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1 SUPPLEMENTARY INFORMATION
2
3 Supplementary note 1

4 Maxwell’s laws dictate that the electrical polarization of a cell is an unavoidable consequence of a cell being an intact 
5 compartment separated from the environment by thin membrane structures. The membrane acts as a barrier to the flow 
6 of ions driven by the applied electric field, and the charge carriers accumulate at the interfaces and give rise to an induced 
7 polarization. If the applied field is nonuniform in space, then the cell will move because the field acting on accumulated 
8 ions in different regions of the polarized cell will be unequal. This motion is called dielectrophoresis (DEP), which 
9 importantly can be used to manipulate electrically neutral matter. In this regard DEP is distinct from the phenomenon of 
10 electrophoresis that describes the motion of any electrically charged entity in either a uniform or nonuniform electric 
11 field. A first-order approximation of the time-averaged DEP force experienced by an electrical polarized spherical cell may 
12 be written as [31]: 

13
〈𝐹𝐷𝐸𝑃〉 =

1
4

𝑉𝜀𝑚Re[𝐾̃𝐶𝑀]∇|𝐸|2

14 where  is the cell volume,  is the relative permittivity of the suspending fluid, E is the root-mean-square amplitude of 𝑉 𝜀𝑚

15 the electric field, and  is the gradient operator. The direction of motion due to DEP is governed by , the complex ∇  𝐾̃𝐶𝑀

16 polarizability of a spherical particle, which may be mathematically represented as,

17
𝐾̃𝐶𝑀 = ( 𝜀̃𝑝 ‒ 𝜀̃𝑚

𝜀̃𝑝 + 2𝜀̃𝑚
)

18 where  is the complex permittivity, which depends on the relative permittivity , the permittivity of free space , the 𝜀̃ 𝜀𝑟 𝜀0

19 conductivity , and the frequency of the applied electric field  according to the expression  . The subscripts 𝜎 𝜔 𝜀̃ = 𝜀𝑟𝜀0 ‒ 𝑗𝜎 𝜔

20 “p” and “m” denote the particle (or cell) and medium, respectively. The direction of the DEP force is governed by the real 

21 part of the Clausius-Mosotti factor , which may be considered as a dielectric contrast between the cell and its (Re[𝐾̃𝐶𝑀])
22 suspending medium. If then cell is more electrically polarizable than the suspending medium , then the dielectric  (𝜀̃𝑝 > 𝜀̃𝑚)
23 contrast is positive and the cell is pulled toward field maxima located at the edges of microelectrodes by positive DEP 
24 (pDEP). Conversely, if cells are less electrically polarizable than the suspending medium, the dielectric contrast is negative 
25 and cells are repelled from microelectrode edges by negative DEP (nDEP). The cytoelectric properties of biological cells, 
26 embodied in the effective permittivity of the particle , emerge from the properties of the cell interior, the cell shape and 𝜀̃𝑝

27 size, the characteristics of the diffuse ionic atmosphere surrounding cells, as well as the structure and composition of 
28 biomembranes. 
29 For erythrocytes, the plasma membrane separates the cell interior from the suspending medium and presents a 
30 barrier to the flow of ions, giving rise to the accumulation of charge at the membrane/electrolyte interface. A 
31 mathematical model for layered nonspherical particles like erythrocytes was previously developed to predict and 
32 rationalize the effect moment along each semiaxes [60]. To a first approximation, the biconcave shape of an erythrocyte 
33 may be modeled as a lossy dielectric oblate ellipsoid surrounded by a thin, electrically insulating shell representing the 
34 plasma membrane (figure S1). 

