Molecular basis for the folding of B-helical autotransporter passenger domains
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Supplementary Figure 1 | Proteinase K does not permeabilize the outer membrane of E.
coli TOP10 or E. coli BW25113AompT. (a) E. coli TOP10 and (b) E. coli BW25113AompT
incubated for up to 40 min of a mock ‘chase’ period at 25 °C and then immediately precipitated
with TCA (- PK), or incubated on ice with 200 mg/mL proteinase K (+ PK), or incubated on
ice with 200 mg/mL polymyxin B and 200 mg/mL proteinase K (+ Polymyxin B and PK).
After addition of Phenylmethanesulfonyl fluoride (see Methods), proteinase K-treated samples
were TCA precipitated and all samples were then analyzed by SDS-PAGE and immunoblotting
for the periplasmic protein SurA. In both bacterial strains, the intact SurA protein (48 kDa) was
observed in — PK and + PK samples. Note that a thick band corresponding to the migration
position of proteinase K is also observed. These data show that the amount of proteinase K in
use does not permeabilize the E. coli outer membrane, which remains intact during proteinase
K treatment. Furthermore, SurA was degraded almost to completion by proteinase K in the
presence of polymyxin B in E. coli TOP10. In contrast, intact SurA was observed in samples
treated with proteinase K in the presence of polymyxin B in E. coli BW25113AompT,
indicating that 200 mg/mL polymyxin B is insufficient to permeabilize this strain’s outer
membrane. As a consequence, only E. coli TOP10 was used to perform pulse-chase assays in
the presence of polymyxin B and proteinase K in this study. Images are representative of at
least two independent experiments.
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Supplementary Figure 2 | Truncation of L4 perturbs passenger domain translocation. (a)
Topology model of the Pet B-barrel domain showing the L3 and L4 truncations created by
replacing T1130-L1134 and Qu1177-D1191 With two and with three glycine residues (shown in red),
respectively. (b) Pulse-chase expression of Pet, PetAL3 and PetAL4, and sensitivity to
proteinase K (PK) in E. coli TOP10. (c) Pulse-chase PetAL4 maturation as above, but also in
the presence of polymyxin B prior to the addition of proteinase K as indicated (+ Polymyxin B
and PK). (d) Topology model of the Pet B-barrel domain showing the L4 truncation created by
replacing Q1177-D1191 With three glycine residues (shown in red). (e) Pulse-chase expression of
Pet and PetAL4, and sensitivity to proteinase K (PK) in E. coli BW25113AompT. (f) Topology
model of the Pet B-barrel domain showing the partial L4 truncation created by replacing S1179-
Ti18s with three glycine residues (shown in red). (g) Pulse-chase expression of Pet and
PetAL4P, and sensitivity to proteinase K (PK) in E. coli TOP10. All samples were TCA
precipitated prior to SDS-PAGE and immunoblotting with anti-Pet passenger domain
antibodies. Images are representative of at least two independent experiments.
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Supplementary Figure 3 | Pet biogenesis in E. coli BW25113. Pulse-chase expression of Pet
and PetALS, and sensitivity to proteinase K (PK) in E. coli BW25113 monitored by SDS-
PAGE and immunoblotting with anti-Pet passenger domain antibodies. All samples were TCA
precipitated prior to SDS-PAGE. Image is representative of at least two independent
experiments.
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Supplementary Figure 4 | Mutation of L5 affects folding of the Pet passenger domain. (a)
Topology model of the Pet B-barrel domain showing the Pet™P/S, pettBlP gnd Pet-oOmpF
mutations (in red). (b) Pulse-chase expression of Pet, Pet®#S, pett5P’? and Pet“*°™PF and
sensitivity to proteinase K (PK) in E. coli BW25113AompT monitored by SDS-PAGE and
immunoblotting with anti-Pet passenger domain antibodies. All samples were TCA
precipitated prior to SDS-PAGE. Images are representative of at least two independent
experiments.
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Supplementary Figure 5 | Hydrophobic and charged residues do not mediate passenger
folding. (a) Topology model of the Pet B-barrel domain showing the Pet-SVL/N, pettSRDEK gpg
Pet>T®A mutations (in red). (b) Pulse-chase expression of Pet, Pet-SVL/N  pettSRDEK ang
Pet->TP'A and sensitivity to proteinase K (PK) in E. coli TOP10 monitored by SDS-PAGE and
immunoblotting with anti-Pet passenger domain antibodies. All samples were TCA
precipitated prior to SDS-PAGE. Images are representative of at least two independent
experiments. (c) The crystal structure of the EspP B-barrel domain (PDB code 3SLJ) showing
putative salt-bridge interactions between Ri237 in B-strand 1 and E1242 in B-strand 2 (top of L5),
and a Ei233 in B-strand 1 and Ri244 in B-strand 2 (bottom of L5). (d) The crystal structures of
FadL from Pseudomonas aeruginosa (PDB code 3DWO) and OmpF from E. coli (PDB code
27ZFG). In each case, the B-strands within the B-hairpin loop are shown in green.



