1		Supporting Information
2		
3	Merr	brane curvature and the Tol-Pal complex determine polar
4		localization of the chemoreceptor Tar in <i>E. coli</i>
5		
6		
7		Terrens N. V. Saaki, Henrik Strahl, Leendert W. Hamoen
8		
9		
10		
11	Content:	
12		
13	Table S1	strains used in this study
14	Table S2	plasmid used in this study
15	Table S3	primers used in this study
16	Fig. S1	Swarming motility assay
17	Fig. S2	Tar-mGFP expressed from native promoter and IPTG-inducible promoter
18	Fig. S3	Timing of Tar-mGFP midcell localization compared to FtsZ and FtsN
19	Fig. S4	Tar-GFP localization is unrelated to nucleoid position
20	Fig. S5	Timing of Tar-mGFP midcell localization in $\Delta cheA$ compared to FtsZ and FtsN
21	Fig. S6	Tar-mGFP localization in $\Delta tolA$ and Δpal cells
22	Fig. S7	Stability of Tar-mGFP mutants
23	Fig. S8	Localization of Tar-mGFP mutants in <i>∆pal</i> cells

- 24 Supporting Table S1: *E. coli* strains used in this study. kan: kanamycin, mGFP: monomeric
- 25 green fluorescent protein.

strain	relevant genotype	reference
BW25113	F-, Δ(araD-araB)567, ΔlacZ4787(::rrnB-3), λ-, rph-1, Δ(rhaD-	(1)
BW20110	rhaB)568, hsdR514	(')
TSS688	Δtsr-7028 Δ(tar-tap)5201 Δtrg-100 Δaer-1	(2)
JW0731-1	BW25113 Δpal-790::kan	(1)
JW0729-3	BW25113 ΔtolA788::kan	(1)
JW1877-1	BW25113	(1)
JW1875-5	BW25113 Δtar-739::kan	(1)
TSE24	JW1875-5 / pTNV148	this work
TSE25	JW1875-5 / pTNV149	this work
TSE29	BW25113 / pTNV149	this work
TSE31	JW0731-1 / pTNV149	this work
TSE32	JW0729-3 / pTNV149	this work
TSE38	JW1877-1 /pTNV149	this work
TSE41	BW25113 / pTNV154	this work
TSE42	BW25113 / pTNV153	this work
TSE48	BW25113 / pTNV155	this work
TSE67	BW25113 / pTNV162	this work
TSE68	JW0731-1 / pTNV153	this work
TSE69	JW0731-1 / pTNV154	this work
TSE71	JW0731-1 / pTNV162	this work
TSE79	TSS688 / pTNV149	this work
TSE80	TSS688 / pTNV153	this work
TSE81	TSS688 / pTNV154	this work

Supporting Table S2: Plasmids used in this study. *gfp*: green fluorescent protein, *mgfp*:

Name	Relevant feature	reference
pBAD24-tar-GFP	pBAD- <i>tar-gfp-ampR</i>	(3)
pBAD24-tar-mGFP	pBAD- <i>tar-mgfp-ampR</i>	this work
p29SEN	Rep101 pSC101 ori <i>ampR</i>	(4)
pSAV57	pTrcDown, p15Aori camR	(5)
pTNV100	<i>amyE3</i> '-spec-PxyIR- <i>mgfp</i> -mcs- <i>amyE5</i> ' ampR	this work
pTNV107	pBAD- <i>tar-mgfp-ampR</i> pSC101 ori araC	this work
pTNV148	P <i>tar-tar-mgfp-ampR</i> -pSC101 ori	this work
pTNV149	Ptrc- <i>tar-mgfp-ampR</i> -pSC101 ori	this work
pTNV153	Ptrc-tar(G248G-D249G-L250G)-mgfp-ampR pSC101 ori	this work
pTNV154	Ptrc-tar(N379R)-mgfp-ampR pSC101 ori	this work
pTNV155	Ptrc- <i>mgfp-ftsN- ampR</i> pSC101	this work
pTNV162	Ptrc- <i>mgfp-glpT-ampR</i> -pSC101	this work

28 monomeric GFP, *camR*: chloramphenicol acetyltransferase, *ampR*: β-lactamase TEM-1.

