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Supplementary Information: Horn-like space-coiling metamaterials toward 

simultaneous phase and amplitude modulation 

Ghaffarivardavagh et al. 

Supplementary Table 1. Geometrical features and associated transmission in metasurface  

 
Unit 
cell 

 
Metasurface 

function      

 
Geometrical parameters 

Resultant transmission coefficient 

T-Reversal Numerical Analytical 

N W 
(λ) 

d1 
(λ) 

CR Amp Phase 
(degree) 

Amp Phase 
(degree) 

Amp Phase 
(degree) 

 
1 

Focusing 2 0.124 0.064 1 0.72 107 0.68 108 0.75 114 

Beam-splitter 10 0.026 0.009 1.25 0.37 -116 0.36 -115 0.39 -115 

 
2 

Focusing 5 0.028 0.041 1.25 0.72 60 0.77 61 0.76 60 

Beam-splitter 16 0.013 0.004 1.18 0.32 -124 0.31 -124 0.34 -124 

 
3 

Focusing 6 0.022 0.034 1.23 0.73 12 0.75 12 0.77 12 

Beam-splitter 9 0.038 0.003 1.48 0.31 -145 0.31 -146 0.34 -148 

 
4 

Focusing 13 0.004 0.025 1.05 0.79 -31 0.8 -30 0.82 -34 

Beam-splitter 9 0.035 0.004 1.43 0.39 -168 0.38 -166 0.41 -171 

 
5 

Focusing 8 0.004 0.058 1 0.79 -68 0.72 -65 0.72 -74 

Beam-splitter 16 0.010 0.007 1.15 0.54 -178 0.58 -178 0.59 179 

 
6 

Focusing 9 0.003 0.050 1.01 0.71 -108 0.72 -108 0.71 -116 

Beam-splitter 10 0.016 0.017 1.18 0.70 180 0.71 -178 0.74 177 

 
7 

Focusing 9 0.013 0.020 1.16 0.73 -153 0.72 -157 0.71 -156 

Beam-splitter 10 0.015 0.023 1.13 0.81 -179 0.82 -175 0.84 177 

 
8 

Focusing 9 0.015 0.026 1.1 0.87 173 0.86 169 0.89 180 

Beam-splitter 10 0.015 0.023 1.13 0.83 -177 0.82 -175 0.84 177 

 
9 

Focusing 2 0.103 0.086 1.2 0.91 149 0.93 150 0.96 153 

Beam-splitter 10 0.016 0.017 1.18 0.73 -176 0.71 -176 0.74 179 

 
10 

Focusing 3 0.064 0.064 1.25 0.83 124 0.86 124 0.89 126 

Beam-splitter 16 0.010 0.006 1.18 0.52  180 0.50  180 0.51 180 

 
11 

 

Focusing 4 0.042 0.051 1.24 0.78 94 0.8 92 0.81 92 

Beam-splitter 16 0.010 0.004 1.23 0.27 156 0.34 156 0.35 161 

 
12 

Focusing 5 0.023 0.058 1.1 0.85 68 0.87 69 0.84 67 

Beam-splitter 14 0.013 0.007 1.18 0.28 77 0.28 78 0.28 81 

 
13 

Focusing 6 0.007 0.073 1.01 0.92 56 0.95 56 0.91 49 

Beam-splitter 14 0.006 0.020 1.08 0.57 52 0.60 50 0.62 52 

 
14 

Focusing 6 0.009 0.067 1.04 0.92 52 0.94 53 0.91 48 

Beam-splitter 8 0.012 0.058 1.00 0.83 47 0.79 46 0.84 47 

 
15 

Focusing 5 0.028 0.067 1 0.9 51 0.93 50 0.86 54 

Beam-splitter 2 0.001 0.117 1.40 0.97 45 1.00 48 1.00 49 
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Supplementary Table 2. Experimental data points for the cases of with and without the 

metasurface  

 

Experimental Data Without the Presence of the Metasurface 
 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

Y1 
0.177+0.1i 0.395-0.02i 0.132-0.33i -0.278-0.231i -0.3+0.095i -0.06+0.314i 0.212+0.218i 0.05-0.188i -0.191-0.145i 0.09+0.274i 

Y2 -
0.076+0.253i 0.362+0.396i 0.433+0.036i 0.176-0.49i -0.292-0.497i -0.478+0.05i 

-
0.094+0.563i 0.314+0.215i 0.175-0.325i -0.125-0.052i 

Y3 
-0.344-0.295i -0.4+0.234i -0.078+0.42i 0.375+0.175i 0.315-0.261i -0.151-0.333i 

-
0.194+0.147i 0.237+0.207i 0.231-0.252i -0.307-0.307i 

Y4 
0.183-0.499i -0.423-0.34i 

-
0.533+0.135i 0.031+0.503i 0.542+0.298i 0.188-0.327i -0.308-0.338i -0.098+0.14i 0.277+0.181i -0.001-0.179i 

Y5 
0.627+0.15i 0.29-0.345i -0.279-0.49i 

-
0.362+0.036i 0.103+0.503i 0.231+0.009i -0.2-0.438i 

-
0.341+0.034i 0.137+0.542i 0.365+0.108i 

Y6 
0.026+0.634i 0.566+0.445i 0.315-0.453i -0.259-0.493i 

-
0.339+0.277i 0.164+0.402i 0.252-0.231i -0.204-0.156i 

-
0.191+0.384i 0.264+0.149i 

Y7 -
0.568+0.101i -0.13+0.739i 0.512+0.101i 0.149-0.518i -0.439-0.007i 

-
0.009+0.428i 0.517-0.061i 0.092-0.323i 

-
0.452+0.066i 

-
0.109+0.096i 

Y8 
-0.446-0.644i 

-
0.781+0.389i 0.226+0.466i 0.432-0.314i -0.384-0.166i 

-
0.288+0.319i 0.411-0.023i 0.185-0.392i 

-
0.442+0.039i 

-
0.099+0.197i 

Y9 
0.33-0.857i -0.923-0.216i 0.019+0.534i 0.63-0.143i -0.184-0.41i 

-
0.483+0.244i 0.214+0.165i 0.17-0.256i -0.37+0.096i 0.072+0.36i 

Y10 
0.673-0.72i -0.763-0.328i 

-
0.068+0.516i 0.752-0.132i -0.183-0.484i 

-
0.484+0.255i 0.297+0.234i 0.3-0.245i 

-
0.402+0.003i 

-
0.031+0.282i 

Y11 
0.408-0.825i -0.92-0.119i -0.017+0.66i 0.649-0.113i -0.271-0.432i -0.4+0.212i 0.346+0.196i 0.308-0.365i -0.493-0.107i 

