
Supplementary Information for “Quantum annealing versus classical

machine learning applied to a simplified computational biology problem”

Richard Li,1, 2, 3 Rosa Di Felice,2, 4, 5 Remo Rohs,1, 2, 4, 6 and Daniel Lidar1, 3, 4, 7

1Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
2Computational Biology and Bioinformatics Program, Department of Biological Sciences,

University of Southern California, Los Angeles, CA 90089, USA
3Center for Quantum Information Science & Technology,

University of Southern California, Los Angeles, California 90089, USA
4Department of Physics and Astronomy,

University of Southern California, Los Angeles, California 90089, USA
5Center S3, CNR Institute of Nanoscience,

Via Campi 213/A, 41125 Modena, Italy
6Department of Computer Science, University of

Southern California, Los Angeles, CA 90089, USA
7Department of Electrical Engineering,

University of Southern California, Los Angeles, California 90089, USA

Correspondence and requests for materials should be addressed to R.R. (rohs@usc.edu) or D.A.L. (lidar@usc.edu)

1

FIG. S1. Schematic representation of the “Chimera” hardware graph of the D-Wave Two X (DW2X) housed

at the Information Sciences Institute at USC, used in our work. Green circles represent active qubits, inactive

qubits are omitted, lines represent couplings between qubits. Each qubit can be coupled to a maximum of

six other qubits.

S I. SUPPLEMENTARY METHODS

A. Additional Technical Details for Running DW

D-Wave processors currently employ a “Chimera” architecture with a limited graph connectiv-

ity (for a typical representation of a hardware graph, see Fig. S1). It is shown in the main text that

the TF-DNA binding problem is reduced to finding a set of weights that minimize the contribu-

2

tion of a training loss and the regularization term. For ease of reference, relevant equations are

reproduced here:

~wopt = arg min
w

N∑
n=1

(
yn − ~wᵀ ~φn

)2

+ λ
4L∑

m=1

wm (S1)

= arg min
w

~wᵀQ~w + wᵀk,

where

Q =
∑
n

~φn
~φᵀ
n , k = λ1− 2

∑
n

yn ~φn . (S2)

Note that from the form of Eq. (S2), typical problem instances will require a complete graph with

couplings between arbitrary vertices, as the summation for Q goes over all pairs of weights. In

other words, we need to embed the original “logical problem” on the physical hardware, by finding

a corresponding “physical problem” that can be input on the hardware. This introduces the need

for a minor embedding of the hardware graph [1, 2]. A minor embedding maps a logical problem

qubit to a set of physical qubits such that for every coupling between pairs of logical qubits in

the logical problem there exists at least one physical coupling between the corresponding sets of

physical qubits. A minor embedding is found by performing a series of edge contractions, which

effectively join vertices together, thereby allowing for a graph with fewer vertices but a higher

degree of connectivity to be obtained [3]. In order to ensure that physical qubits are aligned and

act as a single logical qubit (or “chain”), a strong coupling bias is introduced between physical

qubits that comprise a logical qubit. Then, for a fixed embedding, the way the values of the

couplings and local fields for a logical qubit are distributed among the physical qubits is known

as “parameter setting”. A built-in function provided by D-Wave [2] has been used for minor

embedding and parameter setting. By the embedding procedure and parameter setting, logical

problems may be transformed into physical problems. Note that for one logical problem there

may be many physical problems, depending both on the embedding and the parameter setting. For

the DW processor used in this work, the largest complete graph that can be embedded onto the

hardware graph has 42 vertices; i.e., only 42 features can be used. However, note that if there

is some structure in the data, a complete graph may not be needed. In fact, HT-SELEX datasets

had a greater number of features, but since they did not contain binding data for every possible

sequence, the computational graph did not need to be fully connected, and thus we could find

suitable embeddings with a greater number of features.

3

Ideally, once the strength of the coupling between logical qubits is set, all solutions returned by

DW would correspond to valid logical solutions, i.e., all the physical qubits within a logical qubit

would have the same spin (there would be no “broken chains”). However, due to the probabilistic

nature of quantum annealing, as well as noise from different sources, there is often some percent-

age of solutions that have broken chains. To deal with broken chains DW offers three options for

“decoding” the solutions. The first is to discard all solutions with broken chains and collect an ad-

ditional set of solutions. Another option is to do a majority vote on the physical qubits, assigning

the logical qubit the value with the majority of spins (in the event of a tie the spin can be randomly

selected). The last option is to go through the broken chains one by one and select the value for

the spin that minimizes the energy of the Hamiltonian of the logical problem. The likelihood of a

solution having broken chains can be roughly adjusted by controlling a parameter Jc, the value of

the strong coupling bias between physical qubits within a logical qubit; the larger the magnitude

of Jc, the more likely will it be for the physical qubits within a logical qubit to have the same spin.

The disadvantage of increasing the coupling bias too much is that it can wash out the details of the

problem instances; thus, there is some tradeoff between getting solutions with broken chains and

getting solutions which have lost the details of the problem.

