Supplementary Material

Capsular Sialyltransferase Specificity Mediates Different Phenotypes in *Streptococcus suis* and Group B *Streptococcus*

David Roy, Daisuke Takamatsu, Masatoshi Okura, Guillaume Goyette-Desjardins, Marie-Rose Van Calsteren, Audrey Dumesnil, Marcelo Gottschalk and Mariela Segura^{*}

* **Correspondence:** Mariela Segura mariela.segura@umontreal.ca

Supplementary Figures and Tables:

Figure S1. NMR COSY spectrum of the GBSIIIsia2,6 mutant CPS. Figure S2. NMR HSQC spectrum of the GBSIIIsia2,6 mutant CPS. Figure S3. NMR COSY spectrum of the GBSVsia2,6 mutant CPS. Figure S4. NMR HSQC spectrum of the GBSVsia2,6 mutant CPS. Table S1. Oligonucleotide primers used in this study. Table S2. NMR chemical shifts of the GBSIIIsia2,6 mutant CPS. Table S3. NMR chemical shift differences between the GBSIIIsia2,6 mutant and wild-type GBS type III CPSs. Table S4. NMR chemical shifts of the GBSVsia2,6 mutant CPS.

Supplementary Figure S1. Portions of the 700-MHz 2D NMR COSY spectrum of the GBSIIIsia2,6 mutant CPS in 33 mM phosphate pD 8.0 in D₂O at 65°C. 512 increments of 2 K complex data points were acquired in magnitude mode with a digital resolution of 3.4 Hz/point in the t_2 dimension and 13.7 Hz/point in the t_1 dimension. The t_2 dimension was processed by multiplication with an unshifted sine bell window function and Fourier transform, and the t_1 dimension was processed by Zhu-Bax linear prediction to 1024 points, multiplication with an unshifted sine bell window function. The f_1 trace corresponds to the 1D ¹H spectrum (see Figure 12B).

Supplementary Figure S2. Portions of the 176-MHz ge-2D NMR HSQC spectrum of the GBSIIIsia2,6 mutant CPS in 33 mM phosphate pD 8.0 in D₂O at 65°C. 2 × 200 increments of 512 complex data points were acquired in the echo–antiecho mode with a digital resolution of 9.8 Hz/point in the t_2 dimension and 57.3 Hz/point in the t_1 dimension. The t_2 dimension was processed by multiplication with a $\pi/2$ shifted sine bell window function, Fourier transform, and phase correction, and the t_1 dimension was processed by Zhu-Bax linear prediction to 400 points, multiplication with a $\pi/2$ shifted sine bell window function, zero filling, Fourier transform, and phase correction. Only positive contours are shown. The f_1 trace corresponds to the 1D ¹³C spectrum. *, signals inverted on the DEPT spectrum; ×, signal absent on the DEPT spectrum.

Supplementary Figure S3. Portions of the 700-MHz 2D NMR COSY spectrum of the GBSVsia2,6 mutant CPS in 33 mM phosphate pD 8.0 in D₂O at 61°C. 512 increments of 1 K complex data points were acquired in magnitude mode with a digital resolution of 4.2 Hz/point in the t_2 dimension and 8.3 Hz/point in the t_1 dimension. Processing was as for Supplementary Figure S1. The f_1 trace corresponds to the 1D ¹H spectrum (see Figure 13B).

Supplementary Figure S4. Portions of the 176-MHz ge-2D NMR HSQC spectrum of the GBSVsia2,6 mutant CPS in 33 mM phosphate pD 8.0 in D₂O at 61°C. 2 × 200 increments of 425 complex data points were acquired in the echo–antiecho mode with a digital resolution of 10.0 Hz/point in the t_2 dimension and 79.1 Hz/point in the t_1 dimension. Processing was as for Supplementary Figure S2. Only positive contours are shown. The f_1 trace corresponds to the 1D ¹³C spectrum. *, signals inverted on the DEPT spectrum; ×, signal absent on the DEPT spectrum.