-
0.223+0.138i 

Y12 
-0.145-0.807i 

-
0.872+0.202i 0.188+0.578i 0.442-0.229i -0.413-0.26i -0.31+0.392i 0.422+0.165i 0.169-0.306i 

-
0.469+0.021i 

-
0.065+0.217i 

Y13 
-0.519-0.323i -0.315+0.55i 0.56+0.258i 0.285-0.624i -0.472-0.156i -0.21+0.555i 0.317+0.044i -0.023-0.315i 

-
0.373+0.344i 0.181+0.37i 

Y14 -
0.372+0.547i 0.127+0.61i 0.544-0.196i 0.034-0.546i 

-
0.274+0.113i 0.151+0.373i 0.28-0.284i -0.272-0.324i 

-
0.266+0.441i 0.103+0.278i 

Y15 
0.381+0.515i 0.33+0.071i -0.149-0.466i -0.429-0.056i 

-
0.051+0.533i 0.442+0.173i 0.144-0.502i -0.282-0.239i 

-
0.087+0.392i 0.089-0.012i 

Y16 
0.643-0.474i -0.03-0.442i -0.559-0.176i 

-
0.288+0.277i 0.251+0.392i 0.247-0.004i -0.169-0.25i 

-
0.149+0.174i 0.279+0.29i 0.136-0.2i 

Y17 
-0.127-0.548i 

-
0.264+0.041i -0.111+0.36i 0.327+0.124i 0.32-0.287i -0.223-0.312i 

-
0.432+0.101i 0.049+0.362i 0.458+0.06i 0.079-0.207i 

Y18 -
0.565+0.239i 

-
0.056+0.525i 0.301+0.395i 0.429-0.156i 0.18-0.482i -0.325-0.184i 

-
0.269+0.213i 0.142+0.041i 0.204-0.226i -0.147-0.063i 

Y19 
0.143+0.25i 0.377+0.021i 0.073-0.173i -0.244-0.223i 

-
0.251+0.034i 0.343i 0.22+0.215i 0.111-0.283i -0.176-0.36i 

-
0.205+0.154i 

Experimental Data With the Presence of the Metasurface 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

Y1 
-0.056+0.18i 

-
0.012+0.146i 0.089+0.111i 0.055-0.158i -0.081-0.082i -0.108+0.19i 0.05+0.074i 0.124-0.108i -0.052-0.095i 

-
0.035+0.023i 

Y2 
-0.38-0.051i 

-
0.195+0.045i 0.141+0.208i 0.133-0.148i -0.119-0.11i 

-
0.193+0.097i 0.049+0.056i 0.154+0.011i 0.014-0.052i -0.051-0.006i 

Y3 -
0.389+0.471i 

-
0.287+0.203i 0.138+0.214i 0.227-0.085i -0.072-0.07i -0.093-0.007i 0.11-0.052i 0.04-0.002i 

-
0.163+0.056i 

-
0.033+0.011i 

Y4 
0.05+0.073i 0.034+0.137i 0.078-0.029i 0.084-0.108i -0.05+0.072i 0.042+0.07i 0.144-0.142i -0.074-0.055i 

-
0.212+0.163i 0.092+0.049i 

Y5 
0.092+0.048i 

-
0.019+0.011i -0.085-0.247i -0.097-0.155i -0.11+0.148i 0.055+0.175i 0.153-0.14i -0.077-0.123i 

-
0.172+0.171i 0.184+0.063i 

Y6 -
0.194+0.031i -0.215-0.07i -0.018-0.156i 0.123-0.035i 

-
0.123+0.153i -0.08+0.12i 0.208-0.125i -0.013-0.134i 

-
0.236+0.184i 0.102+0.04i 

Y7 -
0.259+0.188i 

-
0.472+0.076i 0.17+0.132i 0.455-0.03i -0.179-0.019i 

-
0.273+0.021i 0.264-0.141i 0.092-0.115i 

-
0.318+0.168i 0.038+0.091i 

Y8 -
0.381+0.416i 

-
0.656+0.285i 0.326+0.346i 0.543-0.184i -0.341-0.172i 

-
0.359+0.108i 0.429+0.001i 0.118-0.135i 

-
0.485+0.201i 0.109+0.169i 

Y9 -
0.555+0.096i 

-
0.654+0.233i 0.388+0.313i 0.49-0.438i -0.616-0.305i 

-
0.344+0.454i 0.735+0.157i 0.091-0.368i 

-
0.757+0.076i 0.1+0.352i 

Y10 -
0.657+0.094i 

-
0.604+0.416i 0.489+0.27i 0.456-0.484i -0.698-0.153i 

-
0.303+0.569i 0.96+0.09i 0.118-0.547i -0.965-0.066i 0.01+0.438i 

Y11 -
0.361+0.382i 

-
0.586+0.417i 0.529+0.312i 0.533-0.328i -0.545-0.138i 

-
0.301+0.413i 0.829+0.043i 0.141-0.425i -0.82-0.037i 0.044+0.331i 

Y12 -
0.342+0.092i 

-
0.587+0.153i 0.281+0.26i 0.422-0.185i -0.361-0.173i 

-
0.333+0.184i 0.52-0.027i 0.109-0.147i -0.501+0.23i 0.186+0.222i 

Y13 -
0.366+0.091i -0.408-0.09i 0.125+0.07i 0.266-0.098i -0.241-0.081i -0.171+0.09i 0.241-0.058i 0.02-0.035i -0.32+0.225i 0.175+0.114i 