Supporting Table S3: Primers used in this study.

name	sequence	description
TerS327	CAGGAAGCGGCTCAGGATCCT GAGTAAACTTGGTCTGACAGT	Forward primer to linearize pBAD24-tar-mGFP
TerS328	CACCGTCATCACCGAAACGCG CGA	Reverse primer to linearize pBAD24-tar-mGFP
TerS362	GGATCCTGAGCCGCTTCCTGA	Reverse primer to amplify <i>mgfp</i> from pTNV100
TerS412	CGCATGGGGAGACCCCACACT	Reverse sequencing primer for pBAD vectors
TerS418	CATGGTGAATTCCTCCTGCTAG CCCA	Reverse primer to amplify pBAD24 including its RBS and start codon
TerS425	GCGTTTCGGTGATGACGGTGC GGCGGCACCTCGCTAACGGA	Forward primer to amplify origin of replication of p29SEN (pSC101 Ori)
TerS426	GGATCCTGAGCCGCTTCCTGC TTGCGCGCACCGCCCGAACAC CA	Reverse primer to amplify origin of replication of p29SEN (pSC101 Ori)
TerS457	GCCGCGGTTGAAGCCGCGCGT GCGGGT	Forward primer to amplify tar in pTNV149
TerS506	GTGTGAAATTGTTATCCGCTCA CA	Reverse primer to amplify Ptrcdown promoter with lacl from pSAV057
TerS507	GAGCGGATAACAATTTCACACA CCCGTTTTTTTGGGCTAGCAG GAGGA	Forward primer to insert Ptrc-down promoter into pTNV107
TerS508	CGGCTTGACGGAGTAGCATAG GGT	Forward primer to insert <i>tar</i> native promoter into pTNV107
TerS509	TATGCTACTCCGTCAAGCCCGG GCGCTGTTAGATAGCGCGGCG TCAGAAGTGGCGTAA	Reverse primer to insert <i>tar</i> native promoter into pTNV107
TerS510	GCCGCCTGGGCGCTGCGACT	Reverse primer to amplify inside tar
TerS515	CGCAGTGAAATGGGC <u>GGAGGA</u> ¹ GCGCAGAGCGT	Forward primer to design Tar(G248G D249G L250G) in pTNV149
TerS516	CTGCGC <u>TCCTCC</u> ¹ GCCCATTTC ACTGCGCCCGTCA	, Reverse primer to design Tar(G248G D249G L250G) in pTNV149
TerS517	CGCGCGGCTTCAACCGCGGC <u>T</u> CT ¹ CAGCGCGAGGATATTAGTC T	Mutagenesis primer to introduce N379R in Tar in pTNV149
TerS520	CCGGGCAGGCCATGTCTGCCA GCGGCCGCGACTCTAGAATTC G	Forward primer to linearize pTNV149
TerS521	CTAGCAGGAGGAATTCACCAT GAGCAAAGGAGAAGAACTTTT CACT	Forward primer to amplify <i>mgfp</i> from pTNV100
TerS523	GGCAGACATGGCCTGCCCGG GGGGGGGGATTTTGAGGGTTTC A	Reverse primer to amplify ftsN to design Pspac-msfGFP- 4GS-FtsN
TerS541	CAGGAAGCGGCTCAGGATCCG CACAACGAGATTATGTACGCC GCA	Forward primer to create Pspac-msfGFP-4GS-FtsN
TerS544	GGCAGACATGGCCTGCCCGG GCCATTAGCCTCCGTTGCGTT CTTGCA	Reverse primer to amplify <i>glpT</i>
TerS545	CAGGAAGCGGCTCAGGATCCA TGTTGAGTATTTTTAAACCAGC	Forward primer to amplify <i>glpT</i>
GFP(A20 6K)-for	CCTGTCGACACAATCT <u>AAA</u> CTT TCGAAAGATCCC	Forward primer to introduce A206K in GFP in pBAD24-tar- GFP
GFP(A20 6K)-rev	GGGATCTTTCGAAAG <u>TTT</u> AGAT TGTGTCGACAGG	Reverse primer to introduce A206K in GFP in pBAD24-tar- GFP

32 1: In red codons used to introduce mutations in amino acid sequences.

- 34
- 35

36 Fig. S1. Swarming motility assay

Swarming motility assay to test functionality of Tar-mGFP fusions. Representative image of colonies of *E. coli* ∆mcp, *E. coli* BW25113, *E. coli* BW25113 + Tar-mGFP, *E. coli* ∆mcp + TarmGFP, *E. coli* ∆mcp + Tar(G488G D249G L250G)-mGFP and *E. coli* ∆mcp Tar(N379R)mGFP after 18 hours of growth at 30 °C on swarming motility agar. Fusion proteins were induced with 15 µM IPTG. Scale bars are 2 cm. Strain used are TSS668, BW25113, TSE29, TSE79, TSE80, and TSE81.

