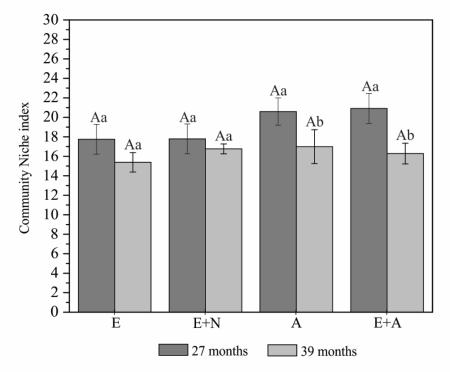


Supplementary Material


Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped *Eucalyptus* plantations

Arthur P.A. Pereira^{1*}, Maurício R.G. Zagatto¹, Carolina B. Brandani², Denise de L. Mescolotti¹, Simone Raposo Cotta¹, José L.M. Gonçalves², Elke J.B.N. Cardoso^{1*}

¹Soil Microbiology Laboratory, "Luiz de Queiroz" College of Agriculture - University of São Paulo, Department of Soil Science, Piracicaba, Brazil

²"Luiz de Queiroz" College of Agriculture - University of São Paulo, Department of Forest Sciences, Piracicaba, Brazil

***Corresponding author:** Elke JBN Cardoso, Email: <u>ejbncard@usp.br</u>; Arthur PA Pereira, Email: <u>arthur.prudencio@usp.br</u>

Supplementary Figure S4. Community Niche index based on the metabolic profile degradation by the soil microbial community in pure and mixed *E. grandis* and *A. mangium* plantations. (E) *E. grandis*, (E+N) *E. grandis* with N fertilization, (A) *A. mangium* and (E+A) mixed plantation between *E. grandis* and *A. mangium* at 27 and 39 months after planting. Means followed by the same letter do not differ by Tukey's test at a significance level of 5%. Upper case letters compare treatments within each period and lower-case letter compare the periods within each treatment. Error bars indicate standard deviation; n = 4.