Y14 -
0.166+0.215i 

-
0.227+0.022i 0.052+0.047i 0.192-0.029i 

-
0.157+0.002i 

-
0.038+0.125i 0.119-0.117i -0.043-0.167i 

-
0.196+0.081i 0.084-0.03i 

Y15 
0.473+0.007i 

-
0.054+0.033i -0.049-0.056i 0.034-0.005i -0.031+0.09i 0.04+0.084i 0.105-0.183i -0.041-0.142i 

-
0.078+0.096i 0.07+0.004i 

Y16 
0.383-0.344i -0.091i -0.058-0.069i -0.034-0.039i 0.004+0.088i -0.01+0.006i 0.028-0.089i 

-
0.011+0.065i 

-
0.021+0.183i 0.086+0.029i 

Y17 
-0.586-0.076i 

-
0.138+0.115i 0.036+0.126i 0.09-0.075i -0.05-0.024i 

-
0.042+0.005i -0.021+0.04i 

-
0.018+0.085i 

-
0.012+0.056i 0.033-0.022i 

Y18 -
0.282+0.067i 

-
0.147+0.186i 0.118+0.227i 0.141-0.079i -0.009-0.121i 

-
0.048+0.067i 0.019+0.03i 0.001-0.115i -0.045-0.098i 

-
0.051+0.027i 

Y19 -
0.082+0.028i 

-
0.048+0.136i 0.04+0.053i 0.015-0.108i -0.048-0.086i 

-
0.018+0.112i 0.103+0.054i 0.053-0.157i -0.041-0.082i -0.06+0.087i 
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Supplementary Note 1: Transmission bounds in conventional space-coiling metamaterials 

The equivalent model of conventional space-coiling metamaterials is based on the classical three 

medium acoustic transmission in which the transmission coefficient can be derived as: 

𝑇 =
4

(1+𝑍2/𝑍3+𝑍1/𝑍2+𝑍1/𝑍3) e
−𝑖𝑘2𝑙2+(1−𝑍2/𝑍3−𝑍1/𝑍2+𝑍1/𝑍3) e

𝑖𝑘2𝑙2
                                                               (1) 

In the case of the space-coiling metamaterial shown in Figure 1a, 𝑙2 = 𝑛r𝑡, 𝑍1 = 𝑍3 =
𝜌1𝑐1

𝑎
 and 

𝑍2 =
𝜌2𝑐2

𝑑
. Substituting the above parameters into Supplementary Equation 1 and given that all 

media are composed of the same material, the transmission coefficient may be calculated as: 

𝑇 =
4

( 1+
𝑎

𝑑
 )( 1+

𝑑

𝑎
 )e−𝑖𝑘0𝑛r𝑡+( 1−

𝑎

𝑑
 )( 1−

𝑑

𝑎
 )e𝑖𝑘0𝑛r𝑡

                                                                                       (2) 

Please note that throughout this paper, the  e−𝑖𝜔𝑡 convention has been considered and one may 

reach the complex conjugate forms of the equations by following the e𝑖𝜔𝑡 convention. 

In order to derive the relationship between phase and amplitude of the transmission coefficient, 

the denominator of Supplementary Equation 2 has initially been simplified to the trigonometric 

form and the amplitude is subsequently determined in terms of the transmission phase: 

𝑇 = |𝑇|e𝑖𝜃 =
1

cos(𝑘0𝑛r𝑡)−
𝑖

2
(𝑎/𝑑+𝑑/𝑎)sin (𝑘0𝑛r𝑡)

                                                                                     (3) 

From Supplementary Equation 3, the amplitude and phase can be derived as: 

|𝑇| = √
1

cos2(𝑘0𝑛r𝑡)+
1

4
(𝑎/𝑑+𝑑/𝑎)2sin2(𝑘0𝑛r𝑡)

= 
1

|cos(𝑘0𝑛r𝑡)|
 √

1

1+
1

4
(𝑎/𝑑+𝑑/𝑎)2tan2(𝑘0𝑛r𝑡)

                                (4) 

𝜃 = tan−1 (
1

2
(
𝑎

𝑑
+
𝑑

𝑎
) tan(𝑘0𝑛r𝑡))

yields
→    tan 𝜃 =

1

2
(
𝑎

𝑑
+
𝑑

𝑎
) tan(𝑘0𝑛r𝑡)                                               (5) 

From Supplementary Equation 5, one can conclude that: 

1

|cos(𝑘0𝑛r𝑡)|
= √1 +

tan2 𝜃

1

4
(
𝑎

𝑑
+
𝑑

𝑎
)
2                                                                                                               (6) 
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Defining 𝑆 =
1

2
(
𝑎

𝑑
+
𝑑

𝑎
) and employing Supplementary Equation 4-6, the transmission amplitude in 

terms of the transmission phase is as follows: 

|𝑇| = √
1+

tan2(𝜃)

𝑆2

1+tan2(𝜃)
                                                                                                                             (7) 

 

 

 

Supplementary Note 2: Transfer matrix method to derive transmission coefficient for 

space-coiling metamaterials 

In this section, the transmission through the space-coiling structure has been derived analytically, 

considering the complex internal geometry (Supplementary Figure 1a). To this end, the transfer 

matrix method has been utilized to extract the governing relationship and correlate input pressure 

and velocity to the output condition. Considering a single coil of a unit cell (Supplementary Figure 

1b) of the space-coiling metamaterial, one may derive the propagation tensor that relates the 

output condition to the input condition, which can be written in the form of: 

[
𝑃2
𝑈2
] =  [𝑀1] [

𝑃1
𝑈1
]                                                                                                                           (8) 

Eventually, total transmission through the space-coiling structure (Supplementary Figure 1a) may 

be derived as below: 

[
𝑃out
𝑈out

] = [𝑀𝑁]… . [𝑀2][𝑀1] [
𝑃in
𝑈in
]                                                                                                     (9) 
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Please note that for conventional space-coiling metamaterials in which the channel width is 

uniform throughout the unit cell, all propagation tensors (Ms) would be identical and this would 

represent a unique case. However, in the case of the gradient space-coiling metamaterials 

introduced in this work, the use of the transfer matrix method remains applicable, though due to 

the change in geometry from coil to coil, the propagation tensor would not necessarily remain 

identical. 