Based on these considerations, our strategy for collecting solutions was the following. First,

we generated 20 embeddings based on the procedure mentioned above. The one with the smallest

average number of physical qubits per logical qubit was used to obtain weights for all the training

instances. Then, for each training instance 10 sets of 1000 solutions were obtained from DW,

giving the 10000 solutions mentioned in the main text. For each of the set of 1000 solutions we

selected a different spin-reversal transformation (or, gauge [4]) to mitigate parameter misspecifi-

cations from the machine. To collect the solutions we started with a value of Jc initially set at −1

(recall that all hi and Jij are normalized to fall between −1 and 1) and successively increased the

magnitude of Jc in steps by 0.1, until 1/4 of the solutions did not have broken chains. Previous

solutions were then discarded and with that value of Jc, a final 1000 reads were obtained and the

solutions were decoded using energy minimization. Energy minimization decoding greedily de-

codes the broken chains; i.e., it fixes broken chains based which spin would result in the greatest

decrease of the energy of the logical Hamiltonian. The strategy of using a stopping fraction of

1/4 and energy minimization during the calibration phase for each dataset was selected based on

some initial tests for which it seemed to work the best. It may be possible to slightly improve

performance if we allowed for further tuning of these hyper-parameters.

4

B. Data Normalization

Due to the discrete nature of the weights returned by DW, SA and SQA, it was necessary to

preprocess the data so that the range of the binding affinity values, yn fell in the range achievable

by the weights, ~w, returned by DW, SA and SQA. Given a set of trained weights ~w, the predicted

binding affinity for transformed sequence ~φn is f~w(~φn) = ~wᵀ ~φn. The weights returned by DW,

SA and SQA are in the interval [0,1],1 and since the datasets consisted of sequences of length

L, there were at most L non-zero entries in each transformed feature vector, ~φn, because of the

1-mer encoding used. For DW, SA and SQA, f~w(~φn) ∈ [0, L]. Thus, after normalization, the

binding affinity, yn, should also be in the interval [0, L]. Let ȳn and yn refer to the unnormalized

and normalized binding affinity, respectively. We tried two different approaches for normalizing

the data: yn = ȳn× L
ȳmax

and yn = ȳn− (ȳmax−L), where ȳmax = maxn ȳn. The second approach

gave better results and was used for the datasets in this work. The minimum value of yn after

preprocessing was always greater than 0.

C. Using Excited State Solutions and Combining Weights (DW, SA and SQA)

We describe two heuristics used to take advantage of the distribution of solutions returned by

DW, SA, SQA. The first is an iterative averaging to decrease the value of the objective function,

and the other is a direct averaging of the best 20 solutions. In the training phase, all algorithms

aim to to minimize an objective function Obj(~w) = L(~w) + Ω(~w) [Eq. (2) of the main text].

Whether iterative averaging or direct averaging was used depended on which one gave higher

metric (either AUPRC for classification tasks or Kendall’s τ for ranking tasks) during the calibra-

tion phase. A list of the values of λ and the method used is indicated in Tables S1 and S2.

1 Although the lowest-energy weights returned by DW, SA, and SQA are binary (i.e., wm ∈ {0, 1}), as explained

in Sec. S I C, several low-lying excited state solutions were averaged together, giving fractional weights that are in

[0,1].

5

1. Iterative averaging

Unlike MLR, Lasso, and XGB, DW, SA and SQA are probabilistic algorithms that are run

a number of times to return a distribution of binary weights with different energies; as such, it

may be of interest to see whether higher energy (or, excited state) solutions that both DW, SA

and SQA return may still be useful.2 Fig. S2 shows the change in the objective value of the

training instances for DW and SA upon inclusion of the first few excited (or higher-energy) state

solutions (“weights” and “solutions” are used interchangeably) for a previous Mad dataset (see

Sec. S III. To facilitate comparisons, both DW and SA have the same value of the regularizer λ

so that values of the objective function are on the same scale (SQA was not included in Fig. S2

but performed similarly). We start with the lowest energy solution found. Higher energy solu-

tions were then iteratively included if doing so yielded a lower value of the objective function.

Namely, given a solution averaged over k solutions, ~w(k) = 1
k

∑k
i=1 ~wi, the k + 1th solution was

included if ~w(k+1) = ~w(k) + 1
k+1

(~wk+1− ~w(k)) yielded a lower value of the objective function, i.e.,

if Obj(~w(k+1)) < Obj(~w(k)); otherwise it was discarded and the next higher energy solution was

examined in the same fashion. Up to 20 solutions were considered; beyond that, changes to the

objective function value are not significant, and going further might blur the discrete nature of the

weights. Although 20 solutions were examined, typically only about 4-7 excited state solutions

were actually included. This way of including excited state solutions led to a monotonically de-

creasing objective function with increasing number of excited states. As can be seen from Fig. S2,

including higher energy solutions generally improved optimization performance for both DW, SA

and SQA. Performance improvement was not only in terms of the training data, but also on the

held out testing data; hence, all the results in the main body of the text are for weights that have

been iteratively averaged as described above.

