estimates for the Zwart-et-al.-bottleneck-only model over 100 Monte Carlo simula-471

tions ranged from −75.8 to −70.1, and as table S4 shows, this range is not large enough to cast472

any doubt on our conclusion that the full model better explains the data.473

Note that there is a large discrepancy between the Zwart et al. estimate of the bottleneck474
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size and the Kennedy et al. estimate of the bottleneck size, a discrepancy that is larger than475

the uncertainty in the estimate from either study. There are two possible explanations for such476

a large discrepancy. The first is the obvious difference that the studies used different virus477

species and host species, the importance of which is unknown. The second is that the Zwart et478

al. estimate is derived from data on loss of virus diversity using a statistical model that assumes479

that all lost diversity can be attributed to a transmission bottleneck. Our models demonstrate480

that diversity may also be lost due to replicative drift, and so the Zwart et al. estimate may be481

overestimating the severity of transmission bottlenecks. The Kennedy et al. estimate is instead482

derived from fitting models to data on mortality and time of death [18], and so the estimate is483

not confounded by replicative drift. For these reasons, we used the estimate of Kennedy et al. in484

the main text. Although unrealistically severe bottlenecks provide an explanation for our data485

that is at least not terrible, we argue that a better explanation for the data is that both replicative486

drift and transmission bottlenecks shape the diversity of the gypsy moth baculovirus.487
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488

E Model of de novo mutation489

A possible alternative explanation for our data is that diversity within hosts arose through490

the accumulation of mutations during pathogen replication within hosts. This seems unlikely491

given both that double stranded DNA viruses have low mutation rates and that variation is492

concentrated at a small number of loci, but to be thorough, we consider whether a model of de493

novo mutation can explain our data.494

The mutation model follows a branching process with finite alleles and finite sites. We495

assume that each infection begins as a single virus particle. Each virus particle then doubles496

each virus generation, until the total virus population size reaches size C, and host death occurs.497

During each doubling, new mutations occur at rate M per locus. To be consistent with our data,498

we assume that there are 712 loci. Note that this is equivalent to having a larger genome in499

which strong purifying selection only allows variants to persist at a pre-specified 712 sites.500

Mutations are assumed to be selectively neutral, but only two alleles exist for any locus. If a501

second mutation occurs at a site that has already mutated, this mutation is a reversion back to502

the original allele. If the total number of mutations at a locus is an odd number, the virus thus503

has a mutant allele, and if the total number of mutations is an even number, the virus has the504

founder allele. This assumption has no qualitative effect on our results.505

For each model simulation, we calculated the mean nucleotide diversity of the virus pop-506

ulation within each host. These values were then compared to the mean nucleotide diversity507

in the sequence data, as with our other models. This model does not include replicative drift,508

concurrent transmission of multiple strains, or reinfection, and therefore it attempts to explain509

within host diversity through mutation alone. A lack of fit to the data would therefore suggest510

that one or more of these missing mechanisms are necessary to explain pathogen diversity in511

our data.512

Due to computational constraints on memory and time, we were only able to simulate 15513

rounds of virus replication. We assumed that host death occurs after round 15, which corre-514

sponds to a virus population size at host death C = 32768 (half of the 30 rounds of doubling515

necessary for 1 founder to achieve a population size exceeding 109). To confirm that our con-516

clusions were not influenced by the number of rounds of replication, we additionally simulated517

the model assuming death after 5 and 10 rounds, but these changes had no qualitative impact518

on our conclusions. We simulated the model using mutation rate M = 10−7, which is the best519

estimate of the per nucleotide mutation rate for double-stranded DNA viruses [22]. Because520

we saw very little virus diversity within any hosts when using this parameter value, we reran521

our simulations using mutation rates of 10−1, 10−2, and 10−3. These higher mutation rates gen-522

erated substantial diversity within hosts, but all hosts were infected with highly diverse virus523

populations (Fig S11). As a result, none of these parameter sets were able to reproduce the524

variation in diversity in the data, with some hosts being infected by virus populations of high525
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diversity and other hosts infected by virus populations with low diversity. In this model, all526

hosts had similar levels of nucleotide diversity. The model is therefore unable to explain our527

data, and so we conclude that de novo mutation is an unlikely explanation for the data.528
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Figure S11: The distribution of nucleotide diversity. Points show the data, and bars show the
predictions generated by a model of de novo mutation. Each row uses a different mutation rate
M , and each column uses a different number of replication rounds B. Note that very little
diversity is generated at realistic mutation rates (i.e. bottom row). Even when mutation rates are
high, the model is unable to explain the distribution of diversity seen in the data, because the
model predicts that hosts will have very little variation in their nucleotide diversity relative to
that seen in our data. Values underlying data points are provided in S1 Data.
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F Likelihood Calculations529