In order to determine the propagation tensor in a single coil, the region has been divided into the 

three sections shown in Supplementary Figure 1b. Pressure and velocity in each region can be 

written using modal superposition in the rectangular waveguide, however, since regions A and C 

have relatively small dimensions when compared to the wavelength, only the principal mode is 

considered herein for these two regions. Pressure and velocity in these regions are as follow: 

 

 

Supplementary Figure 1. Illustration of internal structure of space–coiling unit cell. (a) 

Space-coiling structure associated propagation tensor for each section. (b) Single coil 

structure, which has been divided into three sections: section A is the input port, section 

B is the main channel and section C is the output port. 
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A: { 
𝑃(𝑦) = 𝐴1e

𝑖𝑘𝑦 + 𝐴2e
−𝑖𝑘(𝑦−𝑤)

         𝑈(𝑦) =  
1

𝜌𝑐
[𝐴1e

𝑖𝑘𝑦 − 𝐴2e
−𝑖𝑘(𝑦−𝑤)]

  

C: {
𝑃(𝑦) = 𝐶1e

𝑖𝑘(𝑦−𝑤−𝑑1) + 𝐶2e
−𝑖𝑘(𝑦−2𝑤−𝑑1)

         𝑈(𝑦) =  
1

𝜌𝑐
[𝐶1e

𝑖𝑘(𝑦−𝑤−𝑑1) − 𝐶2e
−𝑖𝑘(𝑦−2𝑤−𝑑1)]

  

B: {
  𝑃(𝑥, 𝑦) = ∑ cos(𝑎𝑛𝑥) [𝐵1𝑛e

𝑖𝑘𝑛 (𝑦−𝑤) + 𝐵2𝑛e
−𝑖𝑘𝑛 (𝑦−𝑤−𝑑1)]∞

𝑛=0  

        𝑈(𝑥, 𝑦) = ∑
𝑘𝑛

𝜌𝑐𝑘
cos(𝑎𝑛𝑥) [𝐵1𝑛e

𝑖𝑘𝑛 (𝑦−𝑤) − 𝐵2𝑛e
−𝑖𝑘𝑛 (𝑦−𝑤−𝑑1)]∞

𝑛=0

  

in which wave number is defined as 𝑘 =
𝜔

𝑐
 and the nth eigenmode and wavenumber in region B 

can be derived as  𝑎𝑛 =
𝑛π

𝑎
  ,   𝑘𝑛 = √𝑘

2 − 𝑎𝑛
2  . The geometrical parameters a, w and d1 are shown 

in Supplementary Figure 1b. Given the above equations, one may conclude that the problem of 

deriving Supplementary Equation 8 for a single coil can be reduced to deriving the relationship 

between the coefficient of A and C in which A1 and C1 are forward traveling wave coefficients and 

A2 and C2 are backward traveling wave coefficients as follows: 

[
𝐶1
𝐶2
] =  [𝑇1] [

𝐴1
𝐴2
]                                                                                                                           (16) 

[
𝐾1
𝐾2
] = [𝑇𝑁] … . [𝑇2][𝑇1] [

𝐴1
𝐴2
]                                                                                                          (17) 

in which the forward traveling wave coefficient K1 and the backward traveling wave coefficient K2 

correspond to the output port of the final coil shown in Supplementary Figure 1a. 

Next, pressure and velocity boundary conditions at y = w and y = d1+w have been applied. 

At: 𝑦 = 𝑤 ,   𝑎 − 𝑑1 ≤ 𝑥 ≤ 𝑎  

𝐴1e
𝑖𝑘𝑤 + 𝐴2 = ∑ cos(𝑎𝑛𝑥) [𝐵1𝑛 + 𝐵2𝑛e

𝑖𝑘𝑛 𝑑1]∞
𝑛=0                                                                           (18) 

[𝐴1e
𝑖𝑘𝑤 − 𝐴2] = ∑

𝑎𝑘𝑛

𝑑1𝑘
cos(𝑎𝑛𝑥) [𝐵1𝑛 − 𝐵2𝑛e

𝑖𝑘𝑛 𝑑1]∞
𝑛=0                                                                   (19) 

At: 𝑦 = 𝑤 + 𝑑1 ,   0 ≤ 𝑥 ≤ 𝑑2  

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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𝐶1 + 𝐶2e
𝑖𝑘𝑤 = ∑ cos(𝑎𝑛𝑥) [𝐵1𝑛e

𝑖𝑘𝑛 𝑑1 + 𝐵2𝑛]
∞
𝑛=0                                                                           (20) 

[𝐶1 − 𝐶2e
𝑖𝑘𝑤] = ∑

𝑎𝑘𝑛

𝑑2𝑘
cos(𝑎𝑛𝑥) [𝐵1𝑛e

𝑖𝑘𝑛 𝑑1 − 𝐵2𝑛]
∞
𝑛=0                                                                    (21) 

In order to ensure that Supplementary Equations 18-21 are a solvable set of equations to relate 

the coefficients in Region A (A1 and A2) and Region C (C1 and C2), one needs to relieve the x-

dependency, along with deriving the nth mode’s coefficient in Region B. Thus, the problem has 

been simplified by first multiplying the velocity boundary conditions (Supplementary Equation 19) 

and (Supplementary Equations 21) by the factor of cos(𝑎𝑚𝑥) and taking the normalized line 

integral with respect to x from both sides of Supplementary Equations 18-21. Given the 

orthogonality of the trigonometric functions, the summation terms in the right-hand-side of 

Supplementary Equation 19 and Supplementary Equation 21 will vanish, save for the case when 

m = n. Eventually, the simplified form of the boundary conditions yields the following: 

