Proteomic approach to understand the molecular physiology of symbiotic interaction between *Piriformospora indica* and *Brassica napus*

Neeraj Shrivastava^{1,7}, JiangLi², Pan Li², Archana Kumari Sharma³, Xingyuan Luo⁴, Sanling Wu⁵, Rashmi Pandey⁶, Qikang Gao^{2,5}, Binggan Lou^{1*}

¹Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.

²Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China

³Centre for Environmental Science and Technology, Central University of Punjab, Bathinda 151001, India

⁴Hangzhou No. 14 High School, Hangzhou 310006, China

⁵Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China

⁶Government Kanya Ashram School, Aara, Jashpur, Chhattisgarh, 496331, India

⁷Amity Institute of Microbial Technology, Amity University Uttar Pradesh Noida UP, 201303, India

* Correspondence to bglou@zju.edu.cn

SUPPLEMENTARY INFORMATION

Supplementary Table S1 Total proteins identified during the plant-fungal interaction.

Supplementary Table S2 Significant differentially expressed proteins (DEPs) in control vs *P.indica* treated samples.

Supplemental Table S3 Gene Ontology (GO) enrichment analyses of *P. indica* inhabited *B. napus* host's differential proteins.

Supplementary Table S4 List of DEPs proteins involved in Protein-protein interaction (PPI) network (Supplementary Table 1-4 is provided separately in MS excel format)

Supplementary Table S5 List of DEPs showing role in different metabolic and synthesis pathways **Supplementary Figure S1 Tentative model of pre-symbiotic signaling cascade during recruitment of** *P. indica* at rapeseed root tissue

Supplementary file S1: Summary - result statistics of protein identification.

S.N	KEGG map no.	Pathways	Differentially expressed Proteins	UniProt Accession
1.	00052	Glucose Metabolism	Acid beta-fructofuranosidase (3.2.1.26)	MAF6E3
2.	00061	Fatty Acid Metabolism	3-oxoacyl-[acyl-carrier-protein] (FabB)	A0A0D3E4R7
			(2.3.1.41)	
			3-hydroxyacyl-[acyl-carrier-	M4CPB4
			protein] dehydratase FabZ-like (4.2.1.59)	
			N-acetyl-gamma-glutamyl-phosphate	A0A078ILF0
3.	00220	Arginine Biosynthesis	reductase (1.2.1.38)	
			Aminoacylase 1 (3.5.1.14)	A0A0D3CNP2
4.	00230	Purine Metabolism	Adenylosuccinate synthase (6.3.4.4)	A0A078EYR1
5.	00250	Alanine, Aspartate and	Adaption of the synthese $(63.4.4)$	A0A078EYR1
		Glutamate Metabolism	Adenyiosuceinate synthase (0.5.4.4)	
6.	00500	Starch and Sucrose	Acid beta-fructofuranosidase (3,1,2,26)	MAF6E3
		Metabolism	Teld beta fractoraranosidase (5.1.2.20)	
7.	00511	Other Glycan Degradation	Alpha Mannosidase (2 manα1)	A0A078CNZ6
8.	00564	Glycerophospholipid	Glycerophosphodiester phosphodiesterase (3.1.4.46)	M4ECA0
		Metabolism		
9.	00780	Biotin Metabolism	3-oxoacyl-[acyl-carrier-protein] (FabB)	A0A0D3E4R7
			(2.3.1.41)	
10.	00940	Phenylpropanoid	Peroxidase	C7E9R5
		Biosynthesis		

Supplementary Table S5. List of DEPs showing role in different metabolic and synthesis pathways

Supplementary Figure S1 Tentative model of pre-symbiotic signaling cascade during recruitment of *P. indica* **at rapeseed root tissue**: Microbe-associated molecular patterns (MAPS) on plasma membrane are responsible for recruiting different cytoplasmic regulatory receptor kinases. Germinated spores secrete chitin tetramers, CO4/Myc factors/LCOs. These ligands perception is mediated by LRR- receptor kinases (SYMRK), LysM receptors or receptor like proteins which trigger the recruitment of related SERK and CERK1.The LCO perception at the plasma membrane generate signal for nuclear Ca²⁺-spiking vibrations. SYMRK and others generate second messenger and help in releasing calcium from the nuclear membranes. These events lead to initiate the nuclear calcium spiking response in nuclear membrane and mediated by upstream SYMRK/DMI2, CASTOR/POLLUX/DMI1) or downstream (CCaMK/DMI3, CYCLOPS/IPD3 etc.) transcription complexes. These factors induce the gene expression, which lead to arbuscule development which is major determinant of quantitative nutrient transfer. Further, expression of genes lead to form proteins engaged in overall growth and development of plant^{28,29,30,31}.

Supplementary file S1: Summary - Result statistics

(exported from PEAKS studio 8.0)

A) Protein identification

Table 1. Statistics of data.

Number of MS scans 24300 Number of MS/MS scans 271975

Table 2. Result filtration parameters.

Peptide -10lgP	≥20
Protein -10lgP	≥20
Proteins unique peptides	≥0
De novo ALC Score	≥50%

Table 3. Statistics of filtered result.

Peptide-Spectrum Matches	82303
Peptide sequences	18357
Protein groups	4410
Proteins	8123
Proteins (#Unique Peptides)	980 (>2); 814 (=2); 2525 (=1);
FDR (Peptide-Spectrum Matches)	0.8%
FDR (Peptide Sequences)	3.2%
FDR (Protein)	5.5%
De Novo Only Spectra	109,003

B) Label-free quantification

Figure 1: Protein profile heatmap (Cell colour represents the log2(ratio) to the average area across different samples) @

Figure 2. The volcano plot for proteins. @

Figure 4. (a) RT shift distribution; (b) M/Z shift distribution.

Retention time	≥0			
Retention time	≤150			
Feature significance	≥0			
Feature fold change	≥1			
Quality	≥0			
Avg. Area	≥0E0			
Charge	≥1			
Charge	≤10			
Confident sample number	≥1			
With peptide ID	true			
Protein significance	≥13			
Protein fold change	≥2			
Significance method	ANOVA			
Confident unique supports ≥1				
Normalization	Use TIC			

Table 3. Search ParametersQuantification type: Label free quantificationMass Error Tolerance: 25.0 ppmRetention Time Shift Tolerance: 8.0 minDependent on PID: 19FDR Threshold: 1%Samples: 6 samples in 2 groups: CK1 CK2 CK3: T1 T2 T3Reference Sample: CK2 (auto detected)Training Samples: CK2, T2 (auto detected)

Table 2. Statistics of filtered result.Features44159Features with ID27217Feature vectors11364Feature vectors with ID 11364Protein groups46