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Web Appendix

Web Appendix A: Convergence Stopping Rule

To determine convergence of our proposed method, we set a stopping rule for the absolute

value of the difference between the log-likelihood distribution evaluated at the current and

next step of the algorithm (Wu, 1983). Formally, the algorithm stops if∣∣∣`(Φ(k+1)|y
)
− `
(
Φ(k)|y

)∣∣∣ = ∣∣∣[Q [Φ(k+1)|Φ(k)
]
−Q

[
Φ(k)|Φ(k)

]]
−
[
R
[
Φ(k+1)|Φ(k)

]
−R

[
Φ(k)|Φ(k)

]]∣∣∣ 6 ε,

where ` is the log-likelihood function and ε is the stopping rule threshold. The Q-function

is described in Eq. 4. To complete the derivation of our stopping rule, we define

R
[
Φ|Φ(k)

]
=
∑
γ

log (π(γ|Φ, y))× π
(
γ|Φ(k),y

)
= Eγ|· log(π(γ|Φ, y)).

Due to the hierarchical structure of this model, we assume that

π(γ|Φ, y) = π(γ|Φ) = θ
∑p
r=1(γλ,r+γµ,r)(1− θ)2p−

∑p
r=1(γλ,r+γµ,r). (A.1)

Taking the log and conditional expectation of A.1, we show

Eγ|· log(π(γ|Φ)) =

p∑
r=1

[
Eγ|·[γλ,r] + Eγ|·[γµ,r]

]
log(θ)+

(
2p−

p∑
r=1

Eγ|·[γλ,r] + Eγ|·[γµ,r]

)
log(1−θ).

Once the algorithm has converged, the final estimates, Φ̂, maximize Eq. 4.

Web Appendix B: Deterministic Annealing Variant

The deterministic annealing EM algorithm (DAEM) redefines the EM algorithm’s objective

based on the principle of maximum entropy to reduce the algorithm’s dependence on initial

values. Instead of maximizing the Q-function, the new objective is to minimize the free energy

function at gradually cooler temperatures. For EMVS, this corresponds to maximizing the
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negative free energy function

−Ft(Φ) = −Ut(Φ) +
1

t
St(Φ) =

1

t
log
∑
γ

(π(Φ, γ|y))t ,

where Ut(Φ) is the internal energy, St(Φ) is the entropy, and 1
t

is interpreted as the

temperature of the annealing process, with 0 < t < 1. Equivalently, we can maximize

−Ft(Φ) by iteratively maximizing the negative internal energy, conditioned on the current

estimates of the unknown parameters, Φ(k) (Ueda and Nakano, 1998). The negative internal

energy function is

−Ut(Φ|Φ(k)) =
∑
γ

log (π(Φ, γ|y))× π(γ|Φ(k))t (A.2)

In application, the annealing process starts with a high temperature (i.e., t close to 0).

When the temperature is high, the landscape of −Ft(Φ) is smooth, which prevents the EM

algorithm from getting stuck in a local mode early in its iterative process. As the temperature

iteratively cools, the effect of the inclusion posterior is strengthened. As a result, local modes

begin to appear and the landscape of −Ft(Φ) progressively approaches the true incomplete

posterior.

To formulate our ECM algorithm with a deterministic annealing variant, we introduce an

annealing loop that regulates the influence of the inclusion posterior and replace Eq. 4 with

equation Eq. A.2 in the E-step. The algorithm for this method is

Step 1: Set the initial Φ(0) and t.

Step 2: Carry out the ECM steps at the current temperature, t, until convergence:

(a) E-Step: Evaluate Ut

[
Φ|Φ(k)

]
(b) CM-steps: Perform steps 1-3 in Section 2.3, replacing Eq. 4 with Eq. A.2.

(c) Set k ← k + 1

Step 3: Increase t.
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Step 4: If t < 1, return to step 2 and use the final estimates given the previous t to initiate

at the current t. Else, stop.

Here, the conditional expectation is taken with respect to a tempered inclusion posterior

distribution. The tempered probabilities of inclusion are calculated as

p∗r,t =

[
π(β

(k)
r |γr = 1)P (γr = 1|θ(k))

]t
[
π(β

(k)
r |γr = 0)P (γr = 0|θ(k))

]t
+
[
π(β

(k)
r |γr = 1)P (γr = 1|θ(k))

]t .
At each cooling step, t, we find a global mode that is used to initiate the algorithm at the

next temperature to find a new global mode. Assuming that the new global mode is close

to the previous, the probability of converging at the true global mode is increased. Note

that on the final annealing loop iteration (t = 1), Eq. 4 matches equation Eq. A.2. Thus,

the parameter estimates that maximize the negative free-energy function are equivalent to

the posterior mode estimates that maximize the log incomplete posterior. While convergence

at the global mode is still not guaranteed, the variant removes the algorithm’s dependence

on initial parameter values and finds better estimates than the conventional EM algorithm

(Ueda and Nakano, 1998).