Pet LGY-————- QFDLFA-NGETVLRDASGEKRIKGEK----DGRMLMNVGLNAEIRDN-VRF
EspP LGY————— QFDLLA-NGETVLRDASGEKRIKGEK----DSRMLMSVGLNAEIRDN-VRF
Tsh/l-ﬂ:E LHY————- EFDLTD-SADVHLKDAAGEHQINGRK----DSRMLYGVGLNARFGDN-TRL
Vat LHY====== EFDLTD-SADVHLKDAAGEHQINGRK----DGRMLYGVGLNARFGDN-TRL
Boa VDY==—m—e QFDLVA-NGETALRDASGEKRFTGEK----DSRMLYNVGLNAQVKDN-VRF
Pic TSW—————= QFDLLN-NGETVLRDASGEKRIKGEK----DSRMLEFNVGMNAQIKDN-MRF
ﬂg_A LGY--=—-- QFDLFA-NGETVLRDASGEKRIKGEK----DGRILMNVGLNAEIRDN-LRF
Espl LGY--———~ QFDLLA-NGETVLRDASGERKRIKGEK----DSRMLMSVGLNAEIRDN-VRF
EpeA LGY-————— QFDLLA-NGETVLRDASGERRIKGEK----DSRMLMSVGLNAEIRDN-VRF
EaaA LGY-————— QFDLLA-NGETVLRDASGEKRIKGEK----DGRMLMSVGLNAEVRDN-IRF
Sat LGY-===== QFDLFA-NGETVLRDASGEKRIKGEK----DGRMLMNVGLNAETRDN-LRF
EatA LGY————— QFDLLA-NGETVLQDASGKKHFKGEK----DSRMLMNVGTNVEVKDN-MRF
EspC LGY—————- QFDLLA-NGETVLRDASGERKRFEGEK----DSRMLMNVGMNAE IKDN-MRF
SepA LGY-————— QFDLLA-NGETVLQDASGEKRFEGEK----DSRMLMTVGMNAEIKDN-MRL
TibA AAV-————— SHEFSD-NNKVRINDTYDFRNDISGT----TGK--YGLGVNAQLTPN-AGV
BapA VNV-—=——— KHEFLD-GTRVR---VAGVPVSSRMA----RTWGSVGVGADYGWGER-YAIL
VacA VLQ--==-- EFANFG-SSNAVSLNTFKVNAVRNPL----NTHARVMMGGELKLAKE-VFL
EstA HER-————- EYEDDT-QDLTMSLNSLPGNRFTLEGYTPQDHLNRVSLGFSQKLAPE-LSL
TapA TGY-————— AGTLKVAQVETVGLTSTTETGLVTP————- NGALDTGAGVTLRGHHTPWTV
PspA LGW-————- QHSLSAVESEEHLAFVAGGPSFAVQSSPLMRDAALVGVQASLALSKS-TRV
NalP VERDLN---GRDYTVTGGFTGATAATGKTGARNMP-~--HTRLVAGLGADVEFGNG-WN-
Agd3 VNWWVQPSVIRTFSSRGDMRVGT STAGSGMTFSPSQN--GTSLDLQAGLEARVREN-ITL
IcsA/VirG VNW-——-—— KWSSKQ-YGVIM-~---NGMSNHQIGN----RNVIELKTGVGGRLADN-LSI
AIDA ANW-—--——— I NTHEFGVKMSDDSQLLSGS----RNQGEIKTGIEGVITQN-LSV
IgAl AAY-——-——- FANYGKGGVNV-——-— GGKSFAYKA----DNQQQYSAGVALLYRNVTLNV
BrkA LGW-————- TQEFKS-TGDVR---TNGIGHAGAGR----HGRVELGAGVDAALGKG-HNL
(b)
Tsh/Hbp Vat Boa Pic SigA Espl EspP EpeA EaaA Sat Pet EatA EspC  SepA
1 2 3 4 5 6 7 8 9 10 1 12 13 14
TshHbp 1 (Type_5) 100.0 98.92 6209 6245 60.65 61.01 61.73 62.09 6245 6209 6245 5921 6209 61.01
Vat 2 (Type 5 9892 100.0 6137 6245 61.37 60.65 61.37 61.73 6282 6245 6282 5921 6209 61.01
Boa 3 (Type_5) 62.09 61.37 100.0 71.84 68.59 68.59 6068 6968 6850 6823 6895 6498 7004 67.15