At: 𝑦 = 𝑤 

𝐴1e
𝑖𝑘𝑤 + 𝐴2 = ∑

1

𝑑1
∫ cos(𝑎𝑛𝑥)
𝑎

𝑎−𝑑1
𝑑𝑥 [𝐵1𝑛 + 𝐵2𝑛e

𝑖𝑘𝑛 𝑑1]∞
𝑛=0                                                          (22) 

[𝐴1e
𝑖𝑘𝑤 − 𝐴2]

1

𝑑1
∫ cos(𝑎𝑛𝑥)
𝑎

𝑎−𝑑1
𝑑𝑥 =

𝑎𝑘𝑛

𝜖𝑛𝑑1𝑘
[𝐵1𝑛 − 𝐵2𝑛e

𝑖𝑘𝑛 𝑑1]                                                     (23) 

At: 𝑦 = 𝑤 + 𝑑1   

𝐶1 + 𝐶2e
𝑖𝑘𝑤 = ∑

1

𝑑2
∫ cos(𝑎𝑛𝑥)
𝑑2

0
𝑑𝑥 [𝐵1𝑛e

𝑖𝑘𝑛 𝑑1 + 𝐵2𝑛]
∞
𝑛=0                                                              (24) 

[𝐶1 − 𝐶2e
𝑖𝑘𝑤]

1

𝑑2
∫ cos(𝑎𝑛𝑥)
𝑑2

0
𝑑𝑥 =

𝑎𝑘𝑛

𝜖𝑛𝑑2𝑘
[𝐵1𝑛e

𝑖𝑘𝑛 𝑑1 − 𝐵2𝑛]                                                          (25) 

in which Neumann Factor, 𝜖𝑛 ,is defined as 𝜖𝑛 = 2 for 𝑛 ≠ 0 and has the value of 𝜖𝑛 = 1 if 𝑛 = 0. 

Using Supplementary Equation 23 and Supplementary Equation 25, 𝐵1𝑛 & 𝐵2𝑛 can be derived in 

terms of A’s and C’s coefficients and, consequently, by substituting in Supplementary Equation 
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22 and Supplementary Equation 25, the relationship between A’s and C’s coefficients are thusly 

determined: 

[
𝐶1
𝐶2
] =  [𝑇1] [

𝐴1
𝐴2
] → [

𝐶1
𝐶2
] = [

𝑇11 𝑇12
𝑇21 𝑇22

] [
𝐴1
𝐴2
]                                                                                  (26) 

𝑇11 =
e𝑖𝑘𝑤(𝛾3𝛾1+𝛾2)

(1+𝛾1)
                                                                                                                        (27) 

𝑇12 =
(𝛾4𝛾1−𝛾2)

(1+𝛾1)
                                                                                                                              (28) 

𝑇21 =
(𝛾2−𝛾3)

(1+𝛾1)
                                                                                                                                (29) 

𝑇22 =
−(𝛾4+𝛾2)

e𝑖𝑘𝑤(1+𝛾1)
                                                                                                                            (30) 

in which 𝛾1, 𝛾2, 𝛾3and  𝛾4 are derived as follows: 

𝛾1 =
1 + [∑

𝜑𝑛
2

𝑑2
(
2𝜖𝑛𝑘𝜑𝑛

2   (e2𝑖𝑘𝑛𝑑1+1)  

𝑎𝑘𝑛 (e
2𝑖𝑘𝑛𝑑1−1)

) ∞
𝑛=0 ]

1 − [∑
𝜑𝑛
2

𝑑2
(
2𝜖𝑛𝑘𝜑𝑛

2   (e2𝑖𝑘𝑛𝑑1+1)  

𝑎𝑘𝑛 (e
2𝑖𝑘𝑛𝑑1−1)

) ∞
𝑛=0 ]

                                                                                                (31) 

𝛾2 =
 [∑

𝜑𝑛
2

𝑑2
(
4 𝜖𝑛𝑘𝜑𝑛

1   (e𝑖𝑘𝑛𝑑1)  

𝑎𝑘𝑛 (e
2𝑖𝑘𝑛𝑑1−1)

) ∞
𝑛=0 ]

   [∑
𝜑𝑛
2

𝑑2
(
2𝜖𝑛𝑘𝜑𝑛

2   (e2𝑖𝑘𝑛𝑑1+1)  

𝑎𝑘𝑛 (e
2𝑖𝑘𝑛𝑑1−1)

) ∞
𝑛=0 ]−1

                                                                                               (32) 

𝛾3 =
1+ [∑

𝜑𝑛
1

𝑑1
(
2 𝜖𝑛𝑘𝜑𝑛

1   (e2𝑖𝑘𝑛𝑑1+1)  

𝑎𝑘𝑛 (e
2𝑖𝑘𝑛𝑑1−1)

) ∞
𝑛=0 ]

[∑
𝜑𝑛
1

𝑑1
(
4𝜖𝑛𝑘𝜑𝑛

2   (e𝑖𝑘𝑛𝑑1)  

𝑎𝑘𝑛 (e
2𝑖𝑘𝑛𝑑1−1)

) ∞
𝑛=0 ]

                                                                                                (33) 

𝛾4 =
1− [∑

𝜑𝑛
1

𝑑1
(
2 𝜖𝑛𝑘𝜑𝑛

1   (e2𝑖𝑘𝑛𝑑1+1)  

𝑎𝑘𝑛 (e
2𝑖𝑘𝑛𝑑1−1)

) ∞
𝑛=0 ]

[∑
𝜑𝑛
1

𝑑1
(
4𝜖𝑛𝑘𝜑𝑛

2   (e𝑖𝑘𝑛𝑑1)  

𝑎𝑘𝑛 (e
2𝑖𝑘𝑛𝑑1−1)

) ∞
𝑛=0 ]

                                                                                                (34) 

In Supplementary Equations 31-34, 𝜑𝑛
1   and 𝜑𝑛

2   are defined as follows: 

𝜑𝑛
1   = ∫ cos(𝑎𝑛𝑥)

𝑎

𝑎−𝑑1
𝑑𝑥                                                                                                             (35) 
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𝜑𝑛
2   = ∫ cos(𝑎𝑛𝑥)

𝑑2

0
𝑑𝑥                                                                                                                (36) 

Employing Supplementary Equations 26-36, the propagation tensor for a single coil of a unit cell 

(Supplementary Equation 16) can be calculated. By taking into account the effects of all coils in 

the space-coiling metamaterial, the propagation tensor correlating the last output port (output of 

the entire unit cell) to the coefficients of the first input port (input of the entire unit cell) can be 

derived using Supplementary Equation 17. Finally, employing the resultant propagation tensor of 

the space-coiling metamaterial, the transmission coefficient is calculated.  