Web Appendix C: Variance Estimation

We present the closed-form expressions for ∂2Q
[
Φ|Φ̂

]
/∂Φ∂Φ′ and

var{∂ log π(Φ, γ|y)/∂Φ|Φ̂, y} from Eq. 5 in the main article. For simplicity, we redefine the

Q-function as

Q
[
Φ|Φ(k)

]
= C +

m∑
i=1

ni∑
j=2

[
logPyi(ti,j−1),yi(ti,j) (δij|xi,j−1)

]

+

p∑
r=0

−1

2

{
β2
λ,rEγ|·

[
1

v0(1− γλ,r) + v1γλ,r

]
+ β2

µ,rEγ|·

[
1

v0(1− γµ,r) + v1γµ,r

]}

+

p∑
r=1

Eγ|· [γλ,r + γµ,r] log

(
θ

1− θ

)
+ (a− 1) log θ + (b+ 2p− 1) log(1− θ),

where x′ij = (1, xij1, . . . , xijp), γλ = (γλ,0, . . . , γλ,p), γµ = (γµ,0, . . . , γµ,p), β
′
λ = (λ0, βλ,1, . . . , βλ,p),

and β′µ = (µ0, βµ,1, . . . , βµ,p). By setting γλ,0 ≡ 1 and γµ,0 ≡ 1, λ0 and µ0 are forced into the
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model. The second derivative of the Q-function can be partitioned into

∂2Q
[
Φ|Φ(k)

]
∂Φ∂Φ′

=


∂2Q[Φ|Φ(k)]
∂βλ∂β

′
λ

∂2Q[Φ|Φ(k)]
∂βλ∂β′µ

0(p+1)×1

∂2Q[Φ|Φ(k)]
′

∂βλ∂β′µ

∂2Q[Φ|Φ(k)]
∂βµ∂β′µ

0(p+1)×1

01×(p+1) 01×(p+1)
∂2Q[Φ|Φ(k)]

∂θ2


(2p+3)×(2p+3)

.

Due to the complexity of the following derivations, we use multiple substitutions for clarity.

Here, major derivations are presented first, and their components are defined after. For

instance, second derivatives may be written as functions of first derivatives, which are defined

thereafter. We let

logPyi(ti,j−1),yi(ti,j) (δij|xi,j−1) = log (B + AC) I(N,N) + log (A− AC) I(N,S)

+ log (A+BC) I(S, S) + log (B −BC) I(S,N)

− log(A+B),

where the indicator function I(yi(ti,j−1), yi(ti,j)) represents the observed transition for subject

i from the assessment at time ti,j−1 to ti,j. Recall that yi(ti,j) is defined as N if the subject

is in a non-smoking state and S if the subject is in a smoking state. Here, we set

A = λi,j−1 = exp(x′i,j−1βλ),

B = µi,j−1 = exp(x′i,j−1βµ),

and

C = exp(−(A+B)δij).

It is important to note that in the following derivations, A, B, and C depend on i and j,

but we suppress their subscripts for ease of reading.

Here, we provide the first derivatives of the Q-function with respect to Φ.
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The first derivatives of the Q-function are

∂Q
[
Φ|Φ(k)

]
∂βλ

=
m∑
i=1

ni∑
j=2

[
∂(B+AC)

∂βλ

(B + AC)
I(N,N) +

∂(A−AC)
∂βλ

(A− AC)
I(N,S)

+

∂(A+BC)
∂βλ

(A+BC)
I(S, S) +

∂(B−BC)
∂βλ

(B −BC)
I(S,N)−

∂(A+B)
∂βλ

(A+B)

]

− βλ ◦
[
Eγ|·

[
1

v0(1− γλ) + v1γλ

] ]
,

∂Q
[
Φ|Φ(k)

]
∂βµ

=
m∑
i=1

ni∑
j=2

[ ∂(B+AC)
∂βµ

(B + AC)
I(N,N) +

∂(A−AC)
∂βµ

(A− AC)
I(N,S)

+

∂(A+BC)
∂βµ

(A+BC)
I(S, S) +

∂(B−BC)
∂βµ

(B −BC)
I(S,N)−

∂(A+B)
∂βµ

(A+B)

]

− βµ ◦
[
Eγ|·

[
1

v0(1− γµ) + v1γµ

] ]
,

and

∂Q
[
Φ|Φ(k)

]
∂θ

=

p∑
r=1

[
Eγ|· [γλ,r + γµ,r]

[
1

θ
+

1

1− θ

]]
+
a− 1

θ
− b+ 2p− 1

1− θ
,

where ◦ is the component-wise product of two vectors.