Pic 4 (Type s5) 6245 62.45 7184 100.0 79.06 80.14 80.14 80.14 80.87 7906 7978 7148 7942 7726
SigA 5 (Type 5) 6065 61.37 68.59 79.06 100.0 86.28 87.73 87.36 8809 8881 89.17 7184 8123 7870
Espl 6 (Type_5) 61.01 60.65 6859  80.14 86.28 100.0 96.75 96.39 9097 8881 8980 7256 7942 7726
EspP 7 (Type 5 6173 61.37 6968  80.14 87.73 96.75 1000 9964 9242 8989 9097 7365 8123 7906
EpeA 8  (Type 5 62.09 61.73 6968  80.14 87.36 96.39 99.64 100.0 9278 9025 9134 7365 8159 7942
EaaA 9  (Type 5) 6245 62.82 6859  80.87 88.09 90.97 92.42 92.78 1000 9242 93.14 7437 8195 7942
Sat 10 (Type_5) 62.09 62.45 68.23 79.06 88.81 88.81 80.89 90.25 92 42 1000 9892 7292 8014 7798
Pet M (qype 5 6245 62.82 68.95 79.78 89.17 89.89 90.97 91.34 93.14 98.92 1000 7365 8087 7870
EatA 12 (Type_5) 59.21 59.21 6498 71.48 71.84 7256 73.65 73.65 7437 7292 7365 1000 8339 8087
EspC 1B (rype 5 6209 62.09 70.04 79.42 81.23 79.42 81.23 81.59 8195  80.14 80.87 8339 1000 9422
SepA 14 (Type_5) 61.01 61.01 67.15 77.26 78.70 77.26 79.06 79.42 79.42 77.98 78.70 80.87 9422 100.0
(c)
EstA VacA NalP Agd3 TapA PspA IgA1  lcsANVIrG  AIDA BrkA TibA/TynE BapA
1 2 3 4 5 6 7 8 9 10 " 12
EstA 1 (Type_4) 1000 15.30 16.01 12.78 14.03 18.73 12.88 16.30 15.99 14.49 13.62 14.03
VacA 2 (Type_3) 15.30 100.0 11.66 15.65 13.26 16.73 15.13 15.30 14.55 15.90 15.79 11.64
NalP 3 (Type_6) 16.01 11.66 100.0 13.74 15.27 17.73 16.04 13.11 13.86 16.30 15.30 13.98
Ag43 4 (Type_13) 1278 15.65 13.74 100.0 14.06 15.47 14.46 17.10 15.30 20.15 19.62 19.62
TapA 6 (Type_2) 1403 13.26 15.27 14.06 100.0 19.00 15.06 12.36 14.29 16.48 13.55 12.88
PspA 6 (Type_1) 18.73 16.73 17.73 15.47 19.00 100.0 16.79 19.03 16.04 20.30 16.79 17.52
IgA1 7 (Type_8) 1288 15.13 16.04 14.46 15.06 16.79 100.0 17.18 15.65 17.75 24.01 15.93
IcsANVIrG 8 (Type_12) 16.30 15.30 13.11 17.10 12.36 19.03 17.18 100.0 37.46 18.08 20.37 18.51
AIDA 9 (Type_13) 15.99 14.55 13.86 15.30 14.29 16.04 15.65 37.46 100.0 17.34 20.74 17.08
BrkA 10 (Type_10) 14.49 15.90 16.30 20.15 16.48 20.30 17.75 18.08 17.34 100.0 26.37 21.00
TIbA/TynE 11 (Type_10) 1362 15.79 15.30 19.62 13.55 16.79 24.01 20.37 20.74 26.37 100.0 21.75
BapA 12 (Type_14) 1403 11.64 13.98 19.62 12.88 17.52 15.93 18.51 17.08 21.00 21.75 100.0




