PAX3-FOXO1 drives miR-486-5p and represses miR-221 contributing to the

pathogenesis of alveolar rhabdomyosarcoma

Jason A. Hanna, Matthew R. Garcia, Alicia Lardennois, Patrick J. Leavey III, Dino

Maglic, Alexandre Fagnan, Jonathan C. Go, Jordan Roach, Yong-Dong Wang, David

Finkelstein, and Mark E. Hatley

Supplementary Information Inventory

Supplementary Materials and Methods

Supplementary References

Supplementary Tables

Supplementary Table S1. Candidate microRNAs regulated by PAX3-FOXO1 and differentially expressed in FN-RMS and FP-RMS.

Supplementary Table S2. Cell line STR authentication.

Supplementary Table S3. qRT-PCR primers and Taqman Probes (Applied Biosystems).

Supplementary Table S4. PCR Primers and oligonucleotides used for cloning.

Supplementary Table S5. Mutations of microRNA recognition sites in target gene 3'UTRs.

Supplementary Figure S6. Oncogenic miR-486-5p target gene analysis in FP-RMS. Supplementary Table S7. *miRVana* mimics and antimiRs.

Supplementary Figures and Figure Legends

Supplementary Figure S1. PAX3-FOXO1 knockdown in Rh30 cells decreases proliferation, migration, and invasion.

Supplementary Figure S2. Knockdown of PAX3-FOXO1 induces myogenic differentiation.

Supplementary Figure S3. MicroRNAs regulated by PAX3-FOXO1.

Supplementary Figure S4. Target recognition sequences for miR-221-3p targets.

Supplementary Figure S5. Caspase 3/7 activity in antimiR transfected Rh41 cells.

Supplementary Figure S6. Oncogenic miR-486-5p in FP-RMS.

Supplementary Figure S7. Inhibition of miR-486 in additional FP-RMS cells reduces cell viability.

Supplemental Figure S8. Xenograft growth is reduced with miRZip-486-5p.

Supplementary materials and methods

Immunocytochemistry

Immunocytochemistry performed as previously described.¹ In brief, cells were grown on coverslips for 5 days in growth media or differentiation media (2% horse serum) with and without 50 ng/mL doxycycline. Cells were then fixed with 4% paraformaldehyde, permeabilized in 0.1% Triton X-100 and blocked in 15% normal goat serum (10000C, Invitrogen). Primary and secondary antibodies (Supplementary Table S5) were serially incubated for 1 hour at room temperature. VectaShield with DAPI (H-1500, Vector Laboratories, Burlingame, California, USA) was used for mounting the coverslips. Images captured on a Nikon Eclipse 80i at a magnification of 40x. The differentiation index was quantified by counting the number of MHC positive nuclei relative to the total number of nuclei in 4 random fields.

Supplementary References

- 1 Hanna JA, Garcia MR, Go JC, Finkelstein D, Kodali K, Pagala V *et al.* PAX7 is a required target for microRNA-206-induced differentiation of fusion-negative rhabdomyosarcoma. Cell Death Dis 2016; 7: e2256.
- 2 Hinson AR, Jones R, Crose LE, Belyea BC, Barr FG, Linardic CM. Human rhabdomyosarcoma cell lines for rhabdomyosarcoma research: utility and pitfalls. Frontiers in oncology 2013; 3: 183.

Supplementary tables

miRNA	log2 fold change FP-RMS vs FN-RMS	log2 fold change PAX3- FOXO1 shRNA	miRVana	Viability	Apoptosis
miR-221	-3.61	0.42	Mimic	Decreased	Increased
miR-18a	0.91	-0.23	AntimiR	NC*	NC*
miR-301b	0.96	-0.6	AntimiR	NC*	NC*
miR-301a	1.14	-0.35	AntimiR	NC*	NC*
miR-510	1.25	-1.57	AntimiR	NC*	NC*
miR-506	1.29	-1.66	AntimiR	NC*	NC*
miR-19a	1.32	-0.32	AntimiR	NC*	NC*
miR-335	1.61	-0.23	AntimiR	NC*	NC*
miR-326	1.62	-0.61	AntimiR	Decreased	NC*
miR-9	2.733	-0.095	AntimiR	NC*	NC*
miR-486	3.16	-0.56	AntimiR	Decreased	NC*

Supplementary Table S1. Candidate microRNAs regulated by PAX3-FOXO1 and differentially expressed in FN-RMS and FP-RMS.