2 Note that by “energy” we refer to the energy of the Hamiltonian in Eq. (1), which is a measure of the optimization

performance, and is different from the free energy of TF-DNA binding; see Methods in the main text for a mapping

of the problem inputs to Ising Hamiltonian.

6

FIG. S2. Percent change in objective function versus training size and number of solutions included. Both

DW (left) and SA’s (right) performance improve with increasing the number of solutions included. SQA

was not included but performed similarly. Error bars represent standard deviation.

2. Direct averaging

The second way of including excited state solutions is to simply average the lowest 20 energy

solutions: ~w∗ = 1
20

∑20
i=1 ~wi, where ~wi is the solution corresponding to the ith lowest energy found,

and ~w∗ is the final, directly averaged solution used. For some of the training instances SA returned

fewer than 20 unique solutions and hence we only averaged over the actual solutions returned.

Whether iterative averaging or direct averaging was used depended on which gave higher metric

(either AUPRC for classification tasks or Kendall’s τ for ranking tasks) during the calibration

phase. A list of the values of λ and the method used is indicated in Tables S1 and S2.

7

Dataset
2% Training 10% Training

DW SA SQA MLR Lasso DW SA SQA MLR Lasso

Mad 64 (it) 64 (it) 64(it) 8 1 192 (dir) 256 (it) 256 (it) 32 1/32

Max* 96 (it) 96 (it) 96 (it) 12 0.5 384 (dir) 384 (it) 384 (it) 48 1/64

Myc 32 (dir) 48 (it) 24 (as) 12 1 256 (dir) 16 (dir) 96 (dir) 48 1/256

TCF4 192 (it) 192 (it) 192 (dir) 6 0.5 2 (it) 512 (it) 512(it) 32 0.25

Max† 256 (dir) 128 (it) 128(it) 6 1 192 (dir) 64 (it) 64 (dir) 0.5 1/256

TABLE S1. Value of hyper-parameter λ used for AUPRC. Parenthesis indicate method of combining solu-

tion used: (it) refers to iterative averaging and (dir) refers to direct averaging (see Sec. S I C). Since MLR

has a closed-formed solution, there is no need to combine solutions. Max* refers to the gcPBM data, and

Max† to the HT-SELEX dataset.

Dataset
2% Training 10% Training

DW SA SQA MLR Lasso DW SA SQA MLR Lasso

Mad 64 (it) 64 (it) 64 (it) 4 1/32 256 (it) 3 6 (dir) (it) 12 1/64

Max* 96 (it) 96 (it) 96 (it) 12 1/32 2 (it) 4 (it) 4 (dir) 4 1/128

Myc 32 (as) 32 (it) 32 (dir) 48 1/64 256 (as) 4 (it) 16 (it) 8 1/64

TCF4 0.25 (it) 4 (it) 1 (it) 6 1/128 0.25 (it) 16 (it) 3 (it) 32 1/256

Max† 128 (it) 128 (it) 128(it) 6 1/64 6 (it) 8 (it) 512 (it) 0.5 1/128

TABLE S2. Value of hyper-parameter λ used for Kendall’s τ . Otherwise the same as in Table S1.

8

D. Area under the precision-recall curve (AUPRC)

The data came from gcPBM and HT-SELEX experiments, both of which return a measure

y of binding affinity (fluorescence intensity for gcPBM data and relative binding affinity for HT-

SELEX). In order to treat the data as a classification problem we first need to classify the data based

on the binding scores, yn. To do so, we introduced a threshold θ and classify each yn ∈ DTEST

such that

ŷn =

0 if yn < θ

1 if yn ≥ θ
, for n = 1, . . . , |DTEST|, (S3)

was the class, DTEST refers to the test dataset and |DTEST| is the size of the test dataset. In other

words, all y’s above the threshold were given the actual label of positives (“strongly binding”)

and all other values were negatives (“weak binding”). Changing the threshold clearly changes the

number of positive and negative labels. Since picking the threshold value is somewhat arbitrary,

in order to evaluate performance at different proportions of class labels, we picked thresholds

at fixed percentiles of the data (recall that the y-values were originally real-valued; hence the

need to classify them). We picked the pth percentile of the data such that p% of the data was

classified as negative and (100 − p)% of the data was classified as positive. In the main text

we examined classification performance with relatively high thresholds at the 70th, 80th, 90th,

and 99th percentile of the data. Thresholds at these percentiles can be thought of as properly

selecting strong binding sites. As supporting material we also present performance at lower and

medium thresholds. In total, 11 different thresholds were chosen corresponding to the percentiles

at 1%,10%,20%,...,90%, and 99%.