35 The effective complex anisotropic permittivity of the cell along the major axes (x- and z-directions) may be written, 

36
𝜀̃𝑝,𝑧 = 𝜀̃𝑚𝑒𝑚[ 𝜀̃𝑐𝑦𝑡 + ∆𝑧(𝜀̃𝑐𝑦𝑡 ‒ 𝜀̃𝑚𝑒𝑚) 𝑎

𝜀̃𝑚𝑒𝑚 + ∆𝑧(𝜀̃𝑐𝑦𝑡 ‒ 𝜀̃𝑚𝑒𝑚) 𝑎]
37 Where  is the thickness of the membrane,  is the semiaxes of the internal ellipsoid, and  and  are the complex ∆𝑧 𝑎 𝜀̃𝑚𝑒𝑚 𝜀̃𝑐𝑦𝑡

38 permittivities for the cell membrane and the cytosol, respectively. The complex permittivity of the cell about the minor 
39 semiaxes (y-direction) can be computed by the same expression using  and . The complex polarization factor for the ∆𝑦  𝑏
40 ellipsoidal particle along the x- and z-directions is given by, 

41
𝐾̃𝐶𝑀,𝑧(𝜔) =

𝜀̃𝑝,𝑧 ‒ 𝜀̃𝑚

3[𝜀̃𝑚 + (𝜀̃𝑝,𝑧 ‒ 𝜀̃𝑚)𝐿 ∥ ]
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42 where  is the depolarization factor along the x- and z-coordinates, defined by the elliptical integral as 𝐿 ∥

43 .  is the depolarization along the short semi-axis  and is calculated from .  
𝐿 ∥ =

𝑎2𝑏

2(𝑎2 ‒ 𝑏2)[ 𝜋 2

𝑎2 ‒ 𝑏2
‒

𝑏

𝑎2] 𝐿 ⊥ 𝑏 𝐿 ⊥ = 1 ‒ 2𝐿𝑧

44
45 Supplemental figure 1: Dielectric shell model for human erythrocyte. (Left) Illustration of an erythrocyte with the defined coordinate 
46 system used in the dielectric shell model. (Middle) A cross-sectional view in the yz-plane of a layered oblate ellipsoid used to model 
47 the biconcave shaped cell. The membrane thickness has been exaggerated for clarity. (Right) The predicted DEP behavior of the cell is 
48 plotted as a function of the frequency of the applied field for varying values of the cytosolic conductivity. 

49 Previous dielectric measurements of human blood cells report cell interior permittivity values that are comparable 
50 to that of water  and the internal conductivity of a sealed erythrocyte is about  [63]. (𝜀𝑐𝑦𝑡 ≈ 57𝜀0, 𝜀𝑚 ≈ 78𝜀0, ) 𝜎𝑐𝑦𝑡 = 0.5 𝑆/𝑚

51 Therefore, the DEP behavior of erythrocytes is strongly dependent upon the contrast between the conductivity of the cell 
52 interior  and that of the suspending medium . Indeed, from these considerations, it follows that a particle having an 𝜎𝑐𝑦𝑡 𝜎𝑚

53 interior compartment with a conductivity  may be captured by energizing the electrodes by a DEP signal having 𝜎𝑐𝑦𝑡 ≫ 𝜎𝑚  

54 a frequency  greater than the particle crossover frequency .  Generally, biological cells that are viable and/or 𝑓 𝑓𝑋𝑂

55 functional tend to have internal compartments and are able to actively maintain physiological ionic concentrations as well 
56 as sealed membranes that retain these ions while suspended in a medium having low ionic conductivity. As a result, 
57 structurally intact, functional cells can usually be captured by positive DEP forces when the electrical conductivity of the 
58 internal compartment is sufficiently high compared to the suspending medium or  and . 𝜎𝑐𝑦𝑡 ≫ 𝜎𝑚 𝑓 > 𝑓𝑋𝑂

59 Biological cells that are not viable and/or functional tend to lose ions from their internal compartments when they are 
60 suspended in a medium having low ionic conductivity [36]–[38] This is often the result of ion leakage through their 
61 membranes, and given sufficient time, . The average of the particle polarizabilities along the semiaxes is plotted 𝜎𝑐𝑦𝑡→𝜎𝑚