44

46 (A) Westernblot using anti-GFP serum of cell extracts from cells constitutively expressing GFP 47 (*E. coli* TOP 10 / pTNV100), Δtar cells (JW1875-5), and cells expressing Tar-mGFP (TSE25

and TSE24). Tar-mGFP was expressed from the native promotor of *tar* (strain TSE25) or from

the IPTG-inducible (15 µM IPTG) Ptrc promoter (strain TSE24). The expected size for the 49 50 fusion proteins is 87 kDa. Expression from the pBAD promoter is approximately 2x that of the 51 native promoter. (B) Comparison of Tar-mGFP localization when expressed from the Ptrc 52 promoter (upper panel) or native promoter (lower panel). 4630 and 4111 cells were used to 53 contruct the localization profiles, respectively. (C) Phase contrast and fluorescence microscopy images and localization profile of Tar-mGFP expressed in a *Amcp* mutant lacking 54 all chemoreceptors (strain TSE79). 2089 cells were used to construct the localization profile. 55 56 Scale bar is 2 µm.

lower panel: graphical presentation of constriction (phase) and fluorescence signals during
the cell cycle calculated from the localization profiles. Cell age refers to age classes divided
in 5% (cell cycle) bins. 4816 and 3639 cells were used for FtsZ and FtsN labeling, respectively.
Scale bars are 2 µm and the strain used is TSE29.

67

Fluorescence microscopy images of cephalexin treated (4 h) cells expressing Tar-mGFP and
stained with DAPI. Line scans of the GFP and DAPI signals are shown in the right panels.
These images are more examples of cells shown in Fig. 2B in the main text. Scale bars are 2
µm. Strain used is TSE29.

75

Fig. S5. Timing of Tar-mGFP midcell localization in \triangle *cheA* compared to FtsZ and FtsN. Tar-mGFP expressing \triangle *cheA* cells were fixed and immune-labelled using FtsZ (A) and FtsN (B) antiserum. Top panel: fluorescence light microscopy images, middle panel: fluorescence localization profiles, lower panel: graphical presentation of constriction (phase) and

80 fluorescence signals during the cell cycle calculated from the localization profiles. Cell age 81 refers to age classes divided in 5% (cell cycle) bins. 2504 and 3187 cells were used for FtsZ 82 and FtsN labeling, respectively. Scale bars are 2 µm and the strain used is TSE38.

85

86 Fig S6. Tar-mGFP localization in $\Delta tolA$ and Δpal cells

Fluorescence microscopy image and localization profiles of Tar-mGFP expressed in a $\Delta tolA$ and Δpal background. 4506 and 9044 cells were used to construct the localization profile for $\Delta tolA$ and Δpal , respectively. The localization profile for Δpal is the same as in Fig. 3B. Scale bar is 2 µm. The strains used are TSE31 and TSE32.

- 91 Fig. S7
- 92

94

95 Fig. S7. Stability of Tar-mGFP mutants

Western blot analysis of Tar-mGFP mutants expressed in *E. coli*. The expected size for the
fusion proteins is 87 kDa. Strains used are BW25113 (wild type), *E. coli* TOP10/pTNV100
(GFP) TSE29 (Tar-mGFP), TSE41 (Tar(G248G D249G L250G)-mGFP), and TSE42
(Tar(N379R)-mGFP).

101

102 Fig. S8 Localization of Tar-mGFP mutants in *∆pal* cells

103 Phase contrast and fluorescence images of Δpal cells expressing Tar-mGFP, Tar-(G248G 104 D249G L250G)-mGFP, Tar-(N379R)-mGFP and mGFP-GlpT. Wild type Tar-mGFP 105 accumulates as two dots (white arrows) in ~47% of cells, while this accumulation was neither 106 observed for the Tar-mGFP mutants proteins nor for the inner membrane marker mGFP-GlpT. 107 Strain used are TSE31, TSE68, TSE69, and TSE71. The scale bars are 2 µm.

109 **References**

- Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M,
 Wanner BL, Mori H. 2006. Construction of *Escherichia coli* K-12 in-frame, single-gene
 knockout mutants: the Keio collection. Molecular Systems Biology 2:2006.0008.
- 113 2. Ames P, Studdert CA, Reiser RH, Parkinson JS. 2002. Collaborative signaling by 114 mixed chemoreceptor teams in *Escherichia coli*. Proc Natl Acad Sci USA **99**:7060–7065.
- Shiomi D, Yoshimoto M, Homma M, Kawagishi I. 2006. Helical distribution of the bacterial chemoreceptor via colocalization with the Sec protein translocation machinery. Mol Microbiol, 2nd ed. 60:894–906.
- Genevaux P, Keppel F, Schwager F, Langendijk-Genevaux PS, Hartl FU,
 Georgopoulos C. 2004. In vivo analysis of the overlapping functions of DnaK and trigger
 factor. EMBO Rep 5:195–200.
- Alexeeva S, Gadella TWJ, Verheul J, Verhoeven GS, Blaauwen den T. 2010. Direct interactions of early and late assembling division proteins in *Escherichia coli* cells resolved by FRET. Mol Microbiol 77:384–398.