In a binary classification problem, an algorithm must predict either positive or negative for a

given sample of data based on some cut-off value of the prediction. A confusion matrix may then

be defined in order to provide a more detailed analysis of the performance of a classifier by com-

paring the predicted labels to the actual labels (see Table S3). True positive (TP) are samples

correctly predicted as being positive. False positives (FP) are negative samples incorrectly la-

beled as positive. False negatives (FN) are positive samples incorrectly labeled as negative. True

negatives (TN) are negative labels correctly labeled as such.

Given the confusion matrix, an appropriate metric may then be constructed, based on the class

9

predicted positive predicted negative

actual positive TP FN

actual negative FP TN

TABLE S3. Confusion Matrix

imbalance. Commonly used terms are:

Recall = True Positive Rate =
#TP

#TP + #FN
(S4a)

Precision =
#TP

#TP + #FP
(S4b)

False Positive Rate =
#FP

#FP + #TN
(S4c)

In this work we used precision-recall (PR) curves, which plot precision versus recall and may give

more realistic performance than commoly used receive operating characterstic (ROC) plots (ROC

curves plot the false positive rate versus the true positive rate) for distributions that have a small

number of actual positive labels (e.g., threshold at the higher percentiles) as it accounts for false

positives in the denominator [5]. Curves may then be generated by varying a critical value, i.e.,

the value above which the algorithm predicts positive labels. More formally, we picked a critical

value c and determined the predicted class ỹ such that

ỹn =

0 if f~w(~φn) < c

1 if f~w(~φn) ≥ c
, for n = 1, . . . , |DTEST|, (S5)

where f~w(~φn) was the raw predicted output given trained weights, ~w. In our case, f~w(~φn) = ~wᵀ ~φn

for DW, SA, SQA, MLR, Lasso, and XGB. DW, SQA, SA, Lasso, and MLR directly assigned

weights to individual features, whereas XGB made predictions based on some learned ensemble

of trees. For each critical value, we could generate a point in ROC space or PR space according

to the confusion matrix. The point was generated by comparing ỹn to ŷn for a given percentile p

and critical value c. If ỹn = 1 and also ŷn = 1 the case n was counted as a TP . If ỹn = 0 and

also ŷn = 0 the case n was counted as a TN . If ỹn = 1 while ŷn = 0 the case n was counted as

a FP . And, if ỹn = 0 while ŷn = 1 the case n was counted as a FN . The number of such cases,

for fixed p, was tallied for n = 1, . . . , N and defined the number of TP , FP , TN , and FN used

in Eq. (S4). i.e., #TP = (number of cases such that ŷn = ỹn = 1), etc.

10

By sweeping through the critical value c, while holding the percentile p constant, a PR curve

could be generated for each value of p. The area under the curve (AUC) is a quantitative measure of

classification performance over a variety of critical values. To investigate performance at different

levels of class imbalance, we used two different AUCs: the area under the ROC curve (AUROC)

and the area under the precision recall curve (AUPRC). A perfect classifier will have an AUC

of 1 for any of the metrics. A random classifier will have an AUROC of 0.5. This method of

thresholding the data is general and can be applied to any of the datasets used.

S II. SUPPLEMENTARY DISCUSSION

A. Detailed comparisons of annealing methods for gcPBM data

Given the remarkable similarity in performance between the annealing algorithms (DW, SA,

and SQA) for both the gcPBM and HT-SELEX datasets, it may be of interest to more closely

examine the differences in performance between the three methods. In this section we focus our

attention on the AUPRC for the gcPBM datasets by varying the number of sweeps for both SA

and SQA on the physical problem. Recall that about 10% of the three gcPBM datasets (Mad,

Max, and Myc) was held out as a test dataset. For training, we randomly sampled 2% of the data

and 10% of the data 50 times to generate smaller training sub-datasets. For these supplementary

results, we did not repeat the cross-validation procedure to choose the optimal value of λ, but

rather ran SA and SQA on the same physical problem seen by D-Wave in an attempt to see if

DW’s performance could be reproduced by either of the methods. Comparisons for results on the

physical problem may be thought of as a gauge of the quantumness, as well as an assessment of

the effect on performance of using embedding and parameter-setting (see Sec. I A) in a noiseless

setting.

The difference in mean AUPRC between DW, SA and SQA is shown in Fig. S3a and the

difference between DW and SQA is shown in Fig. S3b versus the number of sweeps. After the

anomalous behavior with a small number of sweeps, the mean AUPRC decreases with increasing

number of sweeps. Note that with a large number of sweeps, SA and SQA give nearly the same

value for the AUPRC as D-Wave. As before, this once again seems to indicate that the problems

examined here are too easy classically, most likely due to the presence of a strong regularizer, λ. A

smaller value of λ could allow us to better distinguish between SA and SQA, but would not yield

11

FIG. S3. Comparison of AUPRC on the gcPBM datasets for annealing methods on the same physical

problem seen by DW. (a) Difference in AUPRC versus SA when training with 2% of the data (left) and 5%

of the data (right). (b) Difference in AUPRC versus SQA when training with 2% of the data (left) and 5%

of the data (right). Error bars represent two standard deviations. The legend indicates the percentile of the

threshold used to classify the data.

optimal classification and ranking performance.