To calculate a likelihood score for each model, we compared the prediction of nucleotide diver-530

sity within hosts from each model to the distribution of nucleotide diversity in the data. Each531

realization of each model produces a matrix representing the frequency of each of 50 pathogen532

strains in each of 2000 randomly-selected hosts killed by the pathogen in the final year of the533

model realization. The cells of this matrix thus store the fraction of a simulated cadaver that is534

made up of a particular virus strain.535

To compare the model predictions to the sequence data, we first assigned genotypes to each536

of the virus strains. In our sequence data there were 712 sites with allele frequencies between537

0.05 and 0.95, and so we generated 712 segregating sites from the model output. To do this,538

we constructed pathogen strains one segregating site at a time, by selecting a uniform random539

variate between 0.05 and 0.95, and assigning genotype “0” to that fraction of the pathogen540

strains, and genotype “1” to all other strains. Strains were thus assigned randomly to each group.541

We repeated this process until we had constructed genotypes composed of 712 segregating sites.542

A common approach when working with this type of data is to calculate a composite like-543

lihood, sometimes referred to as a psuedo-likelihood [45]. A composite likelihood is the likeli-544

hood that results when partial likelihoods are calculated for subsets of a large dataset, and then545

the components of the likelihood are combined. In the population genetics literature, compos-546

ite likelihoods often arise when partial likelihoods are calculated at each locus independently547

and then combined into a single value (for example, [46]). This calculation would match the548

true likelihood if all loci were unlinked and thus independent, but if loci are linked and thus549

not independent, there can be a large difference between the composite likelihood and the true550

likelihood, potentially leading to incorrect inferences. We avoided this problem by calculating551

likelihood estimates based on a summary statistic, the nucleotide diversity, instead of calculat-552

ing likelihoods at individual loci (in Supplemental Information I, we show that our conclusions553

hold for other summary statistics). Our summary statistic covers the full set of data that we an-554

alyzed, and so our approach avoids the problem with pseudo-replication that can arise when the555

assumption of independence between loci is violated. By using a summary statistic to describe556

complex data, we may have sacrificed statistical power, but the differences in log likelihood557

between our models were on the order of 200 log units, and so statistical power was not an558

issue.559

To calculate likelihoods, we randomly selected 1000 infected hosts from our model output,560

and we calculated the nucleotide diversity of each simulated host using the simulated virus hap-561

lotypes described above. We used these simulated data to estimate the likelihood of observing562

the actual data for any particular model realization. In practice, we first recorded the number563

of cadavers whose nucleotide diversity fell in each of 50 bins ranging in value from 0 to 0.5 by564

increments of 0.01. Doubling or halving the bin widths had no impact on our conclusions. We565

used these numbers to estimate the probability that the nucleotide diversity of any particular ca-566

daver from our sequence data would fall in any particular bin. To avoid probability values of 0567

that result from using a finite number of simulated hosts, we slightly adjusted the probability of568
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each bin by adding 1 to each bin before dividing by the number of simulated hosts (1000) plus569

the number of bins (50). This is a conservative approach in that it slightly improves the likeli-570

hood of poorly fitting models relative to better fitting models. We used these probability values571

in a multinomial distribution using “dmultinom” in R, to generate a Monte Carlo estimate of572

the likelihood for each realization of each model.573

Following [47], we averaged likelihood estimates across realizations. The computational574

constraints of simulating the models were quite severe, but likelihood differences between mod-575

els were large enough that 69 realizations (68 realizations for the purifying selection model)576

were sufficient to establish that the best model is vastly better than the alternative models. Al-577

though our likelihood estimates depend on the random assignment of genotypes and simulated578

infected hosts, in practice the variation across realizations of the genotype assignment process579

was very small compared to the difference in mean likelihoods between models, and so this580

variation had no effect on our results. To show this, we repeated the genotype assignment pro-581

cess 100 times, re-calculating the likelihood each time. As table S4 illustrates, the ordering of582

the models would be the same even if we had only the worst likelihood for the best model, and583

the best likelihoods for the other models.584

Table S4: Minimum, median, and maximum log-likelihood estimates for each of our models,
across 100 realizations of the genotype-assignment process used in our likelihood calculations.