Then, the second derivatives of the Q-function are shown to be

∂2Q
[
Φ|Φ(k)

]
∂βλ∂β′λ

=
m∑
i=1

ni∑
j=2

[ ∂2(A+BC)
∂βλ∂β

′
λ

(A+BC)− ∂(A+BC)
∂βλ

∂(A+BC)
∂β′λ

(A+BC)2
I(S, S)

+

∂2(B+AC)
∂βλ∂β

′
λ

(B + AC)− ∂(B+AC)
∂βλ

∂(B+AC)
∂β′λ

(B + AC)2
I(N,N)

+

∂2(A−AC)
∂βλ∂β

′
λ

(A− AC)− ∂(A−AC)
∂βλ

∂(A−AC)
∂β′λ

(A− AC)2
I(N,S)

+

∂2(B−BC)
∂βλ∂β

′
λ

(B −BC)− ∂(B−BC)
∂βλ

∂(B−BC)
∂β′λ

(B −BC)2
I(S,N)

−
∂2A

∂βλ∂β
′
λ
(A+B)− ∂A

∂βλ

∂A
∂β′λ

(A+B)2

]
− diag

(
Eγ|·

[
1

v0(1− γλ) + v1γλ

])
,
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∂2Q
[
Φ|Φ(k)

]
∂βµ∂β′µ

=
m∑
i=1

ni∑
j=2

[ ∂2(A+BC)
∂βµ∂β′µ

(A+BC)− ∂(A+BC)
∂βµ

∂(A+BC)
∂β′µ

(A+BC)2
I(S, S)

+

∂2(B+AC)
∂βµ∂β′µ

(B + AC)− ∂(B+AC)
∂βµ

∂(B+AC)
∂β′µ

(B + AC)2
I(N,N)

+

∂2(A−AC)
∂βµ∂β′µ

(A− AC)− ∂(A−AC)
∂βµ

∂(A−AC)
∂β′µ

(A− AC)2
I(N,S)

+

∂2(B−BC)
∂βµ∂β′µ

(B −BC)− ∂(B−BC)
∂βµ

∂(B−BC)
∂β′µ

(B −BC)2
I(S,N)

−
∂2B

∂βµ∂β′µ
(A+B)− ∂B

∂βµ
∂B
∂β′µ

(A+B)2

]
− diag

(
Eγ|·

[
1

v0(1− γµ) + v1γµ

])
,

∂2Q
[
Φ|Φ(k)

]
∂βλ∂β′µ

=
m∑
i=1

ni∑
j=2

[ ∂2(A+BC)
∂βλ∂β′µ

(A+BC)− ∂(A+BC)
∂βλ

∂(A+BC)
∂β′µ

(A+BC)2
I(S, S)

+

∂2(B+AC)
∂βλ∂β′µ

(B + AC)− ∂(B+AC)
∂βλ

∂(B+AC)
∂β′µ

(B + AC)2
I(N,N)

+
−∂2(B+AC)

∂βλ∂β′µ
(A− AC)− ∂(A−AC)

∂βλ

∂(A−AC)
∂β′µ

(A− AC)2
I(N,S)

+
−∂2(A+BC)

∂βλ∂β′µ
(B −BC)− ∂(B−BC)

∂βλ

∂(B−BC)
∂β′µ

(B −BC)2
I(S,N)

+

∂A
∂βλ

∂B
∂β′µ

(A+B)2

]
,

and

∂2Q
[
Φ|Φ(k)

]
∂θ2

=

p∑
r=1

[
Eγ|· [γλ,r + γµ,r]

[
− 1

θ2
+

1

(1− θ)2

] ]
− a− 1

θ2
− b+ 2p− 1

(1− θ)2
.

where diag(·) represents a diagonal matrix. The second derivatives in these equations are

shown below.

The second derivatives of (A+BC) are

∂2(A+BC)

∂βλ∂β′λ
=

∂2A

∂βλ∂β′λ
(1−BCδij) +BCδ2ij

∂A

∂βλ

∂A

∂β′λ
,

∂2(A+BC)

∂βµ∂β′µ
= C

∂2B

∂βµ∂β′µ
(1−Bδij)− δij

∂B

∂βµ

(
C
∂B

∂β′µ
+
∂AB

∂β′µ

)
,
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and

∂2(A+BC)

∂βλ∂β′µ
= −δij

∂A

∂βλ

[
B
∂C

∂β′µ
+ C

∂B

∂β′µ

]
.