 

Pressure and velocity boundary condition at y = 0 (Supplementary Figure 2): 

𝑃I + 𝑃R = 𝐴1 + 𝐴2e
𝑖𝑘𝑤                                                                                                                  (37) 

𝑃I − 𝑃R =
𝑑in

𝑎
(𝐴1 − 𝐴2e

𝑖𝑘𝑤)                                                                                                         (38) 

Pressure and velocity boundary condition at y = t:  

𝑃T = 𝐾1e
𝑖𝑘𝑤 + 𝐾2                                                                                                                         (39) 

𝑃T =
𝑑out

𝑎
(𝐾1e

𝑖𝑘𝑤 − 𝐾2)                                                                                                                (40) 

 

Supplementary Figure 2. Transmission and reflection from space-coiling unit cell. 
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Additionally, using the propagation tensor derived for the space-coiling structure, K’s coefficient 

can be defined in terms of A’s coefficients. 

[
𝐾1
𝐾2
] = [

𝑀11 𝑀12
𝑀21 𝑀22

] [
𝐴1
𝐴2
]                                                                                                               (41) 

Using Supplementary Equations 37-41), the complex transmission (𝑇 =
𝑃T

𝑃I
) and reflection (𝑅 =

𝑃R

𝑃I
) coefficient are determined. 

 𝑇 =
1

2
[(

𝑎

𝑑in
+ 1) + (1 −

𝑎

𝑑in
)𝑅] (𝑀11e

𝑖𝑘𝑤 +𝑀21) + 
1

2
[(

𝑎

𝑑in
+ 1)𝑅 + (1 −

𝑎

𝑑in
)] (𝑀12 +𝑀22e

−𝑖𝑘𝑤)   

𝑅 =  
ƞ(

𝑎

𝑑in
−1)−(1+

𝑎

𝑑in
)

ƞ(
𝑎

𝑑in
+1)+(1−

𝑎

𝑑in
)
                                                                                                                        (43) 

in which ƞ is defined as: 

ƞ =
𝑀12(

𝑑out
𝑎
−1)−𝑀22e

−𝑖𝑘𝑤(
𝑑out
𝑎
+1)

𝑀11e
𝑖𝑘𝑤(

𝑑out
𝑎
−1)−𝑀21(

𝑑out
𝑎
+1)

                                                                                                    (44) 

In order to validate the analytical solution, the solution result has been compared with a numerical 

model of a single unit cell constructed using COMSOL Multiphysics software. The unit cell 

modeled herein, with background medium of air, features a channel width of d = 2cm and is 

composed of 20 coils (N = 20) with overall dimensions of 55 x 8.5 cm. By sweeping the frequency, 

the resultant transmission and reflection amplitude and phase have been obtained using both 

numerical (COMSOL) and analytical models (transfer matrix method) discussed herein, with the 

results shown in Supplementary Figure 3. The results achieved using both the numerical and 

analytical approaches are in a high degree of agreement, thereby validating the applicability of 

the presented model for studying the space-coiling metamaterial behavior. 

(42) 
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Supplementary Note 3: Horn-like space-coiling metamaterials 

The behavior of horn-like space-coiling metamaterials may be analyzed using the analytical 

approach presented in Supplementary Note 2, in which in Supplementary Equation 17, each 

propagation tensors (Ti) will be computed based on the associated coil’s geometry. However, due 

to the complexity of the aforementioned analytical solution, the use of an equivalent model to 

formulate the performance of the structure (similar to Supplementary Equation 2) will be beneficial 

for markedly simplifying the incorporation of this structure in various applications. In this section, 

 

Supplementary Figure 3. Comparison between analytical and numerical 

transmission and reflection. (a) Transmission and reflection amplitude. (b) 

Transmission and reflection phase. 
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the horn-like space-coiling structure has been approximated with the equivalent horn and, 

subsequently, the transmission coefficient based on the horn model has been derived. 

 

The structure of the horn-like space-coiling metamaterial is shown in Supplementary Figure 4a. 

In this structure, the effective length of the acoustic pathway can be approximated with:  

𝐿eff = ∑ 𝐿𝑏
𝑏=𝑁
𝑏=1                                                                                                                               (45) 

𝐿𝑏 = √(𝑎 − 𝑑𝑏)
2 + (𝑤 + 𝑑𝑏)

2                                                                                                      (46) 

in which N is the number of coils (N = 5 in the structure depicted in Supplementary Figure 4a) and 

w is the wall thickness (see Supplementary Figure 1b). By calculating 𝑑𝑏 and 𝐿𝑏 for each coil, the 

acoustic pathway profile through the horn-like space-coiling metamaterial has been illustrated for 

one arbitrary structure (N = 10, w = 0.01m, d1 = 5mm, a = 8.5cm and CR = 1.3), shown in 

 

Supplementary Figure 4. Space-coiling unit cell with gradual change in channel width as 

an exponential horn. (a) Horn-like space-coiling metamaterial with effective length of 

acoustic pathway shown with orange dashed-line. (b) Comparison between exact profile 

of the channel and approximated horn model. 
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Supplementary Figure 4b in red. At each section of the pathway, the profile has a width of 𝑑𝑏 and 

a length of 𝐿𝑏, both of which change from one coil of a given unit cell to another. 