*NC – no change

Supplementary Table S2. RMS cell line STR authentication.

	Cell Line								
	LHCN	RD	Rh3	Rh2	Rh4	Rh18	Rh28*	Rh30	Rh41
D3S1358	16, 18	15, 17	14, 17	15, 16	17	16	15, 16	15	17
TH01	8, 9	9.3	7	7, 8	7, 9.3	7	9, 9.3	9, 9.3	7, 9.3
D2S11	29, 30	28, 29	31.2, 32.2	29, 30	29, 31	32.2, 33.2	28, 30	29, 31.2	29, 31
D18S51	12, 18	13, 18	15, 20	12, 16	15, 16	16, 17	14, 18	15, 16	15, 16
Penta E	11, 16	12	5, 15	13, 15	11, 17	8, 13	7, 12	7, 17	11, 17
D5S818	11, 13	11	7, 11	10, 11	10, 13	12	11	12, 13	10, 13
D13S317	11, 13	13	12, 13	12	8, 9	12	10	11	8, 9
D7S820	9, 11	8, 12	10,11	12	10, 11	8, 10	8	10	10, 11
D16S539	12	10, 11	11, 12	11, 12	12, 13	9, 12	8, 9	12	12, 13
CSF1PO	10, 11	10, 11	10, 12	12	11, 12	10	11	10, 11	11, 12
Penta D	10, 12	11, 13	14, 16	13	9, 12	7, 12	10, 12	11, 12	9, 12
Amelogenin	XY	х	XY	х	х	х	XY	XY	х
vWA	15, 17	18	14, 17	16, 17	16, 18	15, 17	16, 18	17, 18	16, 18
D8S1179	10, 12	11, 15	12, 13	12,14	10, 13	13,15	11, 15	12, 15	10, 13
TPOX	8	9	8, 9	9, 11	8, 11	8, 9	8	8, 11	8, 11
FGA	20, 21	20,21	22	23, 24	20, 22	23	21, 23	22	20, 22

*Inconsistent with previously published STR, however matches STR of original xengraft.²