The second derivatives of (B + AC) are

∂2(B + AC)

∂βλ∂β′λ
= C

∂2A

∂βλ∂β′λ
(1− Aδij)− δij

∂A

∂βλ

(
C
∂A

∂β′λ
+
∂BA

∂β′λ

)
,

∂2(B + AC)

∂βµ∂β′µ
=

∂2B

∂βµ∂β′µ
(1− ACδij) + ACδ2ij

∂B

∂βµ

∂B

∂β′µ
,

and

∂2(B + AC)

∂βλ∂β′µ
=

∂A

∂βλ

∂C

∂β′µ
[1− Aδij] .

The second derivatives of (A− AC) are

∂2(A− AC)

∂βλ∂β′λ
=

∂2A

∂βλ∂β′λ
− ∂2(B + AC)

∂βλ∂β′λ
,

∂2(A− AC)

∂βµ∂β′µ
= ACδij

[
∂2B

∂βµ∂β′µ
− δij

∂B

∂βµ

∂B

∂β′µ

]
,

and

∂2(A− AC)

∂βλ∂β′µ
= −∂

2(B + AC)

∂βλ∂β′µ
.

The second derivatives of (B −BC) are

∂2(B −BC)

∂βλ∂β′λ
= BCδij

[
∂2A

∂βλ∂β′λ
− δij

∂A

∂βλ

∂A

∂β′λ

]
,

∂2(B −BC)

∂βµ∂β′µ
=

∂2B

∂βµ∂β′µ
− ∂2(A+BC)

∂βµ∂β′µ
,

and

∂2(B −BC)

∂βλ∂β′µ
= −∂

2(A+BC)

∂βλ∂β′µ
.

Additionally,

∂2A

∂βλ∂β′λ
= Axi,j−1x

′
i,j−1

and

∂2B

∂βµ∂β′µ
= Bxi,j−1x

′
i,j−1.
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Here, we present the first derivatives necessary to compute the functions above.

The first derivatives of (A+BC) are

∂(A+BC)

∂βλ
=

∂A

∂βλ
(1−BCδij)

and

∂(A+BC)

∂βµ
= C

∂B

∂βµ
(1−Bδij) .

The first derivatives of (B + AC) are

∂(B + AC)

∂βλ
= C

∂A

∂βλ
(1− Aδij)

and

∂(B + AC)

∂βµ
=

∂B

∂βµ
(1− ACδij) .

The first derivatives of (A− AC) are

∂(A− AC)

∂βλ
=

∂A

∂βλ
− ∂(B + AC)

∂βλ

and

∂(A− AC)

∂βµ
= ACδij

∂B

∂βµ
.

The first derivatives of (B −BC) are

∂(B −BC)

∂βλ
= BCδij

∂A

∂βλ

and

∂(B −BC)

∂βµ
=

∂B

∂βµ
− ∂(A+BC)

∂βµ
.

Additionally,

∂A

∂βλ
= Axi,j−1,

∂A

∂βµ
= 0,

∂B

∂βλ
= 0,

∂B

∂βµ
= Bxi,j−1
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∂C

∂βλ
= −Cδij

∂A

∂βλ
,

and

∂C

∂βµ
= −Cδij

∂B

∂βµ
.

Now, the components of the conditional covariance matrix, var

{
∂ log π(Φ,γ|y)

∂Φ

∣∣∣∣Φ̂, y}, are

defined as:

cov

[
∂ log π(Φ, γ|y)

∂β
,
∂ log π(Φ, γ|y)

∂β

]
= diag

(
β̂2 ◦

[
1

v20
(1− p∗) + 1

v21
p∗
]
−
[
β̂ ◦

[
1

v0
(1− p∗) + 1

v1
p∗
]]2)

,

cov

[
∂ log π(Φ, γ|y)

∂β
,
∂ log π(Φ, γ|y)

∂θ

]
= −

[
1

θ̂
+

1

1− θ̂

] [
β̂ ◦ p∗

v1
− (β̂ ◦ p∗) ◦

[
p∗

v1
+

1− p∗

v0

]]
,

and

var

[
∂ log π(Φ, γ|y)

∂θ

]
=

[
1

θ̂
+

1

1− θ̂

]2
var

[
p∑
r=1

γλ,r + γµ,r

]
,

where β′ = (β′λ,β
′
µ) and var[γr] = θ̂(1−θ̂). Additionally, p∗

′
= (p∗

′

λ ,p
∗′
µ ), p∗

′

λ = (p∗λ,0, . . . , p
∗
λ,p),

and p∗
′
µ = (p∗µ,0, . . . , p

∗
µ,p). Recall that setting p∗λ,0 ≡ 1 and p∗µ,0 ≡ 1 forces λ0 and µ0 into the

model.

