Legends to the supplemental figures:

Figure S1. Scheme of the adhesin GspB-F construct.

Full-length GspB contains a signal sequence (SS), a Ser/Thr-rich region 1 (SRR1), the binding region (BR), a second Ser/Thr-rich region 2 (SRR2), and a cell wall anchoring (CWA) motif. GspB-F is a fragment containing the indicated regions. GspB-F also contains C-terminal FLAG and His tags.

Figure S2. Analysis of carbohydrates attached to GspB secreted from S. gordonii.

(A) Signal sequence containing FLAG-tagged GspB-F was expressed in *S. gordonii*. The secreted protein was purified and subjected to SDS-PAGE. After trypsin treatment, glycopeptides were extracted from gel slices, and the glycans were cleaved off by β -elimination, permethylated, and analyzed by MALDI-mass spectrometry (MS). Detected *O*-glycans are indicated. Hex – Hexose, HexNAc – N-acetyl hexosamine. (B) β -eliminated glycans were permethylated and analyzed by ESI-mass spectrometry. Detected *O*-glycans are indicated.

(C) The HexHexNAc and Hex₂HexNAc peaks in (B) with m/z ratios of 534.29 and 728.39, respectively, were further analyzed by tandem MS (collision-induced dissociation (CID) MS/MS), allowing the determination of the glycan sequence.
(D) Tryptic glycopeptides of the purified protein were subjected to hydrolysis with trifluoroacetic acid. Released monosaccharides were analyzed by anion exchange chromatography. The bottom panel shows quantification of the monosaccharide composition based on standards. The experiments in (B) -(D) together identified GlcNAc, GlcGlcNAc, and Glc2GlcNAc as the major glycans attached to GspB, but other glycans were detected that contained GalNAc, Gal, and Man.

Figure S3. Glycans attached to GspB when expressed together with GtfA/B, Nss, and Gly in *E. coli*.

(A) His-tagged GspB-F was purified from *E. coli* cells expressing GtfA/B, Nss, and Gly, and subjected to SDS-PAGE. β -eliminated glycans were analyzed by MALDI-mass spectrometry (MS). Detected *O*-glycans are indicated. Hex – Hexose, HexNAc – N-acetyl hexosamine.

(B) β -eliminated glycans were permethylated and analyzed by ESI-mass spectrometry. Detected *O*-glycans are indicated.

(C) The HexHexNAc and Hex 2 HexNAc peaks in (B) with m/z ratios of 534.29 and 728.39, respectively, were further analyzed by tandem MS (collision-induced dissociation (CID) MS/MS) to determine the glycan sequence.

(D) Tryptic glycopeptides of the purified protein were subjected to hydrolysis with trifluoroacetic acid. Released monosaccharides were analyzed by anion exchange chromatography. Quantification of the monosaccharide composition is based on standards and is shown in the bottom panel.

(E) Purified GspB-F was treated with trypsin. A tryptic peptide derived from the first Ser/Thr-rich segment (residues 126-135) was analyzed by tandem mass spectrometry.

The identified peaks contain Ser or Thr residues modified with either N-acetyl hexosamine (squares) alone or additionally with hexoses (spheres). Red and green indicate unambiguous and ambiguous assignments, respectively.

Figure S4. The Asp proteins do not affect *O*-glycosylation.

Gsp-F was synthesized *in vitro* in the presence of ³⁵S-methionine and then incubated with the indicated glycosyltransferases and UDP-sugars in the absence or presence of Asp1, Asp1/3, or Asp1/2/3. C, control.

Figure S5. Sequence alignment of regions of Asp1 and Asp3.

(A) Asp1 proteins from different bacterial species contain two conserved Asp residues (D33 and D34 in *S. gordinii*; colored in red). These residues are located in the cleft between R-folds I and II. The conserved residue shown in blue was mutated, but has no effect on secretion (Figure 4B).

(B) Asp3 has a conserved Asn, often preceded by a Glu residue (N46 and E45 in *S. gordonii*; colored in red), which are located at the tip of a β -strand. Residues in blue were mutated and had a moderate secretion defect (Figure 4D).

Figure S6. Complex formation of the Asps.

(A) The Asp1/3 complex was subjected to gel filtration coupled with multi-angle light scattering (SEC-MALS). The refractive index was monitored and the molecular mass of the complex calculated at different elution times.

(B) Asp1, Asp2, and Asp3 were co-purified and subjected to gel filtration. Shown is the UV absorbance profile. Fractions of the peak were subjected to SDS-PAGE and Coomassie blue staining.

(C) Table summarizing the results of SEC-MALS. In the case of Asp1/Asp2/Asp3, both monomers and dimers were detected.

Figure S7. 2D class averages of negatively stained Asp complexes.

(A) 2D class averages of negatively stained MBP-Asp1/Asp3 particles.