62 as a function of the frequency of applied electric field in figure S1 for different values of cytoplasmic conductivities to 
63 illustrate the effect of ion leakage from the cell interior. The shell model predicts that if the conductivity of the interior 
64 compartment of the particle is substantially similar to that of the particle suspending medium then and the particle 𝐾̃𝐶𝑀→0 

65 will experience a significantly weakened polarization, and hence a weakened DEP force. Polarizability spectra of an 
66 erythrocyte predicted by the dielectric shell model (supplemental figure 1) are consistent with observations of the DEP 
67 behavior of erythrocytes following exposure to the ionophore monensin. The decrease in cytosolic conductivity relates to 
68 the leakage of ions into the suspending medium. The predicted shift in the cross-over frequency (the frequency where 
69 ) toward lower frequency values matches what was observed experimentally. 𝑅𝑒[𝐾̃𝐶𝑀] = 0

70 Supplementary note 2
71 The concentration distribution of solute within the microdialysis channel was mathematically modeled to understand 
72 operational limitations and to optimize design parameters. At low Reynold’s numbers, the fluid flow profile is laminar and 
73 the two layers do not mix [39]. Ions diffuse quickly across the liquid-liquid interface within the narrow channel and 
74 therefore can be rapidly depleted from the specimen stream (supplemental fig 2A). Net transport of ions is driven across 
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75 the microchannel by diffusion while bulk fluid flow dominates transport of ions downstream. To understand how this 
76 affects conductivity, we need only to model ion transport in a two-dimensional plane parallel to the length of the channel 
77 (figure 2A). The concentration distribution of ion i in space and time can be written  𝐶𝑖 

78
𝐷𝑖

∂2𝐶𝑖

∂𝑥2
+ 𝐷𝑖

∂2𝐶𝑖

∂𝑦2
=

∂𝐶𝑖

∂𝑡
+ 𝑢(𝑦)

∂𝐶𝑖

∂𝑥
79 where  is the diffusion coefficient. Assuming laminar flow is fully established within the microchannel, the velocity 𝐷

80 distribution between the microchamber top and bottom can be written as  where  is the chamber 
𝑢(𝑦) = 6𝑢̅

𝑦
𝐻(1 ‒

𝑦
𝐻) 𝐻

81 height and  is the mean fluid velocity. The ratio of the diluent to sample flow rates sets the final ionic concentration at 𝑢̅
82 the device outlet, provided sufficient time is allowed for ions to diffuse across the microfluidic channel. The simulations 
83 predicted that there is a critical mixing length needed to reduce the ion concentration to a target level. Importantly, that 
84 critical length is independent of the ratio of specimen to diluent flow rates (supplemental fig 2B). 
85

86
87 Supplemental figure 2 Simulations of ion transport within the microfluidic membraneless dialysis device. (A) Schematic of an “H-
88 filter” microfluidic device used to deionize a bacterial suspension. Under appropriate conditions the sample and diluent fluids intersect 
89 at a three-way junction and flow down the separation channel side-by-side. Ions diffuse down the concentration gradient across the 
90 fluid interface into the diluent flow streams. Bacteria remain in the sample stream and exit the chamber at the lower right outlet. (B) 
91 Simulated transport of low molecular weight solutes within the microfluidic H-filter device when the specimen flow rate is half (green 
92 curve), one-third (blue curve) and one-fifth (red curve) of the total flow. In each simulation, the average flow velocity in the mixing 
93 channel was the same. 
94
95 The mean time taken for fluid of average velocity to travel length  of the chamber . Einstein showed that 𝑢̅ 𝐿 𝑖𝑠 𝑡 = 𝐿 𝑢̅
96 the root-mean-square distance a  particle diffuses in time t along a single dimension is related to the diffusion coefficient 
97 D by  [40].  Assuming that diffusion downstream in the microchannel is negligible compared with the bulk fluid 〈𝑥2〉 = 2𝐷𝑡