Web Appendix D: Data Generation

To evaluate the performance of our method, we apply it to multiple simulated data sets

in a variety of research scenarios. In all of the generated data sets, each individual is

allowed to transition between smoking, S, and non-smoking, N, states over a period of

time. First, each individual is randomly assigned to an initial state following a draw from

a Bernoulli distribution with probability 0.50. Since there are two states in this process,

an individual always transitions into the opposite state. True transition times follow an

exponential distribution that is parametrized with transition rate λij if the individual is

currently in an N state and µij if he/she is in an S state. Here, we set the true transition

rates to

λij = exp(0.5− 0.5xij1 + 0.5xij2 − 0.5xij5)

µij = exp(0.5 + 0.5xij1 + 0.5xij5 − 0.5xij6)
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We restrict our analysis to weaker effects, under the assumption that performance will

only improve with larger effects (Koslovsky et al., 2016). The full model contains 4 binary

covariates (xij1, . . . , xij4) and 16 continuous covariates (xij5, . . . , xij20). Recall that since

covariates can be associated with both transition rates, this creates 22×20 > 1012 possible

models. Binary covariates are sampled from a Bernoulli distribution with probability 0.50.

Binary covariates xij1 and xij3 are resampled from the same distribution after the individual

has transitioned 10 times. Continuous covariates (xij6, xij8, . . . , xij20) follow a multivariate

normal distribution with mean 0, variance 1, and an exchangeable correlation structure, ρ = 0

or ρ = 0.75. Continuous covariates xij5 and xij7 are simulated from a random walk with the

initial value sampled from a normal distribution with mean 0 and variance 1. Thereafter, the

data are generated by xi,j = xi,j−1 + εi,j, where εi,j is sampled from a normal distribution

with mean 0 and variance 0.001 at each transition.

The true transition process is iterated until an individual’s cumulative transition time

exceeds the period of time for which he/she is set to be followed (e.g., 30 or 70 units of

time). In practice, we do not always observe an assessment exactly at each individual’s

transition time. We only observe their current state at each assessment time. For example,

an individual may receive a post-quit random assessment at 8 a.m., slip at 8:05 a.m., and

not perform another assessment until 8:20 a.m. Here, the exact transition time is unknown

since we only observe N at 8 a.m. and S at 8:20 a.m. To analogue this, we parse through each

individual’s simulated transition data at equally or randomly spaced assessment times and

identify the individual’s state at the time the assessment is conducted. At each assessment

time, we observe the individual’s current smoking state and measured risk factors. Then all

of the individuals’ observations are compiled to create the data set for analysis.
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Web Appendix E: Simulations

Here, we examine the performance of our method in various senarios. For scenarios 1-8, we

simulate m = 100 and m = 150 individuals observed at ni = 30 or ni = 70 equally spaced

assessments under both correlation structures. Equally spaced observations are a special

case of a continuous-time Markov process which can be modeled discretely. Thus in these

scenarios, we can model the data with a discrete-time transition model, as in (Diggle et al.,

2013), for comparison:

logit (ωS (xi,j−1) |yi,j−1 = N) = 0.5− 0.5xi,j−1,1 + 0.5xi,j−1,2 − 0.5xi,j−1,5 (A.3)

and

logit (ωN (xi,j−1) |yi,j−1 = S) = 0.5 + 0.5xi,j−1,1 + 0.5xi,j−1,5 − 0.5xi,j−1,6 (A.4)

where ωS (xi,j−1) and ωN (xi,j−1) are the probabilities that an individual is observed in a

smoking or non-smoking state at tij, respectively. Note, we use the covariates observed in

the current state to model the probability of transition in the next state, similar to Eq.

3 in the main article. Here, we can compare our method to any variable selection method

designed for logistic regression models; we choose the LASSO (Tibshirani, 1996) and EMVS

(Koslovsky et al., 2016). Note that EMVS for logistic regression models has already been

shown to outperform stepwise selection procedures (Koslovsky et al., 2016).

For scenarios 9-16, we simulate m = 100 and m = 150 individuals observed at ni = 30 or

ni = 70 randomly spaced assessments under both correlation structures. Since observation

times are inconsistent, this data structure is more realistic for EMA data. Consequently,

modeling the data with Eq. A.3 and A.4 for comparison is no longer valid.

Each scenario is simulated 250 times and evaluated in R (R Core Team, 2015). We initialize

our method using estimates from the msm package (Jackson et al., 2011) for a two-state

model including all possible covariates. Before selection, we standardize continuous covariates

to mean 0 and variance 1. The sparsity parameter θ is initially set to 0.50. The variance of
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exclusion and inclusion are set similar to the method suggested by Koslovsky et al. (2016).

