Supporting Information for Publication

Assessment of extracellular vesicles purity using proteomic standards

Tingting Wang^{‡#}, Kyle W. Anderson^{‡,#}, and Illarion V. Turko^{‡,#,*}

[‡]Biomolecular Measurement Division, National Institute of Standards and Technology,

Gaithersburg, Maryland 20899, United States

[#]Institute for Bioscience and Biotechnology Research, Rockville, Maryland 20850,

United States

Table of Contents (Supporting Information)

- **Table S1.** Transitions used for quantification.
- **Table S2.** ¹⁵N incorporation in EXO1 and EXO2 QconCATs.
- **Table S3.** Identification of proteins in silver-stained gel bands marked in Figure 1.
- Figure S1. EXO1 and EXO2 QconCATs.

Figure S2. A 9 % SDS-PAGE of purified EXO1 and EXO2.

Figure S3. Scheme depicting basic and precipitation-based protocols.

				Product lons (m/z)			
Protein	Peptide		Precursor (m/z)	1	2	3	
albumin	LVNEVTEFAK	L	573.1	694.4 (v6)	823.4 (v7)	937.5 (v8)	
		H	581.3	701.4 (v6)	831.4 (v7)	947.4 (v8)	
	VFDEFKPLVEEPQNLIK	L	682.4	777.9 (v13)	842.5 (v14)	900.0 (v15)	
		Н	689.3	786.4 (y13)	851.4 (y14)	909.5 (y15)	
	QTALVELVK	L	500.8	587.4 (y5)	700.5 (y6)	771.5 (y7)	
		Н	506.3	593.4 (y5)	707.4 (y6)	779.5 (y7)	
α-2-	LVHVEEPHTETVR	L	773.4	839.4 (y7)	968.5 (y8)	1097.52 (y9)	
macroglobulin		Н	783.4	851.4 (y7)	981.4 (y8)	1111.5 (y9)	
5	LPPNVVEESAR	L	605.8	691.3 (y6)	789.4 (y7)	1000.5 (y9)	
		Н	613.3	699.3 (y6)	799.4 (y7)	1013.5 (y9)	
Transferrin	DGAGDVAFVK	L	489.7	563.4 (y5)	678.4 (y6)	806.4 (y8)	
		Н	495.2	569.3 (y5)	685.4 (y6)	815.4 (y8)	
apoE	LGPLVEQGR	L	484.8	489.2 (y4)	588.3 (y5)	701.4 (y6)	
-		Н	491.2	497.2 (y4)	597.2 (y5)	711.4 (y6)	
HSPA8	FEELNADLFR	L	627.3	735.3 (y6)	848.5 (y7)	977.5 (y8)	
		Н	634.3	745.3 (y6)	859.4 (y7)	989.5 (y8)	
moesin	IGFPWSEIR	L	552.8	690.4 (y5)	787.4 (y6)	991.5 (y8)	
		Н	559.3	699.3 (y5)	797.4 (y6)	1003.5 (y8)	
HSP90AA1	ADLINNLGTIAK	L	621.9	716.4 (y7)	830.5 (y8)	943.6 (y9)	
		Н	629.3	725.4 (y7)	841.4 (y8)	955.5 (y9)	
EHD4	SISVIDSPGILSGEK	L	751.4	800.5 (y8)	887.5 (y9)	1002.5 (y10)	
		Н	759.4	809.4 (y8)	897.5 (y9)	1013.5 (y10)	
flotillin-1	VTGEVLDILTR	L	608.4	617.4 (y5)	730.4 (y6)	829.5 (y7)	
		Н	615.3	625.3 (y5)	739.4 (y6)	839.5 (y7)	
HDAC1,2	YGEYFPGTGDLR	L	687.8	715.4 (y7)	862.4 (y8)	1025.5 (y9)	
		Н	695.3	725.3 (y7)	873.4 (y8)	1037.5 (y9)	
HSP90AB1	YESLTDPSK	L	520.3	547.3 (y5)	660.4 (y6)	747.4 (y7)	
		Н	525.2	553.3 (y5)	667.3 (y6)	755.4 (y7)	
TSG101	ASLISAVSDK	L	495.8	519.3 (y5)	606.3 (y6)	719.4 (y7)	
		Н	501.3	525.3 (y5)	613.3 (y6)	727.4 (y7)	
DNAJB1	DGSDVIYPAR	L	546.8	619.4 (y5)	718.4 (y6)	833.5 (y7)	
		Н	553.3	627.3 (y5)	727.4 (y6)	843.4 (y7)	
L1CAM	DATQITQGPR	L	543.8	558.3 (y5)	671.4 (y6)	799.4 (y7)	
		Н	551.3	567.3 (y5)	681.4 (y6)	811.4 (y7)	

Table S1. Transitions used for quantification.