Model Minimum Median Maximum
Purifying selection −364.6 −353.1 −338.3
Bottlenecks only −274.9 −266.7 −248.5
Bottlenecks and replicative drift −66.0 −63.9 −61.6
Neither bottlenecks nor drift −508.3 −503.2 −498.5
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585

G Effects of varying the strength of selection in the purifying586

selection model587

In our selection model, the probability of a particular host being susceptible to a particular588

virus strain is equal to the parameter ρ. This value is based on a previous bioassay experiment589

[40], in which 97% + /− 3% of hosts died from exposure to a plaque purified virus strain when590

fed a realistic dose on a leaf disk, a typical result in this system [26]. Because setting ρ = 1.0591

recreates a neutral model, and because the impact of selection increases as ρ is reduced, we592

used ρ = 0.9 in our simulations of the selection model. This value is two standard errors less593

than its best estimate [40].594

In Fig 3 and table S4, we show that a purifying selection model using this parameter value595

provides an extremely poor fit to the data. Here we test whether other values of ρ can explain596

our data. We reran our selection model using ρ = 0.8, ρ = 0.7, and ρ = 0.6. The fit improves597

as we lower ρ, but to achieve a likelihood score and model fit that is almost as good as our best598

model requires that we use the very unrealistic value ρ = 0.6, which is about 12 standard errors599

smaller than the best estimate of this parameter (Fig S12 and table S5).600

To illustrate how unrealistic this parameter value is, we consider our model in a Bayesian601

framework, in which the posterior probability of ρ is discounted by its prior probability. If the602

prior for ρ is based on its empirical estimate from [40], then at ρ = 0.6, the prior density is603

approximately 70 log units smaller than at ρ = 0.90, and 72 log units smaller than at ρ = 1.0.604

The effective value of ρ is 1.0 in our drift-only models, because all larvae are susceptible to all605

virus strains. The likelihood of the selection model at ρ = 0.6 should therefore be discounted606

by approximately 72 log units when compared to the likelihood of our neutral models. We607

therefore conclude that neutral evolution is a better explanation for our data than selection.608

Table S5: Minimum, median, and maximum log-likelihood estimates for selection models
using smaller values for host by virus strain susceptibility ρ. As in table S4, these likelihood
estimates were generated using 100 realizations of the genotype-assignment processes.

Model Minimum Median Maximum
ρ = 0.8 −219.7 −209.8 −201.1
ρ = 0.7 −104.8 −100.8 −92.0
ρ = 0.6 −68.4 −66.0 −63.1
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Figure S12: Plots of nucleotide diversity. As in Fig 3, the grey interval shows 95% confidence
intervals of model simulations and black points show the results from our sequence data. The
three figures from top to bottom present the results from models using different estimates of
host by virus strain susceptibility ρ = 0.8, ρ = 0.7, and ρ = 0.6. The current best empirical
estimate is ρ = 0.97. In the main text, we showed that when ρ = 0.9, the model predicted levels
of diversity within hosts that were too high, and here we show the sensitivity of our conclusion
to the value of ρ. The selection model consistently predicts levels of nucleotide diversity within
hosts that are too high even for values of ρ that are unrealistically small (i.e. up to 12 standard
errors from its best estimate). Values underlying data points are provided in S1 Data.
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609

H Testing for evidence of selection within hosts610

As we have shown, our simple purifying selection model is a poor explanation for the data,611

but we have not ruled out that more complex models of selection might perform better. Here,612

we use a method similar to the McDonald-Kreitman test [48] to determine whether there is613

evidence that selection shapes pathogen diversity within hosts.614

Like the McDonald-Kreitman test, our method compares the relative representation of syn-615

onymous and non-synonymous variation at loci that are segregating or not segregating within616

a population (in our case, “population” refers to the virus population within a host). Assuming617

that selection disproportionately affects loci with non-synonymous variants, directional selec-618

tion should cause non-synonymous alleles to fix within a population faster than synonymous al-619

leles. Frequency dependent selection, which might result for example from immune-mediated620

diversifying selection, should alternatively prevent non-synonymous alleles from fixing in a621

population. We can therefore test whether selection is acting within hosts by examining whether622

loci with non-synonymous variants segregate at higher or lower rates within hosts relative to loci623

with synonymous variants than would be expected by chance. Note, however, that linkage may624

limit the ability of selection to act independently on synonymous and non-synonymous muta-625

tions, and so this test is imperfect. Strong signals of selection may nevertheless emerge if they626

are present.627

To implement this test, we needed to identify which of our 712 segregating sites could628

be classified as “synonymous” or “non-synonymous”. First, we removed all of the sites with629

indels or with more than two alleles. We then constructed a custom database for “snpEff”630

[49] using the gypsy moth baculovirus whole genome sequence on GenBank [6], and we ran631