Here, we claim a hazard ratio between (0.95, 1.05) to be clinically irrelevant, and we evaluate

the local stability of regularization plots around our intuition with a 95% prior probability

of inclusion for the hazards ratio that covers (1/4, 4). Using this tuning procedure, we set

the 95% prior probability of exclusion equivalent to a hazards ratio between (0.95, 1.05),

v0 = 0.0006, for all models. For the comparisons in scenarios 1-8, EMVS for logistic regression

models are tuned similarly. We use the glmnet package to compare our model with the

LASSO for logistic regression (Friedman et al., 2009). Here, each LASSO model is tuned

using 10-fold cross validation to identify the largest penalty value, λLASSO, that is within one

standard error of the minimum mean square error (Breiman et al., 1984). For the annealing

process, the inverse temperature is initially set to .2 and increased by .1 until t = 1, as

described in Web Appendix B. Convergence at each temperature level and at each CM-step

using the Newton-Raphson algorithm is determined with ε = 1e− 5.

To evaluate the performance of our method, we calculate the average false positive (FP) and

false negative (FN) rates with FPR = FP/(FP + TN) and FNR= FN/(FN+TP), where TP

and TN are true positives and true negatives, respectively. Additionally, we assessed the bias

(average of the posterior modes minus true values), the Monte Carlo error of the posterior

modes (MCE), the square root of the average of the posterior variances estimated with

Louis’s method (SE), the coverage probability (CP) of the 95% equal-tail credible intervals,

and the average mean squared error (MSE) of the steady-state probability of transition from

a non-smoking to a smoking state.

Web Appendix F: Simulation Results

The simulation results for scenarios 1-8 are found in Table 1. Here, our method produced

relatively low FPR and FNR. The performance of our method improved with larger sam-



Variable selection for multistate models with interval-censored data 13

ple sizes and number of assessments observed and declined with higher correlation among

covariates.

[Table 1 about here.]

Across all combinations of the number of individuals, number of assessments, and correlation

structures, our method correctly included associated covariates in 99.4% of the simulations

on average (min = 94.4% and max = 100%). Additionally, our method correctly excluded

unassociated covariates in 99.2% of the simulations on average (min = 88.8% and max =

100%). Marginally, we observed that our method performed better for continuous covariates.

It was least accurate for binary covariates whose values were allowed to change. With equally

spaced assessment times, our method estimated unknown parameters with minimal bias,

MCE very close to the SE, and CP around 92% on average (Table 2). The MSE for the

steady-state probability of transition from a non-smoking to a smoking state was around 0.04

for scenarios 1-8. In terms of the MSE, our method performed better with higher correlation

structures and was insensitive to the number of individuals and number of assessments (Table

3).

[Table 2 about here.]

[Table 3 about here.]

Our method outperformed or showed relatively equivalent performance to the LASSO in

FPR and FNR in every setting (Table 1). In sensitivity analyses not shown, we found the

LASSO tuned with a λLASSO that was within one standard error of the minimum performed

better than a λLASSO that minimized the cross-validation error in our simulations. Addition-

ally, the LASSO method was outperformed by EMVS for logistic regression models. EMVS

for multistate models on data with equally spaced assessment times showed comparable

performance to EMVS for logistic regression models. Here, EMVS for multistate models
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performed better in all of the 8 scenarios for average FPR. However, EMVS for logistic

regression performed better in 4 of the 8 scenarios for average FNR. The differences in

performance were small and could be attributed to tuning parameterization.

In scenarios 9-16, we found the performance of EMVS for multistate models on data with

randomly spaced assessment times was marginally worse than that for data with for equally

spaced assessment times (Table 4). This discrepancy could be due to smaller observation

windows for some individuals, since their first and last assessments may be later or earlier

than the equally spaced assessments, respectively.

[Table 4 about here.]

Across all combinations of the number of individuals, number of assessments, and cor-

relation structures, the method correctly selected associated covariates in 98.7% of the

simulations on average (min = 93.2% and max = 100%). Additionally, the method correctly

excluded unassociated covariates in 98.7% of the simulations on average (min 87.6% and max

100%). Again, the method performed better for continuous covariates than binary covariates.

With randomly spaced assessment times, our method estimated unknown parameters with

minimal bias, MCE very close to the SE, and CP around 92% on average, similar to the

results found with equally spaced assessment times (Table 5). Additionally, the MSE for

the steady-state probability of transition from a non-smoking state to a smoking state with

randomly spaced assessments was similar to the MSE observed with the equally spaced

assessments (Table 3).

[Table 5 about here.]

[Figure 1 about here.]
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Figure 1. Estimated and observed smoking and non-smoking prevalence one week after
the quit attempt in the PREVAIL Study. Time is in days.
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Table 1
Simulation Scenarios 1-8 Results: Comparison of selection performance between EMVS for multistate models and the

LASSO and EMVS for logistic regression models when assessment times are equally spaced. The number of Individuals,
number of Assessments, and correlation structure between covariates, ρ, is varied in each scenario. Here, the false positive

(FPR) and false negative (FNR) rates are compared.