Transitions are listed for both unlabeled, light (L) and fully ¹⁵N-labeled, heavy (H) peptides. All precursors were +2 charge and product ions were +1 charge. Additionally, y-ion information is included for reference.

QconCAT	Peptide	¹⁵ N-incorporation ^a (%)	Average ^b (%)
EXO1	LPPNVVEESAR	99.92	
EXO1	LVNEVTEFAK	99.13	99.66 ± 0.27
EXO1	VTGEVLDILTR	99.94	
EXO2	DKPHNIFK	99.98	
EXO2	YESLTDPSK	99.96	99.74 ± 0.27
EXO2	FEELNADLFR	99.29	

Table S2. ¹⁰ N	-incorporation in	EXO1 a	and EXO2	QconCATs.
---------------------------	-------------------	--------	----------	-----------

^aMean value based on three transitions per peptide. ^bAverage was calculated based on

3 peptides in each QconCAT.

Table S3. Identification of proteins in silver-stained gel bands marked in Figure 1

Band and protein ^a	Nominal	Sequence	Score ^b
	Mass	coverage	
	(kDa)	(%)	
P1. alpha-2-macroglobulin (224053)	160	7	88(76)
P2. alpha-2-macroglobulin (224053)	160	9	102(76)
P3. alloalbumin Venezia (178345)	69	27	253(76)
P4. immunoglobulin mu heavy chain, partial (390994295)	66	16	147(76)
P5. chain B, lgg1 Fc fragment (401817558)	24	30	285(76)
P6. anti-HBsAg immunoglobulin Fab kappa chain(3721651)	24	14	119(76)

^aThe number in parentless is a NCBI GI number

^bMOWSE score from Mascot software

(http://www.matrixscience.com/search_form_select.html). The number in parentless is

the score at which statistical significance (p < 0.05) occurred for that particular search.

Figure S1. EXO1 and EXO2 QconCATs

EXO1 - Number of amino acids: 592; Molecular weight: 66686.19; Theoretical pl: 9.30 Grand average of hydropathicity (GRAVY): -0.323

MTSTTLKLSPYVHYTFRVTAINPIDKKAPDFVFYAPRLRINKRELISRLPEIYIQLQREYQI SASVRIRGEAEAFAIGARARAEAEVNTRRAQADLAYQLQVAKTKQQIERQIKKQTALVE LVKHKPKATIGAAKVTGEVLDILTRLPESVENLANRSHAELETALRDSSRVLFDAHKLDI SDEFSEAIKAFRGQDRLTPKIGFPWSEIRNISFNDVVESRAQLLVVGSPGPVPRLVLSD LAFVAARSFVQGLGVASDVVRKVAQVPNQVLKSISVIDSPGILSGEKQRISRGFIQTRG GTFYVEPAERYIKDRTGRGHARLVHVEEPHTETVRKYFPETGEALRRGVIDLDVFLKH VRLLSEDTIRASLISAVSDKLRWRIKEELSLKLPPNVVEESARASVSVLHEAYAKVFDEF KPLVEEPQNLIKQNAELFEDHVKLVNEVTEFAKTAVADEANLKVKDATQITQGPRSTIEK KVDANGKIYLPYLHEWKHPQSDLHQRAKRAVSHEDQFLRLDFHAHQIYGAKGFSLSDV PQAEISGEHLRIAPQGYWILADKSSFISVLQTSSSSLRIGAYVFKLAAALEHHHHHH

Peptides (marked red) with 6 a.a. residues flanking sequences on both sides (marked black) from 10 proteins listed below were randomly concatenated in EXO1 sequence. 4 Cys were replaced with Ala (marked green) and 4 Met were replaced with Ile (marked blue) in the flanking sequences. 6 x His tag and linker sequence (marked orange) was from expression vector.