(B) As in (A), but for the MBP-Asp1/MBP-Asp2/Asp3 complex.

(C) As in (A), but for the Asp1/MBP-Asp2/Asp3 complex.

(D) As in (A), but for the Asp1/Asp2/Asp3 dimer.

(E) As in (A), but for the Asp1/Asp2/Asp3 monomer.

The box dimensions are 336 Å in (B), and 215 Å in all other panels.

Figure S8. Flotation of liposomes in a Nycodenz gradient.

Liposomes containing Texas Red 1,2-Dihexadecanoyl-*sn*-Glycero-3-Phosphoethanolamine (DHPE) were subjected to flotation in a Nycodenz gradient. Fractions were collected from the top and analyzed for absorbance at 594 nm.

Figure S9. SecA2 has a pronounced positively charged surface patch facing the membrane.

(A) Homology model for SecA2 in cartoon presentation, viewed from the membrane. SecA2's domains are shown in different colors. NBD1 and NBD2, nucleotide-binding domains 1 and 2; PPXD, polypeptide crosslinking domain; HWD, helical wing domain; HSD, helical scaffold domain.

(B) Surface of SecA2 facing the membrane. Note that the surface is highly positively charged (blue). The electrostatic surface was calculated with the Adaptive Poisson-Boltzmann Solver, as implemented in Pymol, using a scale from -5.000 to 5.000 (bottom).

(C) As in (B), but for a homology model for *S. gordonii* SecA1. Note that the equivalent surface is much less positively charged than in SecA2.

Monosaccharide composition of GspB secreted from S.gordonii

Residue	Micrograms	Nanomoles	% by mole
Fuc	nd	-	-
GalNAc	0.009	0.04	2.29
GlcNAc	0.158	0.71	38.11
Gal	0.024	0.13	6.98
Glc	0.102	0.56	30.13
Man	0.076	0.42	22.49

nd	-	-
nd	-	-
0.181	0.82	16.83
nd	-	-
0.729	4.05	83.17
nd	-	-
	nd nd 0.181 nd 0.729 nd	nd - nd - 0.181 0.82 nd - 0.729 4.05 nd -

Asp1 (Partial sequences) Α

Streptococcus gordonii
Streptococcus pneumoniae
Streptococcus sanguinis
Streptococcus parasanguinis
Streptococcus salivarius
Streptococcus mitis
Streptococcus oralis
Streptococcus agalactiae
Streptococcus vestibularis
Streptococcus urinalis
Streptococcus porcinus
Staphylococcus aureus
Staphylococcus epidermidis
Staphylococcus capitis
Staphylococcus hyicus
Staphylococcus saprophyticus
Staphylococcus pasteuri
Lactobacillus salivarius
Lactobacillus oris
Lactobacillus reuteri
Leuconostoc gelidum
Aerococcus urinae
Venococcus oeni
Facklamia sourekii

В Asp3 (Partial sequences)