98 velocity, the length required for full mixing of the solute can then be written as  [41], [42]. 
 𝐿𝑚𝑖𝑥 =

𝑢̅𝐻2

𝐷
=

𝐻𝑄𝑡𝑜𝑡𝑎𝑙

𝑊𝐷
99 This expression provides a design guide and highlights the geometrical criteria important for achieving efficient dialysis by 
100 passive diffusion at high sample processing rates. A precision CNC mill was used to fabricate micromolds to cast 
101 microdialysis devices (Supplementary fig. S3A and S3B). The mold was designed with a high-aspect ratio ribbed structure 
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102 to define a microdialysis channel 3 mm in height, 10 cm in length, and 250 µm in width. The channel was angled at the 
103 fluid inlets and outlets to encourage fluid to spread evenly throughout the width of the channel before the diluent and 
104 specimen streams converged and split at the Y-junctions.

105
106 Supplementary figure 3 Overview of the microfluidic membraneless dialysis device. (Left) The upper path shows how micro-milling 
107 is used to produce high-aspect ratio features that define the channel in a plastic mold. Silicone is cast in the mold to form the 
108 microfluidic chamber top and side walls. The lower path explains how the microfluidic device bottom is made. A double-sided 
109 differential silicone/acrylic adhesive sheet is laminated onto an acrylic sheet and fluid ports are drilled through the composite. The 
110 silicone cast is bonded to the base to produce the final device. (Right) The top image is an isometric view of a wireframe diagram of 
111 the micromilled mold used to form a high-aspect ratio microchannel in silicone. In the lower left a top view of the wireframe diagram 
112 showing the microscale dimension (250 µm) over which rapid diffusion of ions occurs. In the lower right is a zoomed in view of the 
113 angled entrance structure that helps to ensure fluid streams are injected and withdrawn evenly over the entire height of the 
114 microchannel. 
115
116 The membraneless microdialysis design presented herein resembles the well-known “H-filter” micromixer [41]. In the 
117 H-filter design the diluent and specimen stream intersect and split at right angles. This creates a stagnation point that 
118 causes the two streams to mix. An important difference is that the membraneless dialyzer incorporated an angled 
119 entrance flow profile which is less than 180˚. This facilitated laminating and splitting fluid layers.  In operation, a diluent 
120 fluid with low ion concentration is fed into one inlet of a MMD and layered over a thin specimen fluid stream, which enters 
121 through a separate inlet (supplemental Fig 4A). The hydrodynamic resistance of the two outlet ports was balanced to 
122 achieve the desired volumetric splitting ratio (supplemental Fig. 4B). 
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123
124 Figure 4: Experimental evaluation of the microfluidic membraneless dialysis device. (A) Photograph shows a saponin-
125 treated blood sample being continuously injected into the bottom inlet of the dialysis device. Clear diluent is also being 
126 pumped into the top inlet. (B) Photograph showing the waste stream (red arrow) and sample stream (black arrow) at the 
127 outlet bifurcation point of the membraneless microdialysis device. (C) The measured conductivity reduction for a single 
128 microfluidic dialysis device for increasing mean fluid flow velocities. The horizontal black line at 0.5 shows the expected 
129 ratio for complete mixing and the vertical broken red line is the theoretical mean velocity limit that allows for complete 
130 mixing.

131 To evaluate the performance of the MMD, the electrical conductivity of the specimen was measured at the sample outlet 
132 for different average flow velocity values and compared to the initial conductivity to compute a concentration reduction 
133 factor (supplemental fig. 4C). The critical average flow velocity that allowed for complete mixing of sodium ions across 
134 the channel by passive diffusion was estimated to be 1 cm/sec. Operating at fluid flow rates below this critical value 
135 reduced the electrical conductivity level of the test solution by nearly one-half, which is in accordance with simulation 
136 data. Operating below this predicted maximum average fluid velocity resulted in full deionization of the specimen stream. 
137
138