<u>Albumin</u>

- 1. FEDHVKLVNEVTEFAKTCVADE
- 2. HECYAKVFDEFKPLVEEPQNLIKQNCELF
- 3. ERQIKKQTALVELVKHKPKAT

Alpha-2-macroglobulin

- 1. GRGHARLVHVEEPHTETVRKYFPET
- 2. EELSLKLPPNVVEESARASVSVL

L1CAM (single-pass)

- 1. ANLKVKDATQITQGPRSTIEKK
- 2. DVVESRAQLLVVGSPGPVPRLVLSDL
- 3. TSTTLKLSPYVHYTFRVTAINK

ADAM10 (single-pass)

- 1. HQRAKRAVSHEDQFLRLDFHAH
- 2. GFIQTRGGTFYVEPAERYIKDRT

<u>CD82 (multi-pass)</u>

1. WILADKSSFISVLQTSSSSLRMGAYVF Glypican-1 (lipid-anchor, GPI-anchor)

- 1. QIYGAKGFSLSDVPQAEISGEHLRICPQGY
- 2. ENLANRSHAELETALRDSSRVL

3. AFVAARSFVQGLGVASDVVRKVAQVP

TSG101 (peripheral)

- 1. VDANGKIYLPYLHEWKHPQSDL
- 2. SEDTIRASLISAVSDKLRWRMK
- 3. GEALRRGVIDLDVFLKHVRLLS

Flotillin-1 (peripheral)

- 1. EVNTRRAQADLAYQLQVAKTKQQIE
- 2. ASVRMR<mark>GEAEAFAIGAR</mark>ARAEAE
- 3. TMGAAKVTGEVLDILTRLPESVE

EHD4 (peripheral)

- 1. PNQVLKSISVIDSPGILSGEKQRISRG
- 2. LFDAHKLDISDEFSEAIKAFRGQD
- 3. RELISRLPEIYIQLQREYQISA

Moesin (peripheral)

- 1. DRLTPKIGFPWSEIRNISFND
- 3. KPIDKKAPDFVFYAPRLRINKR

EXO2 - Number of amino acids: 493; Molecular weight: 55528.5; Theoretical pl: 5.52 Grand average of hydropathicity (GRAVY): -0.537

MSTLDNRTIVITSHPGQIVKHGDIKALIIEFKVNFPENGFLSPDKLSLLEKITFPKEGDQTS NNIPADIVFVLKDKPHNIFKRDGSDVIYPARISLREAKTPEKRGDLIIEFEVIFPERIPQTS RYGEFYKSLTNDWEDHLAVKHFSVEGIGITKADLINNLGTIAKSGTKAFEKERDKEVSD DEAEEKEDKEEEYLNFIRGVVDSEDLPLNISREILQQSITRARFEELNADLFRGTLDPVIP KIQKLLQDFFNGKELNKSITGETKDQVANSAFVERLRKHGLNDQGNRTTPSYVAFTDT ERLIGDAAQRQATKDAGTIAGLNVLRIINEPTAGIFEVKSTAGDTHLGGEDFDNRIVNHFI KEIFLRELISNASDALDKIRYESLTDPSKLDSGKELKIDIIPNPQERTLTLVDGIGITKADLI NNLGTIAKSGTKAFLAALRKGESGQSWPRLTKERAKLNWLSVDFNNWKDWEDDSKLA AALEHHHHHH

Peptides (marked red) with 6 a.a. residues flanking sequences on both sides (marked black) from 6 proteins listed below were randomly concatenated in EXO2 sequence. 3 Cys were replaced with Ala (marked green) and 4 Met were replaced with Ile (marked blue) in the flanking sequences. 6 x His tag and linker sequence (marked orange) was from expression vector.

DNAJA1 (hDj-2)

- 1. STLDNRTIVITSHPGQIVKHGDIKC
- 2. LIIEFKVNFPENGFLSPDKLSLLEK

DNAJB1 (Hsp40)

1. KITFPKEGDQTSNNIPADIVFVLKDKPHNIFKRDGSDVIYPARISLREA

2. KTPEKRGDLIIEFEVIFPERIPQTSR

HSP90AA1

- 1. GIGMTKADLINNLGTIAKSGTKAF
- 2. