Role of Non-Metallic Atom in Enhancing Catalytic Activity of Nickel-Based Compounds for Hydrogen Evolution Reaction

Xingqun Zheng#^a, Lishan Peng#^a, Li Li *^a, Na Yang^a, Yanjun Yang^a, Jing Li^a, Jianchuan Wang^{a,b} and Zidong Wei*^a

^aThe State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, School of Chemistry and Chemical Engineering, Chongqing University, Shazhengjie 174, Chongqing 400044. ^bKey Laboratory of Fuel Cell Technology of Hubei Province, Wuhan University of Technology, Wuhan 430070, P. R. China

*Email: liliracial@cqu.edu.cn ; zdwei@cqu.edu.cn .

1. Experimental details

*Preparation of the Ni(OH)*² *precursors.* All chemical reagents used in this experiment were of analytical grade and were used without any further purification. Prior to the loading of the precursor, the Ni foam (50 mm×10 mm×1 mm) was ultrasonically cleaned in a 3.0 M HCl solution for 15 min to remove the surface oxide layer, then rinsed with DI water and dried in air. Afterwards, 35.0 mL of pink aqueous solutions consisting of 40.0 mM Ni(NO₃)₂•6H₂O, 200.0 mM (NH₂)₂CO and 200.0 mM NH₄F were transferred into a Teflon-lined stainless steel autoclave with the treated Ni foam, which was placed at a certain angle. The autoclave was sealed and subsequently heated to 120 °C for 6 h. When the hydrothermal reaction was over, the samples were washed with DI water and dried in an oven at 60 °C for 12 h.

*Preparation of the Ni-Ni*₃*S*₂. The Ni-based precursor was converted into Ni(SOH)_x while maintained the morphology of the precursor using a simple hydrothermal treatment. A certain amount of Na₂S•9H₂O was added into DI water (35.0 mL) to form a homogenous solution. Then, the Na₂S solution was transferred into the autoclave with the Ni(OH)₂ precursor and heated in an oven at 160°C for 6 h. After being cooled to room temperature naturally, the Ni foam was removed, washed with DI water and absolute ethanol several times each, and dried in an oven at 60 °C for 2 h. Finally, all the samples were reduced under a H₂/N₂ atmosphere at 400 °C for 1 hour to obtain the Ni with different S contents. The Ni(OH)₂ precursor treated with the Na₂S•9H₂O with different concentration of 5.0 mM, 10.0 mM, 20.0 mM, 40.0 mM and 80.0 mM were marked as Ni-Ni₃S₂-1, Ni-Ni₃S₂-2, Ni-Ni₃S₂-3, Ni-Ni₃S₂-4, Ni-Ni₃S₂-5, respectively.

Preparation of the pure Ni_3S_2 . The precursor of Ni(OH)₂ was immersed into a solution consisted of 0.1 g Na₂S·9H₂O and 35 mL N₂H₄ H₂O in a 40 mL Teflon-lined stainless steel autoclave. The autoclave was then sealed and maintained at 180 °C for 12 h. After being cooled to room temperature naturally, the Ni foam was removed, washed with DI water and absolute ethanol several times each, and dried in an oven at 60 °C for 2 h.

2. Structure and morphology characterization

The surface morphology and the microstructure of the catalysts were analyzed by X-ray diffraction (XRD-6000, Shimadzu), X-ray photoelectron spectroscopy (XPS, PHI 550 ESCA/SAM), field-emission scanning electron microscopy (FE-SEM, JSM-7800, Japan), respectively.

3. Electrochemical characterizations

Electrochemical measurements were performed in 1 M KOH alkaline electrolyte with a threeelectrode cell system by a CHI660D electrochemical analyzer (CH Instruments, Inc., Shanghai). Sizable and shapeable electrodes can be prepared by simply tailoring the Ni foam, and the obtained Ni-Ni₃S₂ can be directly used as the working electrode (1 cm^2) without employing extra substrates (e.g., glassy-carbon electrode) or binders (e.g., Nafion). A carbon rod in parallel orientation to the working electrode was used as the counter electrode with a distance of 1.0 cm and an Hg/HgO electrode was used as the reference electrode. The electrolyte was degassed by bubbling N₂ for at least 30 minutes before the electrochemical measurements. Linear sweep voltammetry (LSV) was performed in N₂ saturated aqueous solution with a scan rate of 10 mV·s⁻¹ in a range from 0.2 to -0.6 V.

Fig. S1. The side view of the stable structure for each X/Ni(100) system. Color code: dusty blue, Ni atoms; other color, X atoms.

Fig. S2. The top view of unit cell structures of $X_n/Ni(100)$ with H (white ball) adsorbed on them: (a)X/Ni(100); (b)X₂/Ni(100); (c)X₃/Ni(100); (d)X₄/Ni(100).

Fig. S3. The top view of unit cell structures of $X_3/Ni(100)$ with different H coverage(θ_H): (a) $\theta_H=1/3$; (b) $\theta_H=2/3$; (c) $\theta_H=1$.

