Biodegradable Amino-ester Nanomaterials for Cas9 mRNA Delivery in Vitro and in Vivo

Xinfu Zhang^{a, ‡}, Bin Li^{a, ‡}, Xiao Luo^{a, ‡}, Weiyu Zhao^a, Justin Jiang^a, Chengxiang Zhang^a, Min Gao^b, Xiaofang Chen^a, and Yizhou Dong^{a,c,d,e, f,g,h}*

* E-mail: dong.525@osu.edu.

^a Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States; ^b LCI Characterization Facility, Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States; ^c Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States; ^d The Center for Clinical and Translational Science, The Ohio State University, Columbus, Ohio 43210, United States; ^e The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States. ^f James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; ^g Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA; ^h Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, USA.

Materials.

 ψ -modified Cas9 mRNA and 5meC- ψ -modified Firefly Luciferase mRNA were purchased from TriLink Biotechnologies, Inc. (San Diego, CA). 1, 2-dioleoyl-sn-glycero-3-

phosphoethanolamine (DOPE) was purchased from Avanti Polar Lipids (Alabaster, Alabama), Inc. Other chemicals were purchased from sigma-Aldrich and used without further purification.

Figure S1. Zeta potential of amino-ester LLNs.

Figure S2. Dose-dependent assay. Delivery of Cas9 mRNA using MPA-A, MPA-Ab, C12-200 and MPA-E LLNs *in vitro* at mRNA doses of 100, 50, 25 and 12.5 ng. Control: PBS. (triplicate; *, P < 0.05; **, P < 0.01; ***, P < 0.001; *t* test, double-tailed).

Figure S3. Delivery of mRNA encoding Firefly luciferase in Hep3B cells. Control: PBS. (triplicate; **, P < 0.01; *t* test, double-tailed).

3

Figure S4. (A) Percentage of cells in population with eGFP expression. (B) Delivery of mRNA encoding eGFP in 293T cells. Control: PBS. (triplicate; ***, P < 0.001; *t* test, double-tailed).

Figure S5. Cells viability through MTT assay on Hep3B cell line at mRNA dose of 12.5, 50 100 and 200ng. (triplicate; *, P < 0.05; **, P < 0.01; ***, P < 0.001; *t* test, double-tailed).

Synthesis.

9-oxononanoic acid, 9-Oxononanoic acid (z)-non-2-en-yl ester (**A**) and 9-Oxononanoic acid 2-ethyl-hexane-1-yl ester (**Ab**) were synthesized according to the method reported previously.^{S1, S2}

Figure S6. Synthesis route of compound A.

A: 9-oxononanoic acid (500 mg, 3.16 mmol) and DCC (700 mg, 3.40 mmol) were dissolved in 15 mL CH₂Cl₂ and cooled to 0 °C. After adding DMAP (10 mg, 0.08 mmol), the reaction mixture was stirred for 30 min at 0 °C. Cis-2-nonen-1-ol (670 mg, 4.72 mmol) was added and stirred for 2 h at 0 °C. The reaction mixture was warmed to RT and stirred overnight. The reacting mixture was then washed with water twice. The organic phase was dried with sodium sulfate and CH₂Cl₂ was evaporated. The crude product was purified by column chromatography using a Combiflash Rf system with hexanes/ethyl acetate, (95/5 by volume) to give the product in a colorless oil (650 mg, yield 69.4%).

Ab: Following the same procedure as A.

MPA-A: yield 42.2%, ¹H NMR (400 MHz, CDCl₃) δ = 5.65 (3H, m), 5.56 (3H, m), 4.65-4.63 (6H, d, *J* = 8), 2.44 (6H, m), 2.34-2.30 (8H, t, *J* = 8), 2.24 (3H, s), 2.14-2.09 (6H, m), 1.65-

1.62 (9H, m), 1.46 (6H, m), 1.40-1.30 (50H, m), 0.92-0.88 (9H, t, J = 8). MS (m/z): $[M + H]^+$ calcd. for C₅₈H₁₀₉N₂O₆, 929.8286; found, 929.8266.

DMPA-A: yield 77.0%, ¹H NMR (400 MHz, CDCl₃) $\delta = 5.65$ (2H, m), 5.55 (2H, m), 4.65-4.63 (4H, d, J = 8), 2.42-2.39 (8H, m), 2.37-2.32 (4H, t, J = 8), 2.26 (6H, s), 2.14-2.09 (4H, m), 1.73-1.62 (6H, m), 1.49 (4H, m), 1.40-1.31 (32H, m), 0.92-0.89 (6H, t, J = 8). MS (m/z): [M + H]⁺ calcd. for C₄₁H₇₉N₂O₄, 663.6040; found, 663.6014.

PA-A: yield 61.9%, ¹H NMR (400 MHz, CDCl₃) $\delta = 5.64$ (4H, m), 5.55 (4H, m), 4.64-4.63 (8H, d, J = 8), 2.42 (10H, m), 2.34-2.30 (8H, t, J = 8), 2.14-2.09 (8H, m), 1.65-1.62 (10H, m), 1.44-1.30 (74H, m), 0.92-0.88 (12H, t, J = 8). MS (m/z): [M + H]⁺ calcd. for C₇₅H₁₃₉N₂O₈, 1196.0531; found, 1196.0490.

AEPA-A: yield 69.4%, ¹H NMR (400 MHz, CDCl₃) $\delta = 5.64$ (5H, m), 5.55 (5H, m), 4.65-4.63 (10H, d, J = 8), 2.53 (5H, s), 2.43 (11H, s), 2.34-2.30 (10H, t, J = 8), 2.14-2.09 (10H, m), 1.66-1.62 (12H, m), 1.44-1.31 (92H, m), 0.92-0.88 (15H, t, J = 8). MS (m/z): [M + H]⁺ calcd. for C₉₅H₁₇₆N₃O₁₀, 1519.3356; found,1519.3313.

MAP-Ab: yield 74.0%, ¹H NMR (400 MHz, CDCl₃) $\delta = 4.85-4.80$ (3H, m), 2.47 (6H, m), 2.46-2.28 (10H, m), 2.25 (3H, s), 1.65-1.45 (26H, m), 1.31 (42H, m), 0.91-0.87 (18H, m). MS (*m*/*z*): [M + H]⁺ calcd. for C₅₅H₁₀₉N₂O₆, 893.8286; found, 893.8275.

Figure S8. ¹H NMR of compound MPA-A.

Figure S9. ¹H NMR of compound **DMPA-A**.

Figure S10. ¹H NMR of compound PA-A.

Figure S11. ¹H NMR of compound AEPA-A.

Figure S12. ¹H NMR of compound MPA-Ab.

Reference

(S1) Rajabi, M.; Lanfranchi, M.; Campo, F.; Panza, L. Synthesis of a Series of

Hydroxycarboxylic Acids as Standards for Oxidation of Nonanoic Acid Synth. Commun.

2014, *44*, 1149-1154.

(S2) Woodcock, S. R.; Marwitz, A. J. V.; Bruno, P.; Branchaud, B. P. Synthesis of Nitrolipids.

All Four Possible Diastereomers of Nitrooleic Acids: (E)- and (Z)-, 9- and 10-Nitro-Octadec-

9-Enoic Acids Org. Lett. 2006, 8, 3931-3934.