	Constructs or					
Oligonucleotide p	primers, sequence $(5^{2} - 3^{2})^{2}$	RT-PCR reactions				
cps2_ID1	CGTTGAATTTGTGGAACGGC	p4sia2,3_2				
cps2_ID2	AGTTGCTCCCTGACATCTGG	p4sia2,3_2				
cps2 ID3	GTAGCAGGTCTTGCCCCTTATC	p4sia2.3 2				
cps2 ID4	GCAAGTGTGTAGCCGAAACTG	p4sia2.3.2				
$cps2_ID7$	CCCAGTATCCCCCTTTATTTTC	$p^{1} = p^{2}$				
cps2_ID7		p -sia2,3_2				
cps2_ID8		p4sia2,5_2				
cps2_ID9	GGTGCAAGGATTAGCCGAAATGGCAGGTAG	p4s1a2,3_2				
cps2_ID10	CCATTACACGAGCGATGAAATC	p4sia2,3_2				
cpsK_5	TTTATCAGCATTAGACGAGCG	p4sia2,3_2/14				
cpsK_6	CCGGGCTGAACTTAAAGAACC	p4sia2,3_2/14				
cpsK_11	GTATGTAGAAGGAGAACCACGAATTGTTGG	p4sia2,3_2/14				
cpsK_12	CTACCTGCCATTTCGGCTAATCCTTGCACC	p4sia2,3_2/14				
sia14 IDI	CGTTGAATTTGTGGAACGGC	p4sia2,3 14				
sia14 ID2	AGTTGCTCCCTGACATCTGG	p4sia2.3 14				
sia14 ID3	GTAGCAGGTCTTGCCCCCTTATC	$p_{4} = 12$				
sia14_ID4	GCAAGTGTGTAGCCGAAACTG	$p_{151u2,3} = 1$				
sia14_ID7						
sia14_ID7		p4sia2,3_14				
sia14_ID8	CCAACAATTCGTGGTTCTCCTTCTACATAC	p4sia2,3_14				
sia14_ID9	GGTGCAAGGATTAGCCGAAATGGCAGGTAG	p4sia2,3_14				
sia14_ID10	CCATTACACGAGCGATGAAATC	p4sia2,3_14				
cpsJ_ID1		p4s1a2,6_111				
cpsJ_ID2		p4s1a2,6_111				
cpsL_ID3		$p_{4sia2,0_{111}}$				
cpsL_ID4		$p4sia2,0_III$				
cpsJ_ID7		$p4sia2,0_III$				
cpsJ_ID0	GTTGTCTCAGGTCTCCATTCGTCCACTGCG	$p_{4}s_{1}a_{2},0_{1}m_{1}m_{2}m_{2}m_{3}m_{2}m_{3}m_{3}m_{3}m_{3}m_{3}m_{3}m_{3}m_{3$				
cpsL_ID)		$p4sia2,0_{III}$				
cps2L ID5	TCTTCTGCAAGTCACCTCACC	$p4sia2.0_{III}$ $p4sia2.6_{III}$				
cps2L_ID6	ACGACCCAATCAGGCAAACC	$p_{13112,0}$				
cps2L_ID11	ACCACGAATTGTTGGTGATGAAGGGCAAGA	p4sia2.6 III				
cps2L ID12	CGCAGTGGACGAATGGAGACCTGAGACAAC	p4sia2.6 III				
sia5 ID13	TGCAGTGGTGTATTTTAGCG	p4sia2.6 V				
sia5 ID23	TCCGTCCTTATTCCCTGTTC	p4sia2,6 V				
sia5_ID33	GCCGGTAGAGCTATTACCATC	p4sia2,6_V				
sia5_ID43	TAACCAATTTACACCAGCAGC	p4sia2,6_V				
sia5_ID73	AGGATTAGTGTGAAGGAGAAGG	p4sia2,6_V				
5V_8	TTGCCCTTCATCATTGACACACAAAATTAT	p4sia2,6_V				
5V_92	GATTCATGTCTAAAATGGGATAACACATTC	p4sia2,6_V				
sia5_ID103	GTCTCCTCCCATTATTTGAGC	p4sia2,6_V				
5V_11	ATAATTTTGTGTGTCAATGATGAAGGGCAA	p4sia2,6_V				
5V_122	GAATGTGTTATCCCATTTTAGACATGAATC	p4sia2,6_V				
cps2L3_ID1	GGGAGTTGGGAGTTACTATG	$p4\Delta cps2N$				