Fig. S4. Ni 2p core level X-ray photoelectron spectra (XPS): (a) Ni-Ni₃S₂-1; (b) Ni-Ni₃S₂-2; (c) Ni-Ni₃S₂-3; (d) Ni-Ni₃S₂-4; (e) Ni-Ni₃S₂-5; (f) S 2p core level XPS spectra of the Ni based catalysts

Fig. S5. Ni 2p and S 2p XPS of pure Ni_3S_2 catalyst.

Fig. S6. The scanning electron microscopy (SEM) images with different magnifications: (a-c) Ni; (d-f) Ni-Ni₃S₂-1; (g-i) Ni-Ni₃S₂-3; (j-l) Ni-Ni₃S₂-5.

Fig. S7. Nyquist plots and the corresponding fitted curves of all samples.

Fig. S8. Scan rate dependence of the current densities of all samples.

Fig. S9. Cyclic voltammograms of each sample: (a) Ni, (b) Ni-Ni₃S₂-1; (c) Ni-Ni₃S₂-2; (d) Ni-Ni₃S₂-3; (e) Ni-Ni₃S₂-4; (f) Ni-Ni₃S₂-5 in 0.20 – 0.30 V vs. RHE at scan rates from 10 to 35 mV \cdot s⁻¹ in 1.0 M KOH

System	$\chi_{\rm Ni}$ or $\chi_{\rm X}$	$R_{\rm Ni}$ or	Bond le	Bond length/ Å		Bader charge/e	
		$R_{ m X}$ /Å	d _{X-Ni}	d _{Ni-Ni}	Qx	$Q_{\rm Ni}$	
Ni(100)	1.91	1.35	-	2.492	-	-0.009	
B/Ni(100)	2.04	0.85	1.906	2.628	-0.107	0.015	
C/Ni(100)	2.55	0.70	1.837	2.579	-0.750	0.160	
N/Ni(100)	3.04	0.65	1.833	2.555	-0.979	0.205	
O/Ni(100)	3.44	0.60	1.947	2.489	-0.930	0.212	
S/Ni(100)	2.58	1.00	2.184	2.536	-0.504	0.113	
Se/Ni(100)	2.55	1.15	2.332	2.552	-0.323	0.058	
Te/Ni(100)	2.10	1.40	2.503	2.567	-0.048	-0.010	

Table S1. Element electronegativity¹ (χ_X), atom radius² (R_X /Å), X-Ni bond length (d_{X-Ni} /Å) and interface Ni-Ni bond length (d_{Ni-Ni} /Å) of each X/Ni(100) system and the Bader charge of X(Q_X) and interface Ni (Q_{Ni}).

Table S2. X binding energies (ΔE_X) and H adsorption energy (ΔE_H) (in eV), zero-point energies

 ΔZPE (in eV), entropies multiplied by T (T = 298.15 K) (in eV), adsorption free energies ΔG_{H^*} (in eV) of Ni(100) and all X/Ni(100) systems.

Systems	$\Delta E_{\rm X}$	ΔE_{H^*}	ΔZPE	$T\Delta S$	ΔG_{H^*}
Ni(100)	-	-0.490	-0.017	0.202	-0.305
B/Ni(100)	-7.115	-0.478	-0.023	0.202	-0.299
C/Ni(100)	-8.270	-0.476	-0.019	0.202	-0.293
N/Ni(100)	-6.130	-0.442	-0.016	0.202	-0.256
O/Ni(100)	-6.007	-0.402	-0.015	0.202	-0.215
S/Ni(100)	-6.014	-0.374	-0.016	0.202	-0.188
Se/Ni(100)	-5.349	-0.371	-0.017	0.202	-0.186
Te/Ni(100)	-4.906	-0.366	-0.019	0.202	-0.183
Pt(111)	-	-0.380	0.000	0.202	-0.178

Number of X(n)	Systems	ΔE_{H^*}	ΔZPE	$T\Delta S$	ΔG_{H^*}
	O ₂ /Ni(100)	-0.327	-0.007	-0.202	-0.132
2	S ₂ /Ni(100)	-0.324	-0.008	-0.202	-0.130
2	Se ₂ /Ni(100)	-0.335	-0.009	-0.202	-0.142
	Te ₂ /Ni(100)	-0.347	-0.011	-0.202	-0.156
	O ₃ /Ni(100)	-0.305	0.001	-0.202	-0.102
3	S ₃ /Ni(100)	-0.276	-0.001	-0.202	-0.075
2	Se ₃ /Ni(100)	-0.284	-0.001	-0.202	-0.083
	Te ₃ /Ni(100)	-0.297	-0.002	-0.202	-0.097
	O ₄ /Ni(100)	-0.036	0.015	-0.202	0.181
4	S ₄ /Ni(100)	-0.036	0.017	-0.202	0.182
4	Se ₄ /Ni(100)	-0.076	0.014	-0.202	0.140
	Te ₄ /Ni(100)	-0.127	0.011	-0.202	0.086

Table S3. The $\Delta E_{\text{H}*}$, ΔZPE (in eV), entropies multiplied by T (T = 298.15 K) (in eV), $\Delta G_{\text{H}*}$ (in eV) of X_n/Ni(100) (X=O, S, Se, Te) systems.

