




Figure S1. Plots showing binding affinities for epitopes across a selection of 49 Leishmania vaccine candidate proteins predicted to bind to HLA DRB1 class II molecules. Epitope binding predictions were performed in NetMHCIIPan2.1. The y-axis shows the relative binding affinity (expressed as 1-log15,000 of the nM binding affinity) for risk *1404 (red) and protective *1501 (blue) DRB1 alleles; the x-axis indicates the amino acid sequence locations for proteins, equivalent to the start position of overlapping 20mers (1-mer sliding window) in vaccine proteins as listed in Table S1. Horizontal dotted lines show cut-offs for different nM binding affinities; the upper line indicates the value above which binding achieves >50 nM, the lower line indicates the value above which binding achieves >500 nM.

Figure S2. WebLogo plots of 20-mers at binding peaks for NetMHCIIpan v2.1 analysis.

Figure S3. Plots showing binding affinities across Leishmania proteins from which captured epitopes derive, as predicted to bind to HLA DRB1 class II molecules. Epitope binding predictions were performed in NetMHCIIPan2 .1. The y-axis shows the relative binding affinity (expressed as 1 -log15,000 of the nM binding affinity) for risk *1301 (red) and protective *1501 (blue) DRB1 alleles; the x-axis indicates the amino acid sequence locations for proteins, equivalent to the start position of overlapping 20mers (1-mer sliding window) in 12proteins as listed in Table II of the main text. Horizontal dotted lines show cut-offs for different nM binding affinities; the upper line indicates the value above which binding achieves =50 nM, the lower line indicates the value above which binding achieves =500 nM. Arrows indicated the position in the sequence of the captured epitopes, data for which was used to select 20-mer peptides to be synthesized for ex vivo stimulation assays, as outlined in Table S2. Gene names on the plots and arrows are colour -coded according to whether the epitopes were originally captured from dendritic cells homozygous for *1301 risk (red), *1501 protective (blue), or from both (black).

Table S1. (A): List of 12 20-mer peptides selected to represent epitopes with the best binding affinity for risk (DRB1*1301) or protective (DRB1*1501) DRB1 alleles from which peptides were captured. Affinities are based on NetMHCIIpan analysis of overlapping 20-mers across the full-length proteins identified from the epitope capture experiment. Binding affinity ≤50nM = high; >50nM = low. Bold indicates 9-mer core for peak affinity of binding to appropriate DRB1 allele from which peptides were captured. Colour coded for cross-reference to Figures 4, 5, and S3. (B) and (C): Examples of selection of 9-mer core epitopes for exclusive binders to (B) DRB1*1404 or (C) DRB1*1501 as indicated. Exclusive binders were defined as those with ≤500nM affinity for one DRB1 allele and ≥1000nM for the alternative allele.

(A)	DRB1 allele from which	Peptide sequence N to C terminus	DRB1_1301	DRB1_1501	Affinity status relative to
(A) Peptide name	peptides were captured	Peptide sequence_N to C terminus	nM	nM	captured DRB1 type
P45.260_LdBPK_191480.1	DRB1*1301	LSSEAKAFILS QPRRPALSF	35.3	30.3	High
P46.485_LdBPK_050430.1	DRB1*1301	GDTPAIIRQPGGFTIIDADN	50.3	116.1	High
P48.865_LdBPK_110320.1	DRB1*1301	FESLEVHLRRANNINLPFGG	8.7	252.5	High
P43.237_LdBPK_170170,1	DRB1*1301	LQDVYKIGGIGTVPVGRVET	87.7	249.7	Low
P47.1022_LdBPK_100800.1	DRB1*1301	FSFTNLAEIGRTGELLKLPQ	544.2	1114	Low
P49.1382_LdBPK_210190.1	DRB1*1301	DLVTASAALLQSAATHTDSI	98.7	298.6	Low
P44.24_LdBPK_171350.1	DRB1*1301 and DRB1*1501	LI LLVGDRAKD QVVNLHLMI	108.4	251.9	Low for both
P53.3543_LdBPK_302400.1	DRB1*1501	MDCEAGFIALTARCVHSLVV	102.4	38.3	High
P50.3_LdBPK_351710.1	DRB1*1501	SNVGVCSRVGVARLWFRVCQ	191.4	79	Low
P51.21_LdBPK_090640.1	DRB1*1501	GAGSGKTQTMAARIAYLLQS	220	165	Low
P52.734_LdBPK_331570.1	DRB1*1501	SPPRVVTAATAPVGSPTAAA	34.7	1165.3	Low
P54.1934_LdBPK_160290.1	DRB1*1501	QRAALLAGCTLLQQGHRGMQ	483	297.9	Low