SYBR Primers		
Gene	Primer 1	Primer 2
ALK	TTTGTTGGTGATTCCAAGGAG	GCAGAGAGGGAAGGCTGTC
ARID4B	CATCAGTGCCCACTGTCAAA	GCAGCTGAACCTGGTGTTTT
CCND2	ACGGTACTGCTGCAGGCTAT	AGCTGCTGGCTAAGATCACC
CDK6	TGTCTGTTCGTGACACTGTGC	ATGCCGCTCTCCACCAT
СКМ	CTCCTTCTCCGTCATGCTCT	GGTGGAGAAGCTCTCTGTGG
CYCLD	CTCCTTTCCTGCGTCACACT	TTTGATGGAGTGCAGCTTTG
EMP	GAGTTCTGAAGGGTCCCAGC	TGCGGTCACATACTTCCAGA
ERBB3	TCACACTCAGGCCATTCAGA	GTGCTGGGCTTGCTTTTC
FGFR4	CCTCCAGGGACAAGACTGG	AGGAGCCAGGTGAGGAGG
FOXO1	GCACACGAATGAACTTGCTG	AAGAGCGTGCCCTACTTCAA
GRIN2A	GACGCTCCAAACTGGAAGAA	TATCTCCTCCCACACCTTCG
KIT	GATGGATGGATGGTGGAGAC	GGGATTTTCTCTGCGTTCTG
MET	TGTTCGATATTCATCACGGC	GCATTTTTACGGACCCAATC
PAX3-FOXO1	TCCAACCCCATGAACCCC	GCCATTTGGAAAACTGTGATCC
PIK3AP1	GGAAACAACCTTCTCGTCCTC	CTACGTGGCAGCTGTGAAAA
PIK3R1	TTGATAAGAAGAGGCGGGG	GGTTCTTCGAAAACTGAAGCA
PNPLA4	GGGGGAGATGGTTACTGTCC	GCAGGACTGAAGCTAGTGGAA
PTEN	CGGTGTCATAATGTCTTTCAGC	TGAAGGCGTATACAGGAACAAT
SMARCA5	TTGGAGGCAAACTCTTTTCAA	TACAAACAACTGCCTTGGGG
SMARCD2	CCCTGCAGTTCCTGCACTAT	GCCATCAAAAAGCCTCTGAC
SOCS2	GGAGGACGGATGACAAAGTC	AGACACTCTCCGGACTGAGG
TOB1	TTCACTGGTCCCTTTTCACC	ATTGATGATGTTCGTGGCAA
TWF1	ATCCCAGGAATCTGAAGGCT	TCTTTGCCAGAGCCAGAAAT
	1	1
Taqman Probe	Assay ID	
18S	4308329	
ARID1A	Hs00195664_m1	
sANK1	Hs00252830_m1	
<i>U6</i> snRNA	4427975-001973	
hsa-miR-18a	4427975-002422	
hsa-miR-19a	4427975-000395	
hsa-miR-9	4427975-000583	
hsa-mir-221	4427975-000524	
hsa-miR-301b	4427975-002392	
hsa-miR-301a	4427975-000528	
has-miR-510	4427975-002241	
hsa-miR-506	4427975-001050	
hsa-miR-326	4427975-000542	
hsa-miR-486	4427975-001278	
hsa-miR-335	4427975-000546	

Supplementary Table S3. qRT-PCR primers and Taqman Probes (Applied Biosystems).

Cappionionally rabi					
PAX3-FOXO1 shRNA					
Target Sequence	тстсасстсадааттсааттс				
Fwd Oligo (5'-3')					
Rev Oligo (5'-3')	AATTCAAAAATCTCACCTCAGAATTCAATTCCTCGAGGAATTGAATTCTGAGGTGAGA				
Scrambled shRNA					
Target Sequence	CCTAAGGTTAAGTCGCC				
Fwd Oligo (5'-3')	CCGGCCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAACCTTAGGTTTTTG				
Rev Oligo (5'-3')	AATTCAAAAAACCTAAGGTTAAGTCGCCCTCGCTCGAGCGAG				
PAX3-FOXO1 DsiRNA					
Target Sequence	ТСТСАССТСАДААТТСААТТС				
Antisense Oligo (5'-3')	rUrArU rGrArC rGrArA rUrUrG rArArU rUrCrU rGrArG rGrUrG rArGrA				
Molecular Cloning Pri	mers for pBabe-PAX3-FOXO1-Puro				
PAX3-FOXO1 Fwd	CCGGATCCGCGAAGTGCCCCCAGG				
PAX3-FOXO1 Rev	CCGTCGACCCT GCTCACTAACCCTCAGCC				
psiCHECK2 Sensor O	ligos				
miR-221 sensor Fwd	TCGAGGAAACCCAGCAGACAATGTAGCTGC				
miR-221 Sensor Rev	GGCCGCAGCTACATTGTCTGCTGGGTTTCC				
miR-486 Sensor Fwd	TCGAGATCCTGTACTGAGCTGCCCCGGTCGACATCCTGTACTGAGCTGCCCCGGC				
miR-486 Sensor Rev	GGCCGCCGGGGCAGCTCAGTACAGGATGTCGACCGGGGCAGCTCAGTACAGGATC				
psiCHECK2 Site Directed Mutagenesis Primers of 3'UTRs					
CCND2 Primer 1	AGTTTTGGTTATGGCCCATATAGACATTTCCCCATTAGATAGCAATATGGTGG				
CCND2 Primer 2	CCACCATATTGCTATCTAATGGGGAAATGTCTATATGGGCCATAACCAAAACT				
TWF1 Primer 1	TACTTTATATCAACATGGAATGATTTCAGTTCTAAGGTACTAAAAGCTGGACTTTTAAAAAAACTAGTAT				
TWF1 Primer 2	ATACTAGTTTTTTAAAAGTCCAGCTTTTAGTACCTTAGAACTGAAATCATTCCATGTTGATATAAAGTA				
Molecular Cloning Primers for pCMV6 Expression Constructs					
pCMV6-miR-486 Fwd	CCCCGAATTCGCAGTGTGGCCACAGAGCA				
pCMV6-miR-486 Rev	CCCCGTCGACCAGAAAGCTAGAGCCTCCTTGC				
pCMV6-MYOD1 Fwd	AAGCTTGAATTCCTTTGCTATCTACAGCTTGGGTTGGG				
pCMV6-MYOD1 Rev	GGATCCGTCGACTCAGAGCACCTGTGATATCGGGTTG				
pCMV6-PAX3-FOXO1 Fwd	CCGTCGACGCGAAGTGCCCCCAGG				
pCMV6-PAX3-FOXO1 Rev	CCGGATCCCCTGCTCACTAACCCTCAGCC				