In order to understand the anomalous behavior with a small number of sweeps, we examined

a few other quantities. First, we plot the mean of the lowest physical energy (i.e., we took the

mean of lowest energies across the fifty training instances for each training sub-dataset) found by

SA and SQA for each dataset as a function of sweeps in Fig. S4, as a sanity check. We find that

increasing the number of sweeps indeed decreases the energy of the physical solutions that are

found. A significant contribution to decrease in the physical energy appears to be the number of

broken chains, pictured in the inset. This is perhaps more obvious for SQA, where with a large

12

FIG. S4. a Shows the energies found by SA on the physical problem on the gcPBM datasets. Insets show

the number of broken chains per number of sweeps. The x-scale of the inset is the same as the main plot,

and b shows the energies found by SQA on the physical problem on the gcPBM datasets.

.

number of broken chains, the physical problem energy is much higher in comparison to SA. As

the number of sweeps increases, there are fewer and fewer broken chains, and accordingly, the

energy of the physical problem decreases. However, the solution with the lowest logical energy,

found by fixing the broken chains using the greedy energy minimization technique (Fig. S5), does

not monotonically decrease with increasing number of sweeps. Note that the lowest physical

energy solution may not necessarily give the logical solution with the lowest logical energy; for

the purposes of this work we selected solutions with the lowest logical energy. Given the above,

there are two possible explanations for the unexpected maxima in the logical energy as a function

of the number of peaks: first, the decoding procedure could result in solutions that have higher

logical energy; second, the chains that are unbroken are “incorrect” in the sense that they differ

from the true ground state solution. To test this, we defined a quantity ζ that represents the ratio

13

FIG. S5. The lowest energy solutions of the decoded logical problem.

of “incorrectly” fixed broken chains (i.e., after the energy minimization procedure the spin did not

match the ground state solution) to the total number of broken chains for the solution that gave the

lowest logical energy. We also defined a quantity γ which is the ratio of “incorrect” qubits to the

number of unbroken chains (i.e., of the unbroken chains, γ is the fraction of spins that do not match

the ground state solution). Plots of ζ and γ are shown in Fig. S6. For SA, there is no consistent

trend for the correlation between ζ and the minimum logical energy. In some cases it is negative

and in other cases it is quite positive. For SQA ζ is almost always 0, indicating that the energy

minimization procedure is correctly fixing broken chains; the cases where it is nonzero, it gives

a very high correlation with the minimum logical energy. However, γ has a very high Pearson

correlation coefficient with the minimum logical energy for both SA and SQA in all cases. This

indicates that the main reason for the anomalous behavior with an intermediate number of sweeps

comes from chains that are constrained to a value; i.e., they are caught in local minima. To a much

lesser extent, the logical energy is pushed up due to incorrectly fixed broken chains.

14

FIG. S6. Plot of ζ and γ versus the number of sweeps for both SA and SQA on the gcPBM datasets in a and

b, respectively. The Pearson correlation coefficient between ζ or γ and the lowest energy solution found is

indicated in the legend.

In summary, there are two contributions that may lead to an increase in the energy of the physi-

cal problem: one is an energy penalty from broken chains, and the other is from the original logical

problem. With a smaller number of sweeps, both SA and SQA find solutions with a significant

number of broken chains, pushing up the physical energy. However, because the classical prob-

lem is relatively easy, the energy minimization procedure works well and still finds solutions that

work well, giving solutions with a lower logical energy. With an intermediate number of sweeps,

a relatively small number of the chains are broken, but a few of the unbroken chains have gotten

stuck in a local minima. For the ferromagnetic chain strengths chosen in the parameter-setting,

the decrease in physical energy from having fewer broken chains is greater than the penalty from

the actual logical problem. When further increasing the number of sweeps, there are virtually no

solutions with broken chains, and in addition all the spins correspond to good solutions. This is

somewhat similar to using gadgets, which preserve the ordering of lower-energy states, but not

15

FIG. S7. Weight logos for SQA and Lasso weights on the gcPBM datasets

FIG. S8. Weight logos for SQA and Lasso weights on the HT-SELEX datasets

necessarily higher-energy ones [6].

B. Weight logos

In Figs. S7 and S8 we present the logos for SQA and Lasso for the gcPBM and HT-SELEX

datasets, respectively. As with the main text, these logos were derived by averaging the weights

found when using the AUPRC as the objective. Somewhat strikingly, the solution that works the

best for LASSO in terms of the AUPRC is to give weights that are all zero; in other words, only

the bias term survives. Comparing to the quantitative results in Main Fig 3, most of the other

methods (besides XGB with small amounts of training data) perform better than Lasso when it

returns weights that are all zero.