(B)				DRB1_1404			DRB1_1501			
Pos	Peptide	ID	core	Offset	1-log15k	nM	core	Offset	1-log15k	nM
567	EVKIAAEREELKRTKVLQSQ	PRP-2	LKRTKVLQS	10	0.399	323.5	LKRTKVLQS	10	0.213	1934
568	VKIAAEREELKRTKVLQSQQ	PRP-2	LKRTKVLQS	9	0.4589	181.8	LKRTKVLQS	9	0.2354	1560.3
569	KIAAEREELKRTKVLQSQQY	PRP-2	LKRTKVLQS	8	0.524	97.3	LKRTKVLQS	8	0.2769	1046.2
139	GRVRVLIQRKSETTEGNKHK	584C_L31	VRVLIQRKS	2	0.4604	179.3	VRVLIQRKS	2	0.2488	1370.9
140	RVRVLIQRKSETTEGNKHKH	584C_L31	VRVLIQRKS	1	0.4179	269.8	VRVLIQRKS	1	0.2025	2140
15	AMADRPRKLTSKGKVKHKRG	Lepp12	LTSKGKVKH	8	0.3812	383.9	LTSKGKVKH	8	0.2787	1028.7
16	MADRPRKLTSKGKVKHKRGD	Lepp12	LTSKGKVKH	7	0.3723	418.3	LTSKGKVKH	7	0.2689	1130.2
17	ADRPRKLTSKGKVKHKRGDL	Lepp12	LTSKGKVKH	6	0.3707	424.5	LTSKGKVKH	6	0.2652	1171.1
18	DRPRKLTSKGKVKHKRGDLK	Lepp12	LTSKGKVKH	5	0.3773	398.4	LTSKGKVKH	5	0.2686	1132.9
19	RPRKLTSKGKVKHKRGDLKM	Lepp12	LTSKGKVKH	4	0.3879	359.8	LTSKGKVKH	4	0.278	1035.7
(C)				DRB1_1404			DRB1_1501			
Pos	Peptide	ID	core	Offset	1-log15k	nM	core	Offset	1-log15k	nM
0	MATMENVAFAGYAYYSTGGE	L302_06	NVAFAGYAY	5	0.2789	1026.5	NVAFAGYAY	5	0.4731	158.6
1	ATMENVAFAGYAYYSTGGEG	L302_06	NVAFAGYAY	4	0.2622	1205	NVAFAGYAY	4	0.4663	169.3
2	TMENVAFAGYAYYSTGGEGF	L302_06	VAFAGYAYY	4	0.2523	1325.4	NVAFAGYAY	3	0.4566	185.9
3	MENVAFAGYAYYSTGGEGFI	L302_06	VAFAGYAYY	3	0.2445	1429.2	NVAFAGYAY	2	0.4345	229.8
4	ENVAFAGYAYYSTGGEGFIY	L302_06	VAFAGYAYY	2	0.2268	1694.4	NVAFAGYAY	1	0.4012	316.8
5	NVAFAGYAYYSTGGEGFIYA	L302_06	VAFAGYAYY	1	0.2156	1887.6	NVAFAGYAY	0	0.3722	418.6
142	GAVGGDQNNLIGQFGVGFYS	LPG3	IGQFGVGFY	10	0.1922	2362.5	IGQFGVGFY	10	0.3708	424.4
143	AVGGDQNNLIGQFGVGFYSV	LPG3	IGQFGVGFY	9	0.2259	1709.6	IGQFGVGFY	9	0.4461	205.7
144	VGGDQNNLIGQFGVGFYSVF	LPG3	IGQFGVGFY	8	0.2502	1353.3	IGQFGVGFY	8	0.4934	130.6
145	GGDQNNLIGQFGVGFYSVFL	LPG3	IGQFGVGFY	7	0.2521	1328.5	IGQFGVGFY	7	0.4945	129.1
146	GDQNNLIGQFGVGFYSVFLV	LPG3	IGQFGVGFY	6	0.2654	1168.4	IGQFGVGFY	6	0.5023	119.8
147	DQNNLIGQFGVGFYSVFLVG	LPG3	LIGQFGVGF	4	0.2639	1185.8	IGQFGVGFY	5	0.5001	122.3
			LIGQFGVGF		0.2564		IGQFGVGFY	4	0.4888	136.3