“snpEff” to determine which of the remaining sites contained synonymous or nonsynonymous632

coding variants. Variants in non-coding parts of the genome were ignored, leaving us with 289633

synonymous sites and 251 non-synonymous sites.634

If selection were not acting on the variants within hosts, we would expect the ratio of syn-635

onymous to non-synonymous sites within hosts to have a ratio that is not statistically different636

from 289:251 both for sites segregating within a host and for sites fixed within a host. We de-637

fined segregating sites as sites where both alleles occurred at frequency greater than 0.025, and638

non-segregating sites as sites where this was not true. We then tested for selection by perform-639

ing a series of Fisher exact tests implemented using the function “fisher.test” in “R” [50]. One640

test was performed for each sample resulting in 143 test statistics.641

After Bonferroni correction [51], none of the 143 tests were statistically significant. Without642

correcting for multiple testing, 9 of 143 tests yielded p-values less than 0.05, which is close to643

the null expectation of 7.15. We therefore conclude that there is no evidence of selection acting644

within hosts.645

646
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I Alternative summary statistics647

In the main text, we compared model predictions to sequence data using mean nucleotide648

diversity π. Here we show that using the effective number of alleles Ae, the proportion of649

polymorphic loci P , or a metric that we refer to as relative nucleotide diversity π̂ yields the650

same conclusions as we found using nucleotide diversity.651

The effective number of alleles Ae is the number of alleles that would be required to explain652

a given level of genetic diversity, assuming that the alleles occur at equal frequency. In a popu-653

lation with very low genetic diversity, the effective number of alleles would be close to one, and654

it would increase as the genetic diversity in the population increases. We calculated the mean655

effective number of alleles in each of our samples using the following formula.656

Ae =
1

n

n∑
j=1

(
1∑kj

i=1 x
2
ij

)
. (19)

Here n is the number of loci, kj is the number of alleles at locus j, and xij is the frequency of657

allele i at locus j.658

We also used the proportion of polymorphic sites P , which is the fraction of sites that are659

segregating within a population. Here we consider a site to be segregating within a sample if660

the frequency of the major allele was less than 0.99.661

Lastly, to quantify the diversity present at the within-host scale relative to the diversity662

present at the between-host scale, we use a summary statistic π̂, or relative nucleotide diversity.663

This statistic describes the level of nucleotide diversity present within hosts relative to the level664

of nucleotide diversity present across consensus sequences across hosts, and it is calculated665

by dividing observed nucleotide diversity within hosts by observed nucleotide diversity across666

consensus sequences. Note that this value cannot be negative, but is otherwise unbounded,667

because high levels of coinfection can generate high nucleotide diversity within hosts but low668

levels of nucleotide diversity between consensus genome sequences.669

For all three summary statistics, we restricted our analysis to the 712 sites previously identi-670

fied as segregating at the population level. We analyzed these data identically to the nucleotide671

diversity data, with two modifications. First, the plausible range of these summary statistics672

differed from nucleotide diversity, and so in our calculation of the likelihood, we altered the673

bins so that instead of ranging from 0 to 0.5, they ranged from 1 to 1.7 for the effective number674

of allelesAe, from 0 to 1 for the proportion of polymorphic sites P , and from 0 to 15 for relative675

nucleotide diversity π̂. The width of each bin was modified to maintain 50 total bins. Second,676

to save computational time, the likelihood was estimated over 10 realizations of the genotype-677

assignment process instead of the 100 realizations that we used for nucleotide diversity. The678

differences in likelihood estimates between models are nevertheless clear.679

The likelihood estimates that arise when using different summary statistics are presented680

in separate tables, because the different summary statistics arise from different data and there-681

fore cannot be directly compared to each other. Nevertheless, these three new tables show the682
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same qualitative results as table S4; the model that includes both transmission bottlenecks and683

replicative drift is our best model (tables S6-S8 and figs. S13-S15).684

Table S6: Minimum, median, and maximum log-likelihood estimates for models when the test
statistic is the effective alleles Ae.

Model (Summary statistic Ae) Minimum Median Maximum
Neither bottlenecks nor drift −502.4 −498.5 −495.4
Bottlenecks only −271.3 −265.0 −260.8
Bottlenecks and replicative drift −81.2 −79.6 −77.3
Purifying selection −361.6 −351.8 −347.9

Table S7: Minimum, median, and maximum log-likelihood estimates for models when the test
statistic is the proportion of polymorphic sites P .