Individuals Assessments ρ
FPR FNR

a b c a b c

100 30 0 0.010 -0.026 -0.011 0.017 0.017 -0.023
100 30 0.75 0.030 -0.038 0.005 0.020 0.019 -0.056
100 70 0 0.002 -0.037 -0.028 0.000 0.000 -0.002
100 70 0.75 0.002 -0.030 -0.026 0.000 0.000 -0.001
150 30 0 0.004 -0.031 -0.017 0.002 0.002 -0.013
150 30 0.75 0.011 -0.036 -0.014 0.003 0.003 -0.019
150 70 0 0.000 -0.041 -0.031 0.000 0.000 0.000
150 70 0.75 0.000 -0.029 -0.021 0.000 0.000 -0.001

a EMVS for multistate models
b EMVS for multistate models - EMVS for logistic models
c EMVS for multistate models - LASSO
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Table 2
Simulation Scenarios 1-8 Results: Evaluation of Bias and Monte Carlo Error (MCE) of the estimated, unknown

parameters, square root of the average Louis’s method posterior variance estimates (SE), and coverage probabilities (CP) of
equal tailed 95% credible intervals at varying numbers of individuals, assessments, and correlation structures, ρ, for equally

spaced assessment times.

100 Individuals 150 Individuals
True Effect Bias MCE SE CP Bias MCE SE CP

30 Assessments ρ = 0 λ0 0.029 0.127 0.108 0.900 0.022 0.091 0.088 0.928
βλ,1 0.024 0.159 0.127 0.908 0.009 0.109 0.106 0.956
βλ,2 -0.026 0.134 0.108 0.932 -0.010 0.085 0.088 0.960
βλ,5 0.004 0.090 0.078 0.932 -0.003 0.068 0.064 0.940
µ0 0.056 0.127 0.097 0.856 0.037 0.093 0.078 0.884
βµ,1 -0.021 0.151 0.127 0.916 -0.025 0.104 0.106 0.956
βµ,5 0.000 0.092 0.078 0.928 0.000 0.070 0.064 0.916
βµ,6 0.002 0.073 0.059 0.896 0.002 0.057 0.048 0.912

30 Assessments ρ = 0.75 λ0 0.042 0.126 0.102 0.868 0.029 0.097 0.083 0.900
βλ,1 -0.001 0.144 0.122 0.940 0.003 0.105 0.100 0.956
βλ,2 -0.017 0.138 0.101 0.916 -0.011 0.095 0.084 0.928
βλ,5 0.000 0.130 0.094 0.908 -0.001 0.089 0.079 0.920
µ0 0.050 0.106 0.091 0.880 0.039 0.086 0.074 0.904
βµ,1 -0.023 0.149 0.121 0.940 -0.018 0.113 0.100 0.928
βµ,5 -0.015 0.143 0.101 0.876 -0.006 0.088 0.083 0.956
βµ,6 0.018 0.119 0.087 0.888 0.005 0.080 0.072 0.940

70 Assessments ρ = 0 λ0 0.013 0.083 0.071 0.896 0.010 0.066 0.058 0.904
βλ,1 -0.003 0.085 0.086 0.972 0.002 0.066 0.070 0.960
βλ,2 -0.006 0.072 0.072 0.944 -0.007 0.057 0.058 0.956
βλ,5 0.000 0.062 0.051 0.904 -0.001 0.051 0.042 0.892
µ0 0.023 0.098 0.063 0.772 0.010 0.081 0.052 0.784
βµ,1 -0.016 0.088 0.086 0.928 -0.008 0.069 0.070 0.940
βµ,5 -0.001 0.064 0.051 0.892 0.003 0.049 0.042 0.900
βµ,6 0.004 0.050 0.039 0.860 0.004 0.040 0.033 0.868

70 Assessments ρ = 0.75 λ0 0.002 0.080 0.067 0.900 -0.001 0.071 0.055 0.896
βλ,1 0.002 0.072 0.081 0.976 0.007 0.062 0.066 0.960
βλ,2 -0.005 0.064 0.067 0.960 -0.004 0.056 0.055 0.940
βλ,5 -0.005 0.072 0.065 0.936 0.002 0.060 0.056 0.920
µ0 0.018 0.067 0.060 0.916 0.014 0.054 0.050 0.928
βµ,1 -0.017 0.077 0.080 0.952 -0.011 0.063 0.065 0.948
βµ,5 -0.002 0.076 0.068 0.928 0.006 0.064 0.057 0.924
βµ,6 0.003 0.073 0.060 0.880 0.000 0.062 0.050 0.896
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Table 3
Simulation scenarios 1-16: Evaluation of the steady-state probability MSE at varying numbers of individuals, assessments,

and correlation structures, ρ, for equal spaced and randomly spaced assessment times.