$ heta_{ m H}$	Systems	ΔE_{H^*}	ΔZPE	$T\Delta S$	ΔG_{H^*}
	O ₃ Ni(100)	-0.307	0.004	-0.202	-0.101
1/3	S ₃ Ni(100)	-0.273	0.001	-0.202	-0.070
1/5	Se ₃ Ni(100)	-0.283	0.001	-0.202	-0.079
	Te ₃ Ni(100)	-0.296	-0.001	-0.202	-0.095
	O ₃ Ni(100)	-0.279	0.005	-0.202	-0.071
2/3	S ₃ Ni(100)	-0.250	0.006	-0.202	-0.041
2/3	Se ₃ Ni(100)	-0.264	0.004	-0.202	-0.058
	Te ₃ Ni(100)	-0.282	0.002	-0.202	-0.078
	O ₃ Ni(100)	-0.259	0.009	-0.202	-0.048
1	S ₃ Ni(100)	-0.229	0.010	-0.202	-0.016
1	Se ₃ Ni(100)	-0.249	0.008	-0.202	-0.039
	Te ₃ Ni(100)	-0.269	0.006	-0.202	-0.061

Table S4. The ΔE_{H^*} , ΔZPE (in eV), entropies multiplied by T (T = 298.15 K) (in eV), ΔG_{H^*} (in eV) of X₃/Ni(100) (X=O, S, Se, Te) with different θ_H (from 1/3 to 1).

Table S5. Atomic ratio of Ni, S coming from XPS analysis.

Samples	Area of Ni 2p3/2	Area of Ni-S 2p3/2	S coverage	
Ni-Ni ₃ S ₂ -1	1253.58	327.06	20.67%	
Ni-Ni ₃ S ₂ -2	670.41	272.95	28.93%	
$Ni-Ni_3S_2-3$	660.26	390.58	37.17%	
Ni-Ni ₃ S ₂ -4	435.05	358.86	45.20%	
$Ni-Ni_3S_2-5$	359.25	710.93	66.43%	

	S:Ni	Overpotential	Tafel slope	C _{dl}	Relative	
Catalysts	(%)	@10mA·cm ⁻² (mV)	(mV·dec ⁻¹)	(mF·cm ⁻²)	surface area	Ref
Ni	-	225	126	8.67	0.66	In this work
Ni-Ni ₃ S ₂ -1	20.67	129	126	13.08	0.99	In this work
Ni-Ni ₃ S ₂ -2	28.93	114	122	13.18	1	In this work
Ni-Ni ₃ S ₂ -3	37.17	154	157	7.34	0.56	In this work
Ni-Ni ₃ S ₂ -4	45.20	180	154	9.06	0.69	In this work
Ni-Ni ₃ S ₂ -5	66.43	181	159	9.61	0.93	In this work
Ni _{2.3%} CoS ₂ /CC		136	106			[3]
NiCoS/CC NSs		140	96			[4]
NiS/Ni Foam		150	83			[5]
NiCo ₂ S ₄ NA/CC		~190	141			[6]
Ni ₃ S ₂ @Ni		195	107			[7]
Ni ₃ S ₂ -Ni		270	141			[7]
Ni _x S _y /NiF		230	87			[8]
Co ₉ S ₈ -Ni _x S _y /NiF		163	88			[8]

Table S6. The surface S:Ni atomic ratio, overpotential@10mA/cm² (mV), Tafel slope(mV dec⁻¹), C_{dl} (mF·cm⁻²) and relative surface area of Ni and all Ni-Ni₃S₂ catalysts.

REFERENCE

- 1 L. Pauling, The Nature of the Chemical Bond, 3rd ed, Cornell University Press: Ithaca, New York, 1960
- 2 J. C. Slater, Atomic Radii in Crystals. J. Chem. Phys., 1964, 41, 3199-3204.
- 3 W. Fang, D. Liu, Q. Lu, X. Sun and A. M. Asiri, *Electrochem. Commun.*, 2016, 63, 60-64.
- 4 C. Tang, Z. Pu, Q. Liu, A. M. Asiri, Y. Luo and X. Sun, Int. J. Hydrogen Energy, 2015, 40, 4727-4732.
- 5 W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang and J. Wang, *Chem. Commun.*, 2016, **52**, 1486-1489.
- 6 D. Liu, Q. Lu, Y. Luo, X. Sun and A. M. Asiri, *Nanoscale*, 2015, 7, 15122-15126.
- 7 C. Ouyang, X. Wang, C. Wang, X. Zhang, J. Wu, Z. Ma, S. Dou and S. Wang, *Electrochim. Acta*, 2015, **174**, 297-301.
- 8 D. Ansovini, C. J. J. Lee, C. S. Chua, J. Ong, H. R. Tan, W.Webb, R. Raja and Y.-F. Lim, *J. Mater. Chem.* A, 2016, 4, 9744-9749.