Supplementary Figure 6 | Multiple sequence alignment and percent identity of
autotransporter B-barrel domains. (a) Multiple sequence alignment (performed using
Musclel) on the amino acid sequence of B-barrel domains that are representative of 11 distinct
Types. The residues corresponding to L5 of EspP (PDB 3SLJ), Tsh/Hbp (PDB 3AEH), EstA
(PDB 3KVN), AIDA-1 (PDB 4MEE), NalP (PDB 1UYN), and BrkA (PDB 3QQ2) are shown
in blue font and mapped according to their crystal structures. The L5 regions in SPATE -
barrels (shown in black font and underlined) are the same length and contain several residues
that are highly or completely conserved (highlighted in yellow), particularly within the regions
that form a B-hairpin (shown in red font). The L5 regions in non-SPATE B-barrel domains
(shown in black font) differ substantially with each other and with those in SPATEs. (b)
Percent identity between SPATE B-barrel domains ranges from 59.21- to- 99.64 %. (c) Percent
identity between non-SPATE B-barrel domains ranges from 11.64- to- 37.46 % and even those
belonging to the same Type share low sequence identity.
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Supplementary Figure 7 | Structural analysis of the AIDA-I and EstA p-barrel domains.
The crystal structures of EstA from P. aeruginosa (PDB code 3KVN) (a) and AIDA-I from E.
coli (PDB code 4MEE) (b). In each case, the B-strands within the LS and L4 B-hairpins are
shown in green. The central four-stranded parallel p-sheet within the globular passenger
domain of EstA is shown in orange. (c) Topology model of the Pet B-barrel domain showing
the Pet5*" and Pet™APA mutations (in red). (d) Pulse-chase expression of Pet™F** and
PetSAIPA “and sensitivity to proteinase K (PK) in E. coli TOP10 monitored by SDS-PAGE
and immunoblotting with anti-Pet passenger domain antibodies. All samples were TCA
precipitated prior to SDS-PAGE. Images are representative of at least two independent