16

S III. SUPPLEMENTARY RESULTS FOR PREVIOUS DATASETS

In this section we present results for previous sets of gcPBM data from [7] (GEO accession

number GSE47026) and HT-SELEX data from [8] (European Nucleotide Archive; ENA study

identifier PRJEB3289)). The HT-SELEX datasets used in the main text had increased number of

rounds of sequencing. The datasets were normalized in the same way as described in Sec. S I B.

We first present a summary of the quantitative results (i.e., the AUPRC for classification tasks and

Kendall’s τ for ranking tasks) for the gcPBM data and HT-SELEX datasets in Sec. S III A. Then in

Sec. S III B we plot the the difference in performance versus the Euclidean distance between DW,

SA and SQA weights in attempt to differentiate between the solutions found by DW, SA and SQA.

Next in Sec. S III D, we present plots of performance versus size of the training data. Finally, we

present a table of the optimal values of λ found during the calibration phase in Sec. S III E.

A. Best performing results

The Figures in this section are analogous to Figs. 3 and 5 in the main text. The trends are

reproducible.

17

18

FIG. S9. Quantitative performance on held-out experimental test dataset of two different types of tasks for

three high quality gcPBM datasets. (a) The mean AUPRC for Mad, Max, and Myc plotted versus threshold

at certain threshold percentiles of the data, when training with about 30 sequences (left) and 150 sequences

(right). In both cases 50 instances were randomly selected for training and performance of the 50 trained

weights is evaluated on the same held-out test set. Error bars are standard deviations. (b) Boxplot of

Kendall’s τ on held-out test dataset. Red ‘+’ indicate outliers, gray line represents the median. (c) Weight

logos for DW, SA, and MLR.

For the gcPBM datasets, when training on instances with about 30 sequences (left column in

Fig. S9a), DW, SA, and MLR all perform very similarly, though DW has a slight advantage at

the 80th percentile for Mad (during the Calibration phase, we selected the λ that gave the best

performance at the 80th percentile). MLR does fairly well and in some cases its mean AUPRC

for different weights trained on the classifiers very slightly exceeds DW’s. XGB does poorly with

small training sizes. When training with about 150 sequences (right column in Fig. S9a), the trends

of relative performance are modified. DW’s performance is slightly worse than the other methods

at 70th and 80th percentile and noticeably worse at higher thresholds. XGB usually performs

the best, SA and and MLR tend to do almost as well as XGB. These trends are very similar for

Kendall’s τ (Fig. S9b).

As shown in Fig. S9c, the weights found by DW, SA, and MLR all give good agreement with the

expected consensus sequence, indicating that the methods are learning some biologically relevant

information. There is, however, more variation in the logos presented here than those in Fig. 4.

This is due to the larger value of λ used for the results in the main text (Tables S1 and S2 are for

the data in the main text, Tables S4 and S5 are for the data used in Sec. S II).

As with the gcPBM data, DW’s performance is noticeably worse than the other methods on

HT-SELEX data with increasing amounts of training data for classification and ranking tasks

(Fig. S10a and b); when training with about 150 sequences, DW’s performance is not compet-

itive with the other methods, except at the 99th percentile, where it does slightly better than SA

and MLR. When training with about 30 sequences, DW’s performance is competitive with some

of the other methods; DW performs better than SA, comparable albeit slightly worse than MLR,

and worse than XGB. In contrast to the gcPBM data, DW does better when classifying data at the

90th and 99th percentile. We argue that DW’s worse performance on the HT-SELEX dataset than

on the gcPBM data is due the higher level of noise in the HT-SELEX data. Note that there is a

19

FIG. S10. Summary of results for TCF4. Panel a compares the AUPRC when training with about 30

sequence (left) and 150 sequences (right). Error bars are standard deviations over 50 instances. Panel b

shows Kendall’s τ when training with about 30 sequences (left) and about 150 sequences (right); panel c

shows the weight logos when training with about 30 sequences and 150 sequences.

distinction to be made between noise and generalization. Small training data may be problematic

due to some “local” patterns in the data; this is different from noise in the data, which affects not

just small problem sizes. That this HT-SELEX data is noisier is supported by the poor agreement

of the weight logos (Fig. S10c) with the expected consensus sequence, especially for SA. We also

note that XGB does very well even with small datasets, suggesting that it may be able to handle

noise better than the other methods.

B. Distinguishing DW and SA Weights on gcPBM Data

Given the similarity of DW, SA and SQA, which both share the energy functional of Eq. (1)

and exhibit similar performance in Fig. S9 and S10, it is of interest to distinguish between the

two methods. We should note, however, that hyper-parameter tuning was performed separately for

each method and generally yielded different values of λ (see Table S4 and S5). Fig. S11 shows the

20

FIG. S11. Comparison between difference in performance metric and difference in Euclidean distance of

DW, SA and SQA for Mad, Max, and Myc. Panel a shows the difference in AUPRC on the 50 randomly

selected instances trained on about 30 sequences (left) and about 150 sequences (right). Thresholds are set

at the pth percentile of the data and are shown in different colors, along with the value of the Spearman rank

correlation coefficient ρ in parentheses. Panel b shows the difference in Kendall’s τ .