Model (Summary statistic P ) Minimum Median Maximum
Neither bottlenecks nor drift −522.9 −514.1 −511.1
Bottlenecks only −318.7 −305.8 −298.8
Bottlenecks and replicative drift −121.1 −117.0 −113.4
Purifying selection −447.1 −416.9 −412.1

Table S8: Minimum, median, and maximum log-likelihood estimates for models when the test
statistic is the relative nucleotide diversity π̂.

Model (Summary statistic π̂) Minimum Median Maximum
Neither bottlenecks nor drift −592.4 −591.5 −589.6
Bottlenecks only −316.0 −312.5 −309.1
Bottlenecks and replicative drift −13.3 −13.2 −13.1
Purifying selection −347.7 −346.8 −344.8
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Effective Alleles
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Figure S13: Fit of model predictions to data when using effective alleles Ae instead of nu-
cleotide diversity π. As in Fig 3, grey shading shows 95% prediction envelopes of the model
and points represent measures from the sequence data. (A) shows the model that includes nei-
ther transmission bottlenecks nor replicative drift, (B) shows the model that includes transmis-
sion bottlenecks but lacks replicative drift, (C) shows the model that includes both transmission
bottlenecks and replicative drift, and (D) shows the model that includes purifying selection but
lacks transmission bottlenecks and replicative drift. The model in panel (C) clearly fits the data
best. Values underlying data points are provided in S9 Data.
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Figure S14: Fit of model predictions to data when using the proportion of polymorphic sites P ,
formatted as in Fig S13. The model that includes both transmission bottlenecks and replicative
drift (panel C) again provides by far the best fit to the data. Values underlying data points are
provided in S10 Data.

42



X_axis

B
ou

nd
s1

[1
, ]

0

30

60

90

120
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(A)

X_axis

B
ou

nd
s2

[1
, ]

0

30

60

90

120
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

C
ou

nt

(B)

X_axis

B
ou

nd
s3

[1
, ]

0

30

60

90

120
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

(C)

X_axis

B
ou

nd
s4

[1
, ]

0

30

60

90

120

0 2 4 6 8 10 12

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Relative Nucleotide Diversity

(D)

Figure S15: Fit of model predictions to data when using the relative nucleotide diversity π̂,
formatted as in Fig S13. Panel C again provides the best fit to the data. Values underlying data
points are provided in S11 Data.
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J Mapping error685

In Fig 4 in the main text, the distributions of allele frequencies in the data differ from those686

predicted by the best model in two ways. First, the tails in the data histograms tend to be longer687

than the tails in the model histograms. Second, the peaks around intermediate frequency alleles688

in the data histograms are much broader than the peaks in the model histograms. Here we show689

that both of these features can be explained by biases introduced during the mapping of short690

reads to a reference genome.691

We begin by showing the effect of mapping biases on the distribution of allele frequencies692

in a host infected by a single pathogen genotype. This required a three-step process. First, we693

created a synthetic pathogen genotype, by combining the reference genome [6] with the allelic694

variants that we detected in our sequence data. In practice, we used a probability of 0.5 that695

any particular allele would match the alternative sequence rather than the reference. Second,696

using this synthetic genotype, we simulated Illumina sequencing by generating 5 × 105 short697

sequence reads, each 100 bp long, from the generated pathogen genotype, while including a698

2% sequencing error rate. Third, we mapped the synthetic Illumina-like sequence reads back699

to the reference genome in the same way that we mapped the real sequence data. The results700

show that, if sequencing error is sufficiently high, then a frequency histogram with a peak at701

allele frequencies of less than 1 can be generated even when the host is infected by only a single702

pathogen strain (Fig S16).703

Next, we showed that the spread around peaks at intermediate frequencies in histograms of704

allele frequencies is partly due to mapping errors. To do this, we used a very similar protocol705

to the one we just described, except that in this case, rather than generating a single pathogen706

strain, we generated three synthetic strains. For these three synthetic strains, we assumed a707

probability of 0.1 that any particular allele would match the alternative sequence rather than708

the reference. The host was then assumed to be co-infected by these three pathogens at a709

ratio of 4:3:3. The results show that the errors introduced during mapping lead to erroneously710

broad peaks, instead of the tight clusters of intermediate frequency alleles that we would expect711

in the absence of errors. Allowing for mapping error in this way yields histograms of allele712

frequencies that closely match the data histograms (compare Fig S17 to Fig 4 in the main text).713
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Figure S16: Histogram of synthetic sequence data from a single-infected host, as produced by
our model with the inclusion of mapping errors. Values underlying histogram are provided in
S12 Data.
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Figure S17: Histogram of synthetic sequence data from a co-infected host, as produced by our
model with the inclusion of mapping error. Values underlying histogram are provided in S13
Data.
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