experiments.
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Supplementary Figure 8 | Purification of PetA!°% and PetAL51-5%4, (a) Cleaved passenger

domains were purified further by gel filtration in LDAO free buffer (* indicates the passenger
domain elution peak), resulting in a batch of protein containing just the ~51 kDa species as
analysed by SDS-PAGE and Coomassie staining (insets). (b) Cleaved B-barrel domains were
purified further by gel filtration chromatography in buffer containing 0.05% (w/v) LDAO (*
indicates the p-barrel elution peak), resulting in a batch of protein containing just the cleaved
~30 kDa species as analysed by SDS-PAGE and Coomassie staining (inset). Heat modifiability
(HM) in the in vitro-folded Pet*!"°** and PetAL5!"°* B-barrels was evident by the increased
migration of the folded species from samples exposed to SDS at 25 °C.
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Figure 2c PetL581/G
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Figure 4c Passenger antibody (top)
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Supplementary Figure 5b PetL5R/D,E/K
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Supplementary Figure 8b PetA1-554 (left)
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Supplementary Figure 9 | Raw image files. The raw image files of the cropped immunoblots
and Coomassie-stained gels displayed in the Figures and Supplementary Figures. Sizes (in
kDa) are indicated on the left. A red box is used to indicate the portion of the raw image that
was cropped and displayed in the indicated Figures and Supplementary Figures.
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Supplementary Table 1. Strains and plasmids used in this study

Strain/Plasmid Relevant description Reference

E. coli TOP10 F—mcrA A(mrr-hsdRMS-mcrBC) ®80lacZAM15 Invitrogen
AlacX74 recAl araD139 A(ara leu) 7697 galU galK
rpsL (StrR) endAl nupG

E. coli BW25113 lacle rrnBriw AlacZwis hsdR514 AaraBADaws ArhaBADwore 2

E. coli BW25113 An in-frame ompT knock-out mutant of E. coli BW25113 2

ompT::kan

E. coli BL21 F—ompT hsdSB(rB—, mB-) gal dcm (DE3) Invitrogen

(DE3)

pBADHisA Arabinose-inducible expression vector, ampicillin Invitrogen
resistant

pBADPet pBADHisA derivative expressing de novo synthesized Pet 3

pBADPetAL3 pBADPet derivative containing a de novo synthesized GenScript
NgoMIV-Aatll fragment that contains three G residues /
between Ai129 and T1136 to express Pet with a L3 This study
truncation

pBADPetAL4 pBADPet derivative containing a de novo synthesized GenScript
NgoMIV-Aatll fragment that contains three G residues /
between Kii76 and K119, to express Pet with a full L4 This study
truncation

pBADPetAL4P pBADPet derivative containing a de novo synthesized GenScript
NgoMIV-Aatll fragment that contains three G residues /
between F117s and Mi1gg to express Pet with a partial L4 This study
truncation

pBADPetALS5 pBADPet derivative containing a de novo synthesized GenScript
Kpnl-EcoRI fragment that contains three G residues /
between Ni23; and Ei24g to express Pet with a L5 This study
truncation

pBADPetL3B1/G pBADPet derivative containing a de novo synthesized GenScript
Aatll-EcoRl fragment where Ei233, T1234, V235, L123s, /
R1237, D123s in B-strand 1 of L5 are mutated to G to assess  This study
if these residues play a role in passenger domain folding

pBADPet-F/6 pBADPet derivative containing a de novo synthesized GenScript
Aatll-EcoRl fragment where E1242, K243, R1244, 11245, K1246 /
in B-strand 2 of L5 are mutated to G to assess if these This study
residues play a role in passenger domain folding

pBADPet-5U"C pBADPet derivative containing a de novo synthesized GenScript
Aatll-EcoRlI fragment where Lizs, Fi229, A1230, Ni231, /
E1248, Ki1249, D125g in the unstructured region beneath p- This study
strands 1 and 2 of L5 are mutated to G to assess if these
residues play a role in passenger domain folding

pBADPet-SVLN pBADPet derivative containing a de novo synthesized GenScript
Aatll-EcoRI fragment where V1235, Li23s, l1245 in B-strands  /
1 and 2 of L5 are mutated to N to assess if hydrophobic This study
residues within L5 play a role in passenger domain
folding

pBADPet-SR/DEK pBADPet derivative containing a de novo synthesized GenScript
Aatll-EcoRI fragment where Rizs7 and Eq33 in B-strand 1/
of L5 are mutated to D and K, respectively to disturb the  This study

putative salt bridges between Ri237 and Ei242, and Eizsz and
Ri1244
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pBADPet-5TP/A