Supplementary Table S4. PCR Primers and oligonucleotides used for cloning.

Supplementary Table S5. Mutations of miRNA recognition sites in target gene 3'UTRs.

Gene	Location	Original Site*	Mutated Site**	
CCND2 miR-221 Site	761-767	CUAUCUAAUGGGGAAAUGUAGCU	CUAUCUAAUGGGGAA <u>AUGUCUA</u> U	
CDK6 miR-221 Site A	6813-6820	UAAACAAAUUAUCUC <u>AUGUAGC</u> A	UAAACAAAUUAUCUC <u>AUGUGAU</u> A	
CDK6 miR-221 Site B	6968-6974	GCCAAGAACUAUGACUGUAGCAC	GCCAAGAACUAUGAC <u>UGUGAU</u> AC	
ERBB3 miR-221 Site	175-181	CAAAAUUCUUAUGGU <u>AUGUAGC</u> C	CAAAAUUCUUAUGGU <u>AUGU<mark>GAU</mark>C</u>	
TWF1 miR-486 Site	52-59	AAAGUCCAGCUUUUA <u>GUACAGG</u> A	AAAGUCCAGCUUUUA <u>GUACCUU</u> A	

*microRNA recognition site underlined **nucleotides mutated highlighted in red.

Immunoblot antibodies							
Antibody	Supplier	Product No.	Dilution	Diluent			
AKT	Cell Signaling Technology	9272	1:1000	BSA			
Phospho-AKT (Ser473)	Cell Signaling Technology	4060	1:1000	BSA			
CDK6	Cell Signaling Technology	3136	1:1000	Milk			
CCND2	Cell Signaling Technology	3741	1:1000	BSA			
ERBB3	Cell Signaling Technology	12708	1:1000	Milk			
FOXO1	Cell Signaling Technology	2880	1:1000	BSA			
GAPDH	EMD Millipore	MAB374	1:10000	Milk			
PAX3	Developmental Studies Hybridoma Bank	Supernatant	1:500	Milk			
PTEN	Cell Signaling Technology	9559	1:1000	BSA			
TWF1	Cell Signaling Technology	8461	1:1000	BSA			
Immunocytochemistry anti	bodies						
Antibody	Supplier	Product No.	Dilution				
МНС	Developmental Studies Hybridoma Bank	MF 20	1:25				
Alexa 488 goat anti- mouse	Invitrogen	A-11029	1:500				
Alexa 488 goat anti- mouse	Invitrogen	A-11029	1:500				
Immunohistochemistry antibodies							
Antibody	Supplier		Dilution	Retrieval			
Ki67	ThermoFisher Scientific	RM-9106	1:100	HIER			
Myogenin	Dako	M3559	1:200	HIER			
TurboGFP	ThermoFisher Scientific	PA5-22688	1:1000	HIER			

Supplementary Table S6. Antibodies used for immunoblots, immunocytochemistry, and immunohistochemistry.