SUPPLEMENTARY TABLE S1. Oligonucleotide primers used in this study.

cps2L3_ID2	CTGACATCTGGAAAATGCC	$p4\Delta cps2N$
cps2L3_ID3	AATGGCAGGTAGTATCCG	$p4\Delta cps2N$
cps2L3_ID4	GACCGTTTTTCCCTGAATG	$p4\Delta cps2N$
cps2L3_ID5	GGTAGATACTTTCATTGCGACC	$p4\Delta cps2N$
cps2L3_ID6	CGTGAGGGGATAGAACAAGGAAATCAGGAT	$p4\Delta cps2N$
cps2L3_ID7	ATCCTGATTTCCTTGTTCTATCCCCTCACG	$p4\Delta cps2N$
cps2L3 ID8	GCAACAACAGATAGGAAGC	$p4\Delta cps2N$
Neu14C ID5	TCTCAGCTCGAAATGACTCGTC	p4neuC
Neu14C ID8	AGGTCCCTGACTCCGTCAAC	p4 <i>neuC</i>
Neu5B ID1	TTATTGGTCTTCAGACGAGCGG	$p4\Delta neu5B$
Neu5B ID2	GCATCAACACCACAAGACACG	$p4\Delta neu5B$
Neu5B ID3	ATATTACGGTGAAGCGCCCAGG	$p4\Delta neu5B$
Neu5B ID4	GAGGAGGTTTCGACTGGTACAC	$p4\Delta neu5B$
Neu5B ID5	TTCGGTTCATTGTCACTGTGTC	$p4\Delta neu5B$
Neu5B_ID6	GCGTGAATCACGAATGCAACCAATCTCTGC	$p4\Delta neu5B$
Neu5B ID7	GCAGAGATTGGTTGCATTCGTGATTCACGC	$p4\Delta neu5B$
Neu5B ID8	AGTACCGCTTTCATCTGCTCTC	$p4\Delta neu5B$
cps5K ID1	AGGATTAGTGTGAAGGAGAAGG	$p4\Delta cps5K$
cps5K ID2	TTTGTAACTGCTCCCGATAAGC	$p4\Delta cps5K$
cps5K ID3	TTTAGTGGGGCTACCTCATGAC	$p4\Delta cps5K$
cps5K ID4	AGCGCCATAGGCTGCATAATG	$p4\Delta cps5K$
cps5K ID5	GAAGATGCAATCGAGAGAATGG	$p4\Delta cps5K$
cps5K ID6	CGCGGTGGACGAATGCGTGATAGTGTCACA	$p4\Delta cps5K$
cps5K ID7	TGTGACACTATCACGCATTCGTCCACCGCG	$p4\Delta cps5K$
cps5K ID8	TCCAAGCGAATAACCGAAAC	$p4\Delta cps5K$
cpsN pstI F	GCGCCTGCAGTATCGAAGCTGTACAGGG	pMXcpsN
cpsN_EcoRI_R	CGCG <u>GAATTC</u> CGAGACCTGAGACAACTATTG	pMX <i>cpsN</i>
M2000F	GATAGTTTGTCAGCCAGTGG	RT-PCR (R1)
cpsA R	GCCAATACTGCCACTCCTAC	RT-PCR (R1)
M1000F	CTGATTGCACCGATTCGGAG	RT-PCR (R3)
cpsA R	GCCAATACTGCCACTCCTAC	RT-PCR (R3)
M500F	CAATTCTGCCAATCCCTCTTG	RT-PCR (R4)
cpsA R	GCCAATACTGCCACTCCTAC	RT-PCR (R4)
cpsA F	GTCAAGCGATGGTGTTCAAC	RT-PCR (R5)
cpsB R	CACCGGCTTCAACATTTTG	RT-PCR (R5)
cpsB_F	GCGGCACGTATTGCAAATAG	RT-PCR (R6)
cpsD_R	GCACGAGCCATTAAGTGTTG	RT-PCR (R6)
cpsD F	GGCAGTAGCAGAAGTTTATCC	RT-PCR (R7)
cpsF_R	GTAGCCATTCATGACCGTC	RT-PCR (R7)
cpsF_F	GTTGGACGATTTGTGCCTG	RT-PCR (R8)
cpsG_R	ACAGCCTGTGAAACTGTCAC	RT-PCR (R8)
cpsF3_F	TTTTCATGGTCACGAGGTTG	RT-PCR (R9)
cpsH_R	GTGTGATGTCCCATCGATAGC	RT-PCR (R9)
cpsH_F	GCGAGAGAAGCCTCTTATTC	RT-PCR (R10)
cpsJ_R	CATTTCCTAAGTCTCGCACC	RT-PCR (R10)
cpsJ_F	GATAGTGATTTGTCGGGAGGG	RT-PCR (R11)
cpsK_R	GCCATAATTACGGGCATCTG	RT-PCR (R11)
cpsK_F	CGCCAAGGGTGACTACTTAG	RT-PCR (R12)
cpsN_R	CGAGCGACAGATCATTGACC	RT-PCR (R12)
cpsN_F	GCTCGTACAATTTGACGAGG	RT-PCR (R13 and R14)
cpsO_R	CAGGCAAACCAAATAGGAGC	RT-PCR (R13)
neu1_R	ATCGGTCGTTCCATTTTCCTG	RT-PCR (R14 and R15)
cpsO_F	CGCTCCTATTTGGTTTGCC	RT-PCR (R15)
neu2_F	GGAAAAATTGGTCGTCAAGC	RT-PCR (R16)
neu2_R	TGGCAACTGGTAGCATCTC	RT-PCR (R16)
neu3_F	CCTTGACAGAGCAACTCAC	RT-PCR (R17)