Streptococcus gordonii	44	F <mark>EN</mark> KLIASGQ	TIHEW	58	97	FLKLIFFDRYNREVSNHVERS	SDKMTFTYPEEA	YSYKVQLL	136
Streptococcus pneumoniae	43	FENEMISSGT	MVHEW	57	96	YFRLIFKDRYDEKVSQLIKKI	OLTFTFTYPEEA	YNYSIQLL	135
Streptococcus mitis	43	FENSMVNSGT	MIHEW	57	96	YFRLIFMDRYDKQVDQVIEKI	OFDFTFTYPEEA	YHYKVQLL	135
Streptococcus sanguinis	44	F <mark>EN</mark> KLMASGQ	TIHEW	58	97	FLKIIFFDRYDKEISNQVERS	SESMIFTYPKEA	YSYKVQLL	136
Streptococcus infantis	43	FENSMVNSGT	MIHEW	57	96	YFRLIFMDRYNKQVDQVIEKI	OFDFTFTYPEEA	YHYKVQLL	135
Streptococcus parasanguinis	38	FKNPLMPSGQ	ILKTW	52	91	MVEIVFLDRFGVPVKRQVTSI	OGSLAFVYPENA	YAYEVRLL	130
Streptococcus salivarius	34	FYNPLVPSGT	EIQSW	48	87	FLKVSFLDRYDNEIKQLIEKO	GTHMTFVYPHEA	YTYRISLL	126
Streptococcus vestibularis	34	FYNPLVPSGTI	EIQSW	48	87	FLKVSFLDRYDNEIKQLIEKS	STQMTFVYPHEA	YTYRISLL	126
Streptococcus oralis	34	LKNPLLASGE	TLKTW	48	87	YLKLTFLNRYEEIIEEKIERÇ	PSFSFTYPETA	YTYRLSLI	126
Streptococcus thoraltensis	30	FNNSLMPSGQ	VINRW	44	83	ILQITFYDRFNRSLNSVTLKN	IDNHSFVYPEGA	YAYDISLV	122
Streptococcus halotolerans	30	FK <mark>N</mark> HLMPSGQ	VINCW	44	83	MLQITFYDRFDRSLETITLKN	IGKTSFVYPQGA	YAYDISLI	122
Staphylococcus aureus	34	FNNPLMPSGT	VIHDW	48	87	YIKITFYRKNDTEHSNLIION	ISDAEFEFPEEA	YAYKIELI	126
Staphylococcus schleiferi	34	FQNELMPSGI	VIHQW	48	87	YFKIIFKHRDNTVCDVQIILC	GHEAEVRMPQQA	FNYELQMI	126
Staphylococcus epidermidis	34	FENPLMPSGT	IIHSW	48	87	YFKMKFYRKNKEILSHQILKN	NKKENIVYPREA	YSYELELI	126
Staphylococcus capitis	34	FENPLMPSGT	VIHNW	48	87	YFKIKFYRNNKEQFEYKIIK	NKEEEIVYPLEA	HSYQLELV	126
Lactobacillus oligofermentans	34	FK <mark>N</mark> ERVSPGL2	AVHRW	48	87	GLQIQFFDEAGLVIDECLVR	TSQVDFVVPAGM	VSYEIDLI	126
Lactobacillus uvarum	34	FENKLMSPGK	IVNTW	48	87	YLRLDFYDRSDLVIKQIFIKE	EMEEAFEYPDGA	YYYTISLL	126
Lactobacillus murinus	34	F <mark>EN</mark> ELMSPGKA	ALVTW	48	87	YLKVSFYSRFGEVVQTTFIKI	DLQGEFEYPKDA	YEY <mark>R</mark> LELI.	126
Leuconostoc pseudomesenteroides	34	FKNDRFPSGTI	KIHTW	48	87	YVQIIFFNRFHDIVDRVIAKN	IEEQKFLYPEAA	YYYEISLL	126
Leuconostoc gelidum	34	FQNDLFSAGS	FVHTW	48	87	YLQFKFYDRYEDMIDSVTIKN	IGVGKFIYPNNA	YAYSMALI	126
Enterococcus cecorum	34	FKNVQLASGK	QIVAW	48	87	YLKIIFYNRLDEEIGTVIQRE	EDVQEFVYPQGA	FRYDILVI	126
Aerococcus urinae	33	FK <mark>N</mark> TLMPSGEI	RITSW	47	86	FFKISFFDYYGGPIEEYYLRI	PSDYFTVPDTY	NYYEIALH	125
<i>Denococcus oeni</i>	36	FENSLMPSSV	IIHSW	50	89	YTQISFYDIAKTRIKTINIKE	ESRGTFIYPKNS	FSYRIDLI	128
Facklamia sourekii	39	F <mark>EN</mark> ELLPSGKI	RIHTW	53	92	FVELSFYDRYDNLIQAVYVKI	GQEDFQVPLGT	YYYHMSLF	131
		: *	: *			•• *	• *	* : :	

