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Supplemental Methods 
Imaging analysis. All CT and 18FDG PET-CT scans were prospectively interpreted 
during routine clinical evaluation by board-certified radiologists blinded to the plasma 
sequencing data and were independently interpreted by RECIST 1.1 criteria (1) using 
MINT Lesion (Mint Medical, Hamilton, NJ). PET Edge (MIM Software, Cleveland, OH) 
was used to calculate 18FDG metabolic tumor volume (MTV) and SUVMax in all pre-
treatment PET-CT scans. Primary clinical radiographic reports from post-treatment 
scans were classified as (i) showing no evidence of disease, (ii) recurrent/persistent 
disease, or (iii) equivocal findings due to inability to distinguish tumor from other 
processes. For all post-treatment scans, interpretations were compared to ctDNA results 
prior to or at the time of imaging (Figure 2E, Supplemental Table S1) .  

Biological specimen collection and processing. 10-20 mL of peripheral blood was 
collected in K2EDTA Vacutainer tubes (Becton Dickinson, Franklin Lakes, NJ) and 
processed within 3 hours of phlebotomy. Tubes were centrifuged at 1,800g for 10 
minutes and plasma was frozen at -80° Celsius in 1-2 mL aliquots. A portion of the 
leukocyte-enriched plasma-depleted whole blood was also frozen at -80° Celsius in 1-2 
mL aliquots and used for isolation of germline genomic DNA as previously described 
(2,3). For some patients, matched formalin-fixed paraffin embedded (FFPE) tumor tissue 
was available and DNA was isolated as previously described (2). 

Library preparation and sequencing. DNA isolation, library preparation and 
sequencing were performed using the original version of CAPP-Seq for 5 patients and 
iDES-enhanced CAPP-Seq for 36 patients as previously described (2,3). We applied a 
188 kb CAPP-Seq selector targeting 128 genes recurrently mutated in lung cancer (2,3). 
Briefly, we first identified genes of clinical importance (e.g. KRAS, EGFR, ALK, ROS1, 
RET, BRAF, etc.). We then supplemented this relatively small list of genes with a much 
larger number of regions from genes that were found to be recurrently mutated in TCGA 
whole exome analyses of NSCLC but which were not necessarily previously implicated 
in lung cancer biology. We used a custom bioinformatic approach that first maximizes 
the number of patients we would predict to be covered by at least 1 mutation and then in 
a second phase selects additional regions to maximize the number of mutations per 
patient (2). In order to meet our design size constraint of ~200 kb, some genes of 
potential interest such as RB1 were excluded. Both plasma and germline DNA (from 
PBMCs in plasma-depleted whole blood) were sequenced. We controlled for germline 
SNPs, subclonal variants and clonal hematopoiesis in pre-treatment plasma-derived cell-
free DNA by sequencing DNA from peripheral blood mononuclear cells (PBMCs) at the 
matched time point and excluded variants based on read support in PBMCs using the 
CAPP-Seq adaptive variant-caller (2,3). Sequencing was performed on Illumina HiSeq 
2500 or 4000 instruments (Illumina, San Diego, CA) using 2 x 100 or 2 x 150 paired-end 
reads with an 8-base indexing read. 

Pre-treatment tumor genotyping. If pre-treatment tumor was available, it was used for 
genotyping (2). Otherwise, pre-treatment genotyping was performed noninvasively using 
CAPP-Seq with integrated digital error suppression (iDES) with minor modifications (3). 
Briefly, cell-free DNA sequencing reads were de-duplicated using molecular barcodes, 
background-polished to reduce stereotypical base substitution errors, and genotyping 
was performed to call single nucleotide variants (SNVs), insertions/deletions (indels) and 
fusions (4) from pre-treatment plasma using matched germline sample as background 
reference. Germline single nucleotide polymorphisms (SNPs) present within other 
samples run in the same sequencing lane were removed from consideration. 
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Classification of mutations. We compiled a list of putative driver genes that were 
previously identified by The Cancer Genome Atlas (TCGA) research network for lung 
adenocarcinoma (LUAC) and lung squamous cell carcinoma (LUSC) and by Rudin et al. 
and George et al. for small cell lung cancer (SCLC) (5-8). Nonsynonymous mutations 
targeted by CAPP-Seq that overlapped this list were defined as candidate drivers 
(Supplemental Table S6), while synonymous mutations or nonsynonymous mutations 
in other genes were considered candidate passengers (i.e. “other mutations”). We 
compared the observed frequencies of non-driver mutations in ctDNA within our cohort 
to their frequencies in NSCLC tumor sequencing within the genomic coordinates 
covered by our CAPP-Seq panel (Supplemental Table S7) (5,6). 