Individuals Assessments ρ Equally Spaced Randomly Spaced

100 30 0 0.0581 0.0583
100 30 0.75 0.0349 0.0345
100 70 0 0.0586 0.0590
100 70 0.75 0.0348 0.0352
150 30 0 0.0583 0.0575
150 30 0.75 0.0347 0.0345
150 70 0 0.0582 0.0583
150 70 0.75 0.0347 0.0349
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Table 4
Simulation Scenarios 9-16 Results: Selection performance using EMVS for multistate models when assessment times are

randomly spaced. The number of Individuals, number of Assessments, and correlation structure between covariates, ρ, is
varied in each scenario. Here, the false positive (FPR) and false negative (FNR) rates are presented.

Individuals Assessments ρ FPR FNR

100 30 0 0.016 0.024
100 30 0.75 0.049 0.039
100 70 0 0.003 0.001
100 70 0.75 0.005 0.001
150 30 0 0.007 0.010
150 30 0.75 0.017 0.010
150 70 0 0.001 0.000
150 70 0.75 0.001 0.000
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Table 5
Simulation Scenarios 9-16 Results: Evaluation of Bias and Monte Carlo error (MCE) of the estimated, unknown

parameters, square root of the average Louis’s method posterior variance estimates (SE), and coverage probabilities (CP) of
equal tailed 95% credible intervals at varying numbers of individuals, assessments, and correlation structures, ρ, for randomly

spaced assessment times.

100 Individuals 150 Individuals
True Effect Bias MCE SE CP Bias MCE SE CP

30 Assessments ρ = 0 λ0 0.008 0.153 0.121 0.860 -0.025 0.112 0.099 0.892
βλ,1 -0.008 0.157 0.141 0.916 0.004 0.129 0.118 0.936
βλ,2 -0.052 0.154 0.119 0.908 -0.035 0.116 0.098 0.936
βλ,5 0.005 0.103 0.085 0.904 0.003 0.076 0.070 0.944
µ0 0.000 0.146 0.108 0.844 -0.019 0.118 0.088 0.856
βµ,1 -0.071 0.173 0.140 0.896 -0.059 0.144 0.117 0.924
βµ,5 0.001 0.103 0.086 0.896 -0.003 0.077 0.070 0.912
βµ,6 0.007 0.082 0.064 0.896 0.008 0.063 0.052 0.896

30 Assessments ρ = 0.75 λ0 -0.031 0.150 0.114 0.868 -0.044 0.116 0.094 0.872
βλ,1 0.020 0.182 0.134 0.892 0.019 0.128 0.112 0.948
βλ,2 -0.037 0.141 0.114 0.936 -0.028 0.112 0.093 0.920
βλ,5 0.015 0.169 0.103 0.860 -0.002 0.101 0.086 0.916
µ0 -0.016 0.120 0.102 0.896 -0.024 0.095 0.083 0.908
βµ,1 -0.046 0.166 0.133 0.908 -0.039 0.121 0.112 0.940
βµ,5 -0.016 0.168 0.111 0.864 -0.010 0.105 0.092 0.924
βµ,6 0.033 0.143 0.098 0.888 0.018 0.092 0.080 0.940

70 Assessments ρ = 0 λ0 -0.001 0.094 0.081 0.924 -0.013 0.079 0.067 0.904
βλ,1 -0.002 0.093 0.098 0.952 -0.002 0.074 0.080 0.964
βλ,2 -0.009 0.091 0.081 0.940 -0.006 0.068 0.066 0.920
βλ,5 0.000 0.065 0.057 0.896 0.000 0.052 0.046 0.916
µ0 -0.001 0.100 0.072 0.860 -0.006 0.082 0.059 0.836
βµ,1 -0.033 0.096 0.097 0.948 -0.028 0.078 0.080 0.952
βµ,5 0.000 0.067 0.057 0.888 0.002 0.053 0.047 0.912
βµ,6 0.000 0.055 0.043 0.888 0.000 0.046 0.036 0.856

70 Assessments ρ = 0.75 λ0 -0.020 0.088 0.077 0.896 -0.025 0.076 0.063 0.872
βλ,1 0.013 0.084 0.092 0.940 0.009 0.076 0.075 0.924
βλ,2 -0.006 0.073 0.076 0.964 -0.002 0.060 0.062 0.964
βλ,5 -0.001 0.075 0.072 0.940 -0.002 0.066 0.061 0.936
µ0 -0.013 0.076 0.068 0.920 -0.012 0.061 0.056 0.932
βµ,1 -0.014 0.088 0.092 0.948 -0.012 0.069 0.075 0.964
βµ,5 -0.003 0.079 0.076 0.936 0.002 0.062 0.064 0.960
βµ,6 0.011 0.077 0.066 0.932 0.007 0.056 0.055 0.928