The approximated horn-like profile is based on the assumption that the change in 𝐿𝑏 values are 

small ((a) is dominant term in Supplementary Equation 46) and, consequently, channel width 

follows the below equation: 

𝑑 = 𝑑1CR
(
𝑥𝑁

𝐿eff
)
                                                                                                                              (47) 

 

The horn-like profile based on Supplementary Equation 47 is depicted in Supplementary Figure 

4b (blue line) which demonstrates a good approximation of the exact profile (in red). By employing 

Supplementary Equation 47, the flare constant (m) of the approximated horn-like model can be 

derived as: 

𝑚 =
𝜕

𝜕𝑥
(log(𝑑))  →   𝑚 =

𝑁

𝐿eff
log (CR)                                                                                          (48) 

Next, using the equivalent model, the transmission coefficient has been calculated for the horn-

like space-coiling metamaterial.  

Using the Webster-horn equation for velocity potential, defined as: 

(
𝜕2

𝜕𝑥2
+𝑚

𝜕

𝜕𝑥
+ 𝑘2) ∅ = 0                                                                                                               (49) 

 

Supplementary Figure 5. Transmission through horn-like model. 
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where ∅ is the velocity potential, m is the flare constant, and k is the wave number. The solution 

of Supplementary Equation 49 has the form of: 

∅ = 𝐶1e
𝜇1𝑥 + 𝐶2e

𝜇2𝑥                                                                                                                    (50) 

𝜇1 = −
𝑚

2
+
𝑖

2
√4𝑘2 −𝑚2                                                                                                              (51) 

𝜇2 = −
𝑚

2
−
𝑖

2
√4𝑘2 −𝑚2                                                                                                              (52) 

From the velocity potential obtained in Supplementary Equation 50, one can calculate the 

pressure and velocity as: 

𝑉 =
𝜕∅

𝜕𝑥
= 𝐶1𝜇1e

𝜇1𝑥 + 𝐶2𝜇2e
𝜇2𝑥                                                                                                     (53) 

𝑃 = −𝜌
𝜕∅

𝜕𝑡
= −𝑖𝜌𝜔(𝐶1e

𝜇1𝑥 + 𝐶2e
𝜇2𝑥)                                                                                             (54) 

Next, the pressure and velocity boundary conditions have been written at x=0 and x= Leff. 

At   𝑥 = 0 : 

−𝑖𝜌𝜔(𝐶1 + 𝐶2) = 𝑃I + 𝑃R                                                                                                             (55) 

𝐶1𝜇1 + 𝐶2𝜇2 =
𝑎

𝜌𝑐 𝑑in
(𝑃I − 𝑃R   )                                                                                                   (56) 

At   𝑥 = 𝐿eff : 

−𝑖𝜌𝜔(𝐶1e
𝜇1𝐿eff + 𝐶2e

𝜇2𝐿eff) = 𝑃T                                                                                                  (57) 

𝐶1𝜇1e
𝜇1𝐿eff + 𝐶2𝜇2e

𝜇2𝐿eff =
𝑎

𝜌𝑐 𝑑out
(𝑃T)                                                                                         (58) 

From Supplementary Equations 55-58, the complex transmission coefficient has been derived. 

𝑇 = |𝑇|e𝑖𝜃 =
4

(−
𝑘

𝛽
 
𝑎

𝑑out
+1+

𝑑in
𝑑out

−
𝑘

𝛽
 
𝑑in
𝑎
+𝑖
𝛾

𝛽
(1−

𝑑in
𝑑out

))e(𝛾+𝑖𝛽)𝐿eff+(
𝑘

𝛽
 
𝑎

𝑑out
+1+

𝑑in
𝑑out

+
𝑘

𝛽
 
𝑑in
𝑎
−𝑖
𝛾

𝛽
(1−

𝑑in
𝑑out

))e(𝛾−𝑖𝛽)𝐿eff
          (59) 

where 𝑑in and 𝑑out are the channel width at the input and output ports, respectively, a is unit cell 

width (all are shown in Supplementary Figure 5), k is wave number, and 𝛾 and 𝛽 are defined as: 
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𝛾 =
𝑚

2
                                                                                                                                         (60) 

𝛽 =
1

2
√4𝑘2 −𝑚2                                                                                                                         (61) 

 

In order to validate the applicability of the presented equivalent model for the horn-like space-

coiling structure, the results from the equivalent model have been compared with both a COMSOL 

numerical model and the exact analytical solution (transfer matrix method) presented in 

Supplementary Note 2. The structure considered herein has the following parameters: N = 14, w 

= 1cm, d1 = 3mm, a = 8.5cm and CR = 1.2. The comparisons of the equivalent model with both 

the COMSOL model and the exact solution are shown in Supplementary Figure 6. From the 

results shown in Supplementary Figure 6, it can be observed that the numerical results obtained 

from the simulated model in COMSOL Multiphysics are in precise agreement with the results of 

 

Supplementary Figure 6. Transmission through horn-like space-coiling metamaterial 

derived from three different approaches. Exact model refers to the analytical solution 

presented in Supplementary Note 2 and equivalent model refers to the horn-like 

model discussed in Supplementary Note 3. 
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the analytical approach discussed in Supplementary Note 2 (labeled herein as the exact model). 

Moreover, the results from the equivalent horn-like model are in good agreement, with only small 

deviations from the exact model and the numerical results. This small discrepancy is largely due 

to the simple approximation of 𝐿eff and can be improved with more exacting computation of this 

parameter. The presented equivalent model drastically simplifies the design of the Horn-like 

space coiling-metamaterial and readily provides an initial good estimate of structural performance 

for further experimental or numerical validation. Finally, using the equivalent horn-like model, the 

transmission bound similar to the one derived for conventional space-coiling metamaterials has 

been derived. 