difference in classification (a) and ranking performance (b) versus the Euclidean distance between

the weights found by DW, SA and SQA, for the gcPBM data; a similar figure for the noisier HT-

SELEX data is presented in Fig S12. Independently of the dataset and training size, the Euclidean

distance is fairly small and the difference in AUPRC is close to 0. Nevertheless, we can identify

a slight positive correlation, as quantified by the Spearman correlation coefficient between the

Euclidean distance and difference in AUPRC when training with 2% of the training data, where

DW does slightly better than or comparably to SA. The positive correlation indicates that DW

performs better when its solutions differ from SA’s. When training with 10% of the data, where

DW’s performance is mostly worse than SA’s, there is a smaller positive correlation. This suggests

that when the noise has less of an effect for DW (training with 2% of the data), DW performs better

21

the more it differs from SA. Conversely, when the effect of noise is greater (training with 10% of

the data), it is disadvantageous for DW to find solutions that differ significantly from SA’s. When

the training instances are smaller, lack of precision on the inputs is less noticeable, suggesting

that differences from the classical set of weights (SA) may be due to quantum effects. When the

training instances are larger, the differences the weights found may be due to the mis-specification

of the hi and Jij . We speculate that the advantage DW has with smaller training sizes, when the

effect of precision limitations is smaller, may be due to quantum effects; with larger training sizes,

any benefits due to quantum effects may be masked by precision limitations.

Fig. S11b shows that there is always a negative correlation between Euclidean distance and

Kendall’s τ , indicating DW performs worse when its solutions differ from SA’s. When training

with 2% of the training data, there are a good number of instances where DW, SA and SQA find

the exact same solution and hence give the same value of τ . There also tends to be a greater

Euclidean distance between SA and DW when training with 10% of the training data. Thus for

ranking tasks on these datasets, currently SA is the preferred method.

C. Distinguishing DW, SA and SQA Weights on HT-SELEX TCF4 data

In Fig. S12 we present the AUPRC and Kendall’s τ versus the Euclidean distance between

the DW, SA and SQA solutions, when training with about 30 sequences and 150 sequences. In

contrast to Fig. S11 of the main text, there is always (except when θ is set at the 99th percentile

of the data and with 2% training data) a negative correlation between DW’s performance and SA’s

performance, indicating that the more different the DW, SA and SQA solutions are, the better SA’s

solutions are.

D. Performance vs Size of Training Data

We present results, shown in Fig. S13, for the AUPRC at different thresholds when training

with 2, 4, 6, 8, and 10% of the data for the gcPBM datasets for Max, Mad, and Myc, and for

the HT-SELEX dataset for TCF4. When training with 2% of the data in the Training phase, we

used 2% of the data during the Calibration phase; when using 4% and 6% of the data in the

Training phase, we used 5% of the data during the Calibration phase; when using 8% and 10%

of the training data in the Training phase, we used 10% of the data to tune hyper-parameter λ.

22

FIG. S12. (a) Plot of DW AUPRC - SA AUPRC vs Euclidean distance for TCF4 on 50 randomly selected

instances trained on about 30 sequences (left) and on about 150 sequences (right). Thresholds at the pth

percentile of the data are shown in different colors with the value of the Spearman correlation coefficient

ρ. (b) Kendall’s τ versus Euclidean distance when training with about 30 sequences (left) and about 150

sequences (right).

At 2% of the training data, DW performance is slightly better at the 70th and 80th percentile

and fairly indistinguishable from SA and MLR at the 90th and 99th percentiles, but the difference

between DW and other methods becomes more apparent with increasing training size. XGB shows

a pronounced increase in performance with increasing training size, and SA and MLR both show

slight increases. DW’s performance remains relatively constant with increasing training size but

tends to decrease when reaching training sizes of 10% of the training data. There are noticeable

exceptions when introducing a threshold at the 99th percentile of the data, but larger variations in

performance are expected given high class imbalance [9].

For a further inspection of the precision limitations of DW, the AUPRC versus training size

23

FIG. S13. AUPRC versus training size at a few different thresholds of the data for Mad, Max, Myc (gcPBM),

and TCF4 (HT-SELEX).

is shown in Fig. S14. A suboptimal value of λ was used for all methods in Fig. S14 (i.e., λ was

improperly tuned during the calibration phase). In contrast to the procedure for obtaining Fig. S13,

λ was held constant across different training sizes for Fig. S14 (though it differs between DW, SA,

and MLR). For DW, across thresholds and across datasets, there is a decrease in AUPRC when

going from 2% to 4% of the data. This decrease is likely due to the fact that for these datasets,

even with training on 4% of the data, precision-limiting noise limits DW’s ability to perform

24

FIG. S14. AUPRC versus training size at a few different thresholds of the data for Mad, Max, Myc with a

single λ for each dataset, rather than tuning separate λs for different training sizes.