Whole exome mutation burden analysis. To establish the relationship between the 
number of mutations observed in our CAPP-Seq panel to those present in the whole 
exome, we downloaded somatic variant calls from 1,178 whole exome NSCLC tumors 
sequenced by TCGA from http://gdc-portal.nci.nih.gov/legacy-archive (5,6). For 
noninvasively genotyped patients, we calculated the expected number of 
nonsynonymous mutations that would have been identified by CAPP-Seq on tumor 
tissue from the number of mutations identified in pre-treatment plasma, considering 
recovered haploid genome equivalents and the average fractional abundance of 
detected variants using the binomial distribution as previously described (2,3). CAPP-
Seq versus WES mutation loads were compared using Pearson’s correlation and linear 
regression (Figure 4B). Based on this analysis, the estimated mutation burden in the 
exome equals 41 times the number of nonsynonymous mutations detected in our CAPP-
Seq selector. Using ROC analysis, this approach yielded an AUC of 0.90 for the 
classification of high mutation burden by CAPP-Seq when considering WES mutation 
levels exceeding 200 as the gold standard (9); similar performance was observed at 
other thresholds (e.g., >178 mutations (9), AUC=0.90; >300 mutations, AUC=0.92; 
>1000 mutations=0.97).  

To validate the relationship between the number of mutations identified using CAPP-Seq 
and the predicted mutation burden in the exome we performed both whole exome 
sequencing and CAPP-Seq on tumor biopsy samples from 5 localized lung cancer 
patients. Library preparation was performed as previously described (2,3). For whole 
exome sequencing, tumor and germline (PBMC) sequencing libraries were enriched 
using a SeqCap EZ Human Exome Library v3.0 capture panel (Roche NimbleGen, 
Madison, WI) and sequenced to a median depth of ~100X. Indel realignment and base 
quality recalibration were performed using the Genome Analysis Toolkit v3.5 (default 
parameters), and SNVs were called using VarScan v2.4.1 (10,11). We required ≥3 
supporting reads, ≥8 positional read depth in tumor and matched germline, ≥5% mutant 
AF in the tumor, <0.5% mutant AF in matched germline, and no overlap with the UCSC 
RepeatMasker track (12,13). We confirmed that no variants were SNPs in any other 
sample sequenced on the same lane, and removed SNPs previously catalogued by the 
Exome Aggregation Consortium (ExAC) at ≥0.001% population frequency.(14) We then 
compared the number of mutations identified in the whole exome to the number 
identified using CAPP-Seq for each of these 5 patients using Pearson’s correlation and 
linear regression. This confirmed the predicted relationship described above using 
TCGA data, with non-synonymous mutation burden in the exome equaling 41 times the 
number of mutations covered by the CAPP-Seq panel (Supplemental Figure S8). 

Response assessment and clinical endpoints. Freedom from progression (FFP) was 
defined as the time during which the patient was free from cancer progression, disease-
specific survival (DSS) was defined as the time of lung cancer-related survival, and 
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overall survival (OS) accounted for death by any cause. Event-free survival (EFS) was 
measured to compare post-treatment disease surveillance by ctDNA vs. imaging, where 
the event was defined as post-treatment ctDNA detection or radiographic progression by 
RECIST 1.1 criteria (1), respectively. We tabulated lead-time of ctDNA MRD detection 
vs. imaging for each patient who experienced radiographic progression, and took the 
average of these values to calculate average lead-time of ctDNA MRD detection 
compared to imaging. 

Survival analyses. Categorical time-to-event analyses of clinical endpoints including 
OS, DSS, FFP and EFS were conducted using the log-rank test to estimate P-values 
and Cox exp(beta) method to estimate hazard ratios, with results expressed as Kaplan-
Meier plots. Since hazard ratios cannot be estimated reliably when there are no events 
in one of the two groups, we could not calculate them for some analyses (e.g. Figure 
2C). The relationship of ctDNA as a continuous variable was assessed in Cox 
proportional hazards models with single or multiple covariates, with clinical outcome as 
the dependent variable, where the Wald test was used to assess the significance of 
covariates, and hazard ratios were calculated by exp(beta) method. The proportional 
hazards assumption was tested and confirmed for all Cox regression and Kaplan-Meier 
analyses by evaluating the Schoenfeld residuals. Survival analyses were performed 
using R v3.2.2 (http://www.r-project.org; ‘survival’ package) and Prism 7 (GraphPad 
Software, La Jolla, CA). 

Other statistical analyses. To compare distributions of continuous variables we used 
the two-tailed student’s t test, two-tailed student’s t test with Welch’s correction, 
Pearson’s correlation, and linear regression, as appropriate. To assess performance of 
classification tests, we performed ROC analysis. To compare proportions between 2 
populations, we used the Z test. To generate the ROC curve in Figure 1D, we 
performed CAPP-Seq monitoring of patient-specific mutation lists on pre-treatment 
plasma from 41 patients analyzed with CAPP-Seq (to evaluate sensitivity) and 54 
healthy donors (to evaluate specificity) and for each case we calculated a previously 
described ctDNA detection index, which is analogous to the false positive rate (2,3). 
Statistical analyses were performed using R v3.2.2 (http://www.r-project.org) through the 
RStudio environment (Boston, MA) or Prism 7 (GraphPad Software, La Jolla, CA). 
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