From Supplementary Equation 59 and given the relation that 𝛾2 + 𝛽2 = 𝑘2, the transmission 

phase and amplitude can be derived as: 

𝜃 = tan−1 [
𝑘 (

𝑎

𝑑out
+
𝑑in
𝑎
)sin(𝛽𝐿eff)

𝛽( 1+
𝑑in
𝑑out

 )cos(𝛽𝐿eff)+𝛾( 1−
𝑑in
𝑑out

 )sin(𝛽𝐿eff)
]                                                                          (62) 

|𝑇| = 2e−𝛾𝐿eff
√

1

(1+𝑑in 𝑑out)⁄ 2+
tan2 𝜃

(𝑑in 𝑎⁄ +𝑎 𝑑out)⁄ 2−
4𝛾2𝑑in tan

2 𝜃

𝑘2𝑑out(𝑑in 𝑎⁄ +𝑎 𝑑out)⁄
2
(1+𝑑in 𝑑out)⁄ 2

+
2𝛾 (1−𝑑in 𝑑out)⁄ tan𝜃

𝑘(𝑑in 𝑎⁄ +𝑎 𝑑out)⁄ 2
(1+𝑑in 𝑑out)⁄ 2

1+tan2 𝜃
        

                                                                                                                                                  (63) 

In the case of a structure with small CR and, consequently small flare constant of a frequency 

higher than that of the equivalent horn cut-off frequency, the ratio 
𝛾

𝑘
 would be small and has been 

omitted to simplify the equation. 

Thus, Supplementary Equation 63 yields the form of: 

|𝑇| =
2𝑒−𝛾𝐿eff

(1+
𝑑in
𝑑out

)

√
1+

tan2(𝜃)

𝑆2

1+tan2(𝜃)
                                                                                                                (64) 

in which S is defined as: 
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𝑆 =
(
𝑎

𝑑out
+
𝑑in
𝑎
)

(1+
𝑑in
𝑑out

)
                                                                                                                                (65) 

By substituting   𝛾 =  
𝑚

2
 =  

𝑁

2𝐿eff
log (CR), along with the fact that 

𝑑in

𝑑out
 =   CR−𝑁, the transmission 

amplitude can be written as: 

|𝑇| =
2

CR𝑁/2+CR−𝑁/2
√
1+

tan2(𝜃)

𝑆2

1+tan2(𝜃)
                                                                                                        (66) 

 

Supplementary Note 4: Metasurface for full wavefront manipulation 

Unit cell width as a critical design parameter. While phase-based wavefront modulation relies 

on an optimization procedure to tune the transmitted phase in each unit cell, full wave modulation 

(phase-amplitude) benefits from the use of the phase-conjugation method to tune the phase and 

amplitude of transmission at each unit cell. In another words, in full wave modulation, the complex 

transmission is obtained by discretizing the conjugated wave profile along the metasurface based 

on the width and the number of present unit cells. Consequently, for a given length of the 

metasurface, the unit cell’s width is a critical design parameter, which can directly affect the 

 

Supplementary Figure 7. Sound focusing profiles as a function of unit cell width. 
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conversion output. Smaller unit cell’s widths provide a finer discretization and, consequently, near-

ideal wavefront shaping capability. As an example, the sound focusing case discussed in this 

work has been considered and the focusing performance for different values of unit cell width 

have been analyzed to yield insight into the effect of this key parameter. The sound focusing 

profile, similar to the Figure 5c, is shown in Supplementary Figure 7 for four different values of 

unit cell width ranging from λ to λ/6. Supplementary Figure 7 clearly demonstrates that the unit 

cell’s width plays a critical role in successful full wave modulation and smaller widths are 

preferable in order to obtain near-ideal wavefront conversion. 

 

Comparison of phase and phase-amplitude modulation. While phase modulation represents 

a highly effective method for wavefront shaping, the additional degree of freedom afforded by full 

wave modulation (phase-amplitude) may yield improved performance and capability. As an 

illustrative example, in the case of acoustic beam splitting into π/12 and - π/12 directions, both 

phase modulation and phase-amplitude modulation have been considered. In both cases, a 

metasurface with length of 5λ and composed of 30 unit cells has been assumed (vertical black 

line on the left side of Supplementary Figures 8a and 8b). In the case of phase modulation, given 

the desired directions of the split beams, the ideal phase at each unit cell has been obtained using 

 

Supplementary Figure 8. Acoustic beam splitting. (a) Phase modulation.     (b) Phase–

amplitude modulation. 
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the generalized Snell’s law. Considering unity transmission amplitude along with the transmission 

phase found from the generalized Snell’s law at each unit cell, the resulting waveform, 

representing the ideal case, is shown in Supplementary Figure 8a. For comparison, a similar 

metasurface has been considered for phase-amplitude modulation, in which using the phase-

conjugation method, the ideal transmission phase and amplitude at each unit cell have been 

assigned with the resulting wavefront shown in Supplementary Figure 8b. Comparing the results 

shown in Supplementary Figures 8a and 8b, it may be readily observed that a markedly improved 

pressure uniformity is achieved using phase-amplitude modulation when compared to phase 

modulation. Using phase-amplitude modulation, a clear pressure resolution between the acoustic 

beams may be achieved, while such a clear pressure resolution has not been obtained with phase 

modulation.  

 

Geometrical features of the designed metasurface. The geometrical characteristics of each 

unit cell are listed in Supplementary Table 1. Please note that the metasurface is symmetric with 

 

Supplementary Figure 9. Set of transmission values in the case of acoustic 

focusing from time-reversal method shown in black dots. The accessible region 

of the phase-amplitude in conventional space-coiling metamaterials is 

highlighted by the yellow regions. 
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respect to the x-axis and unit cells 1 to 15 are identical to unit cells 30-16. The targeted and ideal 

transmission phase and amplitude values obtained from the time-reversal technique are listed for 

each unit cell and the achieved phase and amplitude with both the numerical approach and the 

analytical transfer matrix method are shown in Supplementary Table 1. 

Please note that the resultant transmission phase and amplitude from the time-reversal method 

are not placed within the accessible region of the complex transmission in conventional space-

coiling metamaterials. For instance, transmission values in the case of acoustic focusing from the 

time-reversal method are plotted in the phase-amplitude chart shown in Supplementary Figure 9 

in which the yellow region demonstrates the accessible transmission region of conventional 

space-coiling metamaterials. Data points outside this region are highlighted in the Supplementary 

Table 1, which have been achieved by the horn-like space-coiling structure. The results shown 

herein demonstrate that by incorporating the horn-like space-coiling structure, the phase and 

amplitude of the transmission coefficient may be simultaneously modulated, which offers the 

opportunity for complete wavefront manipulation. 

 