pBADPett-5FadL

PBADPet-50mF

pBADPetLh1P

pPBADPett5/5=

pPBADPett5/=

pPBADPet5/=

pPBADPett52e

pPBADPett5/122

pPBADPet %5

pBADPetLSAI DA-I

pBADEspP

pBADESspPALS

pPET-22b+

pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where Ti234 and D12sg in B-strand 1
of L5 are mutated to A to assess if these residues within
L5 play a role in passenger domain folding

pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where B-strands 1 and 2 of L5 are
replaced with a loop region from FadL (PDB 3DWO) that
forms a B-hairpin structure to assess if a f-hairpin of an
unrelated OMP supports passenger domain folding
pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where B-strands 1 and 2 of L5 are
replaced with a loop region from OmpF (PDB 2ZFG) that
forms a -hairpin structure to assess if a -hairpin of an
unrelated OMP supports passenger domain folding
pBADPet derivative where Ei233, T1234, V1235, L1236, R1237,
D123s in B-strand 1 of L5 are mutated to P to eliminate
potential hydrogen bonds for f-strand augmentation
pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where the 6-residue long -strands
were shortened to 5 residues

pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where the 6-residue long B-strands
were shortened to 4 residues

pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where the 6-residue long B-strands
were shortened to 3 residues

pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where the 6-residue long B-strands
were shortened to 2 residues

pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where the 6-residue long B-strands
were shortened to 1 residue

pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where B-strands 1 and 2 of L5 are
replaced with a loop region from EstA (PDB 3KVN) that
forms a f-hairpin structure to assess if the L5 B-hairpin of
a non-SPATE autotransporter supports passenger domain
folding

pBADPet derivative containing a de novo synthesized
Aatll-EcoRI fragment where the L5 B-hairpin is replaced
with a loop region from AIDA-I (PDB 4MEE) that forms
a B-hairpin structure to assess if the L5 B-hairpin of a non-
SPATE autotransporter supports passenger domain
folding

pBADHisA derivative expressing de novo synthesized
EspP

pBADPet derivative containing a de novo synthesized
Sall-Hindlll fragment that contains three G residues
between Ni23s and Eizs3 to express EspP with a L5
truncation

IPTG-inducible expression vector allowing a C-terminal
hexahistidine-tag fusion, ampicillin resistant

GenScript
/
This study

GenScript
/
This study

GenScript
/
This study

This study

GenScript
/
This study
GenScript
/
This study
GenScript
/
This study
GenScript
/
This study
GenScript
/
This study
GenScript
/
This study

GenScript
/
This study

GenScript
/
This study
GenScript
/
This study

Novagen
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PETPetA!-%%4 Truncated pBADPet derivative containing a This study
hexahistidine-tagged Pet barrel-domain and the last 464
residues of the Pet passenger domain

pETPetAL5A55 Truncated pPBADPetALS5 derivative containing a This study
hexahistidine-tagged Pet barrel-domain and the last 464
residues of the Pet passenger domain

Note that the numbers next to the amino acid residues correspond to their position relative to the full-
length Pet protein (from M? to F2%) and full-length EspP protein (from M* to F13%),

Supplementary Table 2. Primers used in this study

Primer Sequence Reference
NdelPet464Fw  5°-GGGAATTCCATATGCAGGCGAACTCTATCTCT-3’ This study
XholPetRv 5’-CCGCTCGAGAGAGCCGAAAGAGTAACGGAAGTTC-3’ 3
SallPetFw 5’-GCTGGTCGACTTCATCGAAAAAAAAGG-3’ This study
HindllIPetRv 5’-CAGCCAAGCTTTTATCAATGATGATGAT-3’ This study
MPL5B1Pro 5’-TTCGACCTGTTCGCTAACGGTCCGCCACCTCCGCC This study

ACCGGCTTCTGGTGAAAAACGTATC-3’

Restriction enzyme sequences are in bold font, insertion sequences (Gly-Ser linker) are italicized, and
site-directed mutations are underlined.
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