neu3_R	ACCAAGGAAGGACACCATC	RT-PCR (R17)
neu4_F	GGCCTCAACCATGAAAGAG	RT-PCR (R18)
neu4_R	GTTGTAAAATCTGTCGCCAAG	RT-PCR (R18)
neu5_F	TTTTCCATACCATTCGAGCTG	RT-PCR (R19)
neu5_R	TGCTCTGCTTTGGAAACAAG	RT-PCR (R19)
nouf E		RT-PCR (R21, R22, R23,
neuo_r	AICOUIOOAIOACAOCIIC	R24 and R25)
neu6_R	TCCTTTTCACGACCTGACTTG	RT-PCR (R21)
neu6R_R	TGGTCAAACTTGTCAAAATC	RT-PCR (R22)
neu8R_R	TACTTGTTCGGAAGTTAGAGCC	RT-PCR (R23)

^a Oligonucleotide primers were from IDT (Coralville, IA); restriction sites are underlined.

Residue		1		2	3		4	5	6		7	8	9		CH ₃	CO
А	\rightarrow 3)- β -D-Gal-(1 \rightarrow	4.45	$(7.7)^{b}$	3.62	3.72		4.15	3.71	3.79	3.76						
		105.65		72.76	84.96		70.93	77.60	63.65							
В	\rightarrow 6)- β -D-Gal-(1 \rightarrow	4.49	(8.8)	3.54	3.66		3.93	3.79	3.96	3.60						
		105.96		73.56	75.29		71.24	76.33	66.01							
С	\rightarrow 4)- β -D-Glc-(1 \rightarrow	4.53	(7.8)	3.38	3.65		3.64	3.59	3.97	3.80						
		105.34		75.51	77.12		81.53	77.48	63.05							
D	\rightarrow 3,6)- β -D-GlcNAc-(1 \rightarrow	4.76		3.78	3.78		3.78	3.74	4.24	3.96					2.05	
		105.18		57.90	74.81		82.53	75.93	70.67						25.07	177.45
E	α-D-Neu5Ac-(2→				2.68	1.69	3.67	3.78	3.70		3.55	3.87	3.86	3.65	2.03	
		175.97		103.03	42.82		71.34	54.72	75.29		70.93	74.46	65.58		24.77	177.64

SUPPLEMENTARY TABLE S2. ¹H and ¹³C NMR chemical shifts of the GBSIIIsia2,6 mutant CPS^a.

^a Chemical shifts (¹H, top; ¹³C, bottom) at 65°C in 33 mmol/L phosphate buffer pD 8.0 in D₂O in ppm referenced to internal DSS. ¹H chemical shifts were obtained from the 1D, COSY, TOCSY, or HSQC spectrum. ¹³C chemical shifts were obtained from the 1D spectrum.