Supplementary Table S7. *miRVana* mimics and antimiRs.

miRNA	miRVana	ID	Catalog Number
miR-18a	AntimiR	MH12973	4464084
miR-19a	AntimiR	MH10649	4464084
miR-301a	AntimiR	MH10978	4464084
miR-301b	AntimiR	MH12929	4464084
miR-326	AntimiR	MH10686	4464084
miR-335	AntimiR	MH10063	4464084
miR-486-5p	AntimiR	MH10546	4464084
miR-506	AntimiR	MH10709	4464084
miR-510	AntimiR	MH12923	4464084
miR-9	AntimiR	MH10022	4464084
Negative Control	AntimiR	4464058	4464058
miR-221-3p	Mimic	MC10337	4464084
Negative Control	Mimic	4464058	4464058

Supplementary Figure Legends

Supplementary Figure S1. PAX3-FOXO1 knockdown in Rh30 cells decreases proliferation, migration, and invasion. (a) Immunoblot analysis of stably transduced Rh30 Tet-pLKO cells treated with doxycycline for 5 days. (b) immunoblot analysis in Rh30 cells as in (a) showing PAX3 expression is not altered with doxycycline treatment and knockdown of PAX3-FOXO1. (c) Expression of *PAX3-FOXO1* and PAX3-FOXO1 transcriptional targets by qRT-PCR in cells as in (a). (d) Population doubling is decreased with PAX3-FOXO1 knockdown. (e) Cell Titer Glo and (f) Caspase-Glo 3/7 Glo in cells treated with doxycycline for 3 days. (g) Low-density colony formation in Rh30 PAX3-FOXO1 knockdown cells and quantification of colonies. *P<0.05, **P<0.01, ***P<0.001 for shScr+Dox vs shP3F+Dox.

Supplementary Figure S2. Knockdown of PAX3-FOXO1 induces myogenic differentiation. (a) ICC for MHC (green) and DAPI (Blue) in Rh41 Tet-pLKO cells grown in growth media or differentiation media with and without 50ng/mL doxycycline treatment for 5 days. (b) Quantification of the differentiation index or percentage of MHC positive nuclei from four representative fields from (a). (c) Expression of *CKM* by qRT-PCR in cells as in (a). (d) ICC in Rh30 Tet-pLKO cells as in (a) and (e) quantified as differentiation index. (f) *CKM* expression by qRT-PCR in cells as in (c). Scale bars = 25 μ m. **P*<0.05, ***P*<0.01, ****P*<0.001 for shScr+Dox vs shP3F+Dox.

Supplementary Figure S3. MicroRNAs regulated by PAX3-FOXO1. (a) Immunoblot analysis in Rh30, Rh41, and LHCN myoblasts and RD cells stably transduced with Empty Control vector or pBabe-PAX3-FOXO1 forced expression. **(b)** Expression of

known transcriptional targets of PAX3-FOXO1 by qRT-PCR in control and PAX3-FOXO1 overexpressing LHCN and RD cells as in (a). (c) Knockdown of PAX3-FOXO1 in Rh30 and Rh41 cells 5 days after transfection with Scrambled (Scr) or PAX3-FOXO1 siRNA as assessed by qRT-PCR for *PAX3-FOXO1*, *ALK*, and *MET*. (d) Immunoblot analysis of knockdown of PAX3-FOXO1 in cells as in (c). (e) Expression of candidate microRNAs after PAX3-FOXO1 knockdown by siRNA. **P*<0.05, ***P*<0.01, ****P*<0.001 for empty vs PAX3-FOXO1 or Scr siRNA vs P3F siRNA.