well. The drop in performance between 2% and 4% of the data agrees with known estimates

of the noise on the couplers and local fields in the D-Wave devices. The ranges of values taken

by the hi and Jij scales roughly linearly with the number of sequences, S, but these problems

inputs are scaled between −1 and 1 before being sent to the processor. If the noise fraction [i.e.,

max{∆J/(max Jij),∆h/(maxhi)}] is greater than about 1/S, we would expect to see a decrease

in performance. Estimates for the DW2X processor used in our experiments put the noise at about

3%, and the training sizes varied from about 1500 to 1800 sequences. In other words, 2% of the

data corresponds to S ≈ 33 sequences, so that 1/S corresponds to about 3%, which is just around

the level of the noise. As we go above 2% of the training data, the effects of the precision-limiting

noise are seen and DW’s performance advantage disappears with the noise, as noticed by the dip in

performance for all the higher quality gcPBM datasets. While these results came from improperly

tuning λ, they do provide some insight about the effect of noise on DW’s performance.

25

Dataset
2% Training 5% Training 10% Training

DW SA MLR DW SA MLR DW SA MLR

Mad 20 (it) 40 (it) 36 72 (it) 28 (it) 64 72 (dir) 40 (it) 128

Max 54 (dir) 24 (dir) 48 54 (dir) 60 (dir) 128 72 (dir) 24 (it) 128

Myc 54 (dir) 14 (it) 44 66 (dir) 36 (it) 128 66 (dir) 24 (dir) 128

TCF4 0 (it) 0 (it) 2 2 (it) 0 (it) 2 0 (it) 0 (it) 2

TABLE S4. Value of hyper-parameter λ used for AUPRC. Parenthesis indicate method of combining solu-

tion used: (it) refers to iterative averaging and (dir) refers to direct averaging (see Sec. S I C). Since MLR

has a closed-formed solution, there is no need to combine solutions.

Dataset
2% Training 5% Training 10% Training

DW SA MLR DW SA MLR DW SA MLR

Mad 20 (it) 20 (it) 20 54 (it) 28 (it) 24 54 (it) 4 (it) 60

Max 16 (it) 24 (dir) 20 66 (it) 54 (it) 24 60 (it) 0 (dir) 60

Myc 20 (it) 14 (it) 28 72 (dir) 36 (it) 32 48 (it) 6 (it) 60

TCF4 0 (it) 0 (it) 2 2 (it) 0 (it) 0 0 (it) 0 (it) 0

TABLE S5. Value of hyper-parameter λ used for Kendall’s τ . Otherwise the same as in Table S4.

E. Values of λ for datasets in Supplementary Results

The optimal values of λ found from the Calibration phase for the AUPRC and Kendall’s τ are

presented in Tables S4 and S5, respectively. These pertain to Figs. S7-S8.

[1] Choi, V. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem.

Quant. Inf. Proc., 7, 193–209, (2008).

[2] Cai, J., Macready, W. G., and Roy, A. A practical heuristic for finding graph minors. arXiv:1406.2741,

(2014).

[3] Robertson, N. and Seymour, P. Graph minors. iii. planar tree-width. Journal of Combinatorial Theory,

Series B, 36, 49 – 64, (1984).

26

[4] Boixo, S., Albash, T., Spedalieri, F. M., Chancellor, N., and Lidar, D. A. Experimental signature of

programmable quantum annealing. Nat. Commun., 4, 2067, (2013).

[5] Davis, J. and Goadrich, M. The relationship between precision-recall and roc curves. In Proceedings

of the 23rd International Conference on Machine Learning, ICML ’06, pages 233–240, New York, NY,

USA, (2006). ACM.

[6] Cao, Y. and Nagaj, D. Perturbative gadgets without strong interactions. Quantum Information &

Computation, 15, 1197–1222, (2015).

[7] Yang, L., et al. TFBSshape: a motif database for DNA shape features of transcription factor binding

sites. Nucleic Acids Research, 42, D148–D155, (2014).

[8] Jolma, A., et al. Multiplexed massively parallel selex for characterization of human transcription factor

binding specificities. Genome Research, 20, 861–873, (2010).

[9] Cortes, C. and Mohri, M. Auc optimization vs. error rate minimization. Neural Information Processing

Systems, (2004).

27

	Supplementary Information for ``Quantum annealing versus classical machine learning applied to a simplified computational biology problem"
	Supplementary Methods
	Additional Technical Details for Running DW
	Data Normalization
	Using Excited State Solutions and Combining Weights (DW, SA and SQA)
	Iterative averaging
	Direct averaging

	Area under the precision-recall curve (AUPRC)

	Supplementary Discussion
	Detailed comparisons of annealing methods for gcPBM data
	Weight logos

	Supplementary results for previous datasets
	Best performing results
	Distinguishing DW and SA Weights on gcPBM Data
	Distinguishing DW, SA and SQA Weights on HT-SELEX TCF4 data
	Performance vs Size of Training Data
	Values of for datasets in Supplementary Results

	References