19 DIIPWYRSMORLEFDDTIHOIRIFHSENLP 48

18 DVTPWYYSSFRFEFDDTFNQIRLFQRQDIP 47

19 DIIPWYRSMORLEFDDTIHOIRIFOSENLP 48

18 DTPWWFRVKNRMTFDDSVNQVKMFLQGQEE 47

19 VIDPWYRIRQKIEFDDSLHQVRIFQDEDLA 48

18 DMIPWYHSQFRFEFDDTFNQIRLFQRQGIP 47

18 DLTPWYFSHFKLEFDDTFNQIRLMNRQGIP 47

18 NNYLWYFKPTNVGFDDTINQMKMFDYAGKE 47

19 AIDPWYRIRQKIEFDDSLHQVRIFQDEDLA 48

18 KTSVWYRRAAGMDFDDTINHVKMFQYIDYQ 47

18 DTKEWTHINQYLQFDDSVNQIKVFHDNQEN 47

18 TTVPYYQLQNKTEFDDMISLMGMHLENDLD 47

18 TSRPFYLKKQYTDFDDMISLMTMHSSNNVD 47

18 TSVPFYQKRQYTDFDDMISLMTMHSKNNVD 47

18 OAOPFFRKRTITEFDDIISLMSMHYONDNH 47

18 NTLPFYYKPDKTDFDDMISLMSMHKKNGYE 47

18 LNQPFYIKNAMIEFDDSISLMSMHEKNDED 47

18 AFPEWYFTTNKMEFDDTVNQLMMFRQSEEK 47

15 ----WAYTVPMVEFDDAVSHLQILRDDQQP 40

15 ----WAHTIPKLEFDDAVSHIKVFQTNQKP 40

13 -----KATTFDDTVNQIRMFEAVHEN 33

17 ----GEPSYMDLYFDDTVNQLRLFQRAEEA 42

13 -----FRPTDFDDTVHQIKIFKKGNLP 34

18 RLDGSSLRRGFLEFDDTVNQLRMFQEAGEA 47

*** . : :

* . : *

254 ILSFFHERNQASN 266

253 ILSLFINRNAQAS 265

254 ILSFFHERNHTVD 266

256 IYSFFGNRFNLEN 268

252 ILTWFAERNODDS 264

253 ILSLFINRNSQAS 265

253 VLSLFIGRNPQEQ 265

252 ILSVFSERNNAHN 264

252 ILTWFAERNQEDK 264

253 LVSVFSLRNKKED 265

252 IFSFYQSRQRLDS 264

251 SYSFFKNRNETVS 263

251 CFSIFTERNKVVT 263

251 CFSVFTERNKKVT 263

251 CYSVFKORNTNLD 263

250 CFSLFSNRNREIT 262

250 YYSIFSKRNRTID 262

249 IMSIFSNRLDIDQ 261

244 VFSAS--RWHPYR 254

243 IFSLS--RWHRYH 253

240 VLSFFKNRYEYKK 252

249 VYSLYSQRSFDSQ 261

239 VLSYFSNRYDFQD 251

250 ALSLFQLRNPSYQ 262

:

	Molecualr weight (kDa)						
Protein complex	Measured	Calculated (1:1:1)	Calculated (2:2:2)				
Asp1/Asp2/Asp3	241.50	141.60	283.20				
Asp1/MBP-Asp2/Asp3	181.80	184.13					
Asp1/GST-Asp2/Asp3	335.00		335.48				

С

А

MBP-Asp1/Asp3

В

MBP-Asp1/MBP-Asp2/Asp3

÷	-	400	0	.0.	1 (2)	-	•	16)	-93	60	48	-	60	4	1
-	-	\$	-	-	9	4)	-	Ģ	9	-			-	86)	9
e,	4	69	00	-	3	\$	30	-	3	3	Ø	16	4	<i>Q</i> .	-03

С

Asp1/MBP-Asp2/Asp3

D

Asp1/Asp2/Asp3 (Dimer)

Е

Asp1/Asp2/Asp3 (Monomer)

	S. gordonii Asp1	S. gordonii Asp1/3 complex
Data collection		
Resolution limit (Å)	2.77	3.11
Space group	P 1	C 2 2 2 ₁
Cell dimensions		
a, b, c (Å)	41.50, 99.90, 179.07	152.60, 257.29, 217.72
α, β, γ (°)	100.7, 90.1, 95.8	90.0, 90.0, 90.0
Total reflections	211247	1164890
Unique reflections	66446	77079
R _{merge}	0.166 (0.493)	0.145 (>1)
CC1/2	0.984 (0.684)	0.999 (0.784)
CC*	0.996 (0.901)	1 (0.937)
Mean I/σI	13.63 (2.72)	25.19 (2.35)
Completeness (%)	92.70 (91.54)	99.48 (95.98)
Multiplicity	3.2 (1.9)	15.1 (15.6)
Wavelength (Å)	0.9789	0.9789
Refinement		
Resolution range (Å)	93.05 - 2.77	49.90 - 3.11
R _{work} / R _{free} (%)	20.83 / 28.16	20.69 / 24.83
No. non-hydrogen atoms	17260	21840
Protein	17257	21756
Solvent	3	84
Average B-factor (Å ²)	50.57	29.22
Protein	50.57	29.29
Solvent	33.14	11.51
R.m.s deviations		
Bond lengths (Å)	0.009	0.010
Bond angles (°)	1.09	1.29
Ramachandran analysis (%)		
Favored	90.8	92.9
Allowed	8.4	6.7
Outliers	0.8	0.4

Table S1. Data collection and refinement statistics

Statistics for the highest-resolution shell are shown in parentheses. $R_{merge} = \sum_{hkl} \sum_{i} |I_i(hkl) - \sum_{i} \sum_{j=1}^{n} |I_j(hkl) - \sum_{i=1}^{n} |I_i(hkl) - \sum_{i=1}^{n$

 $I(hkl)|/\Sigma_{hkl}\Sigma_i|I_i(hkl)|$, where I(hkl) is the integrated intensity of the reflection. $R=\Sigma|F_{obs}-F_{calc}|/\Sigma_{bbs}$, where F_{obs} and F_{calc} are observed and calculated structure factors, respectively. R_{tree} was calculated with 5% of the reflections. CC1/2 is defined as the correlation coefficient between intensities from random half datasets. CC^* describes the CC of the full dataset against the true intensities.