Supplementary Figure S4. Target recognition sequences for miR-221-3p targets. (a) miR-221 site in the 3'UTR of human *CCND2*, (b) *CDK6*, and (c) *ERBB3*.

Supplementary Figure S5. Caspase 3/7 activity in antimiR transfected Rh41 cells. Caspase 3/7 Glo activity in Rh41 cells transfected with NC (black) or indicated AntimiR (Red) 3 days after transfection.

Supplementary Figure S6. Oncogenic miR-486-5p target gene analysis in FP-RMS. (a) Venn diagram of 2,755 putative miR-486-5p target genes and genes with increased expression with PAX3-FOXO1 knockdown. (b) Relative expression of putative miR-486-5p targets by qRT-PCR in Rh41 cells 72 hours after NC (black) or AntimiR-486-5p (red) transfection. (c) Immunoblot analysis in Rh30 and Rh41 whole cell lysates 72 hours after transfection with NC or AntimiR-486-5p. (d) Immunoblot analysis for TWF1 in cells as in (c). (e) miR-486-5p recognition site in the human *TWF1* 3'UTR . (f) Luciferase activity in C2C12 cells co-transfected with miR-486-5p or control vector and wild type or mutant miR-486 site TWF 3'UTRs reporters. Luciferase activity represented as mean (n=4) Renilla/Firefly luciferase activity ratio normalized to empty reporter (no miR-486-5p). Supplementary Figure S7. Inhibition of miR-486 in additional FP-RMS cells reduces cell viability. (a) Phase contrast and GFP live cell fluorescent microscopy of indicated FP-RMS cells 48 hours following transduction with miRZip-Scr or miRZip-486-5p. The percentage of GFP positive cells indicating transfection efficiency lower left. Scale bar, 50μ m. (b) qRT-PCR expression of miR-486-5p in cells from (a). (c) Cell Titer Glo cell viability assay in cells 7 days following transduction with miRZip-Scr or miRZip-486. **P*<0.05, ***P*<0.01, ****P*<0.001 for miRZip-Scr vs miRZip-486-5p comparisons.

Supplemental Figure S8. Xenograft growth is reduced with miRZip-486-5p. (a) Final tumors and **(b)** tumor weights after xenograft growth in Rh30 and Rh41 cells transduced with miRZip-Scr or miRZip-486-5p as indicated. **(c)** qRT-PCR expression of miR-486 in xenografted Rh41 cells transduced with miRZip-Scr or miRZip-485-5p (p=0.82). **(d)** Whole-mount brightfield and GFP imaging of Rh41 xenografts. Scale bar, 4 mm. **(e)** H&E staining and IHC for MYOGENIN, Ki67, GFP/DAPI in Rh41 xenografts. Scale bar, 50 μm.

Hanna et al., Supplementary Figure S2.

d

b

е

а

Hanna et al., Supplementary Figure S3.

Hanna et al. Supplementary Figure S4

Hanna et al., Supplementary Figure S5.

 Rh30
 Rh41

 NC
 486

 37
 TWF1

 37
 GAPDH

d

е

С

а

Hanna et al. Supplementary Figure S6

Rh41

С

b

Hanna et al. Supplemental Figure S7.

b

е

С

Zip-Scr

Zip-486

Zip-Scr Zip-486 Rh41

0 1cm 2 3 4 5 6 7 8 9 10 11 12 13 14

Rh30

0 1 2 3 4 5 6 7 8 9 10 11 12 <u>13 14</u>

Zip-486

3

1.4-1.2

1.0-0.8-0.6 0.4-

0.2 0.0

Zip-Scr

Relative expression

Hanna et al. Supplemental Figure S8.