^b Coupling constants $(J_{H-1-H-2})$ in parentheses.

Residue	1	2	3		4	5	6		7	8	9	
Α	0.01	0.02	0.00		-0.03	-0.01	-0.01	0.01				
	-0.20	0.01	-0.29		-0.09	-0.11	-0.15					
В	-0.14	-0.04	-0.45		-0.05	0.09	0.18	-0.15				
	1.16	1.40	-3.23		0.88	-1.45	2.32					
С	-0.02	0.01	-0.03		-0.04	-0.09	-0.04	-0.02				
	-0.03	0.16	0.07		0.37	0.02	0.26					
D	0.05	-0.04	0.05		-0.16	0.02	-0.06	-0.01				
	-0.72	-0.04	0.03		3.20	0.10	0.52					
E			-0.09	-0.14	-0.03	-0.09	0.03		-0.07	-0.03	-0.03	-0.02
	-0.66	0.18	0.40		0.17	0.27	-0.48		0.18	-0.14	0.23	

SUPPLEMENTARY TABLE S3. ¹H and ¹³C NMR chemical shift differences between the GBSIIIsia2,6 mutant and wild-type GBS type III CPSs^a.

^a Chemical shift differences (¹H, top; ¹³C, bottom) in ppm. Data for the wild-type GBS type III 14-repeating unit polysaccharide from Brisson et al. (1997). Brisson, J. R., Uhrinova, S., Woods, R. J., van der Zwan, M., Jarrell, H. C., Paoletti, L. C., et al. (1997). NMR and molecular dynamics studies of the conformational epitope of the type III group B Streptococcus capsular polysaccharide and derivatives. Biochemistry 36, 3278–3292. doi: 10.1021/bi9618191

Residue		1		2	3		4	5	6		7	8	9		CH ₃	CO
А	\rightarrow 4)- β -D-Glc-(1 \rightarrow	4.35		3.38	3.66		3.70	3.61	3.99	3.85						
		105.63		75.72	77.11		81.39	77.63	62.82							
В	$\rightarrow 6$)- β -D-Gal-(1 \rightarrow	4.45	$(7.7)^{b}$	3.55	3.66		3.93	3.81	3.97	3.60						
		106.12		73.58	75.29		71.21	76.41	66.01							
С	\rightarrow 3,4)- β -D-Gal-(1 \rightarrow	4.53	(7.1)	3.77	3.85		4.26	3.81	3.88	3.84						
		105.81		73.31	83.49		78.08	78.36	62.82							
D	\rightarrow 4)- β -D-GlcNAc-(1 \rightarrow	4.58	(7.6)	3.76	3.77		3.67	3.59	3.96	3.87					2.10	
		103.45		57.89	75.04		83.17	77.06	63.13						25.53	176.67
E	β -D-Glc-(1 \rightarrow	4.64	(7.4)	3.19	3.51		3.36	3.43	3.93	3.73						
		107.15		76.41	78.52		72.81	78.59	63.83							
F	α -D-Glc-(1 \rightarrow	4.92		3.54	3.88		3.61	4.39	4.08	3.99						
		101.44		73.98 ^c	73.93 ^c		81.96	71.51	69.09							
G	α-D-Neu5Ac-(2→				2.68	1.68	3.67	3.78	3.71		3.56	3.88	3.87	3.65	2.04	
		175.98		103.06	42.84		70.94	54.72	75.31		71.32	74.48	65.78		24.86	177.66

SUPPLEMENTARY TABLE S4. ¹H and ¹³C NMR chemical shifts of the GBSVsia2,6 mutant CPS^a.

^a Chemical shifts (¹H, top; ¹³C, bottom) at 61°C in 33 mmol/L phosphate buffer pD 8.0 in D₂O in ppm referenced to internal DSS. ¹H chemical shifts were obtained from the 1D, COSY, TOCSY, or HSQC spectrum. ¹³C chemical shifts were obtained from the 1D spectrum.

^b Coupling constants $(J_{H-1-H-2})$ in parentheses.

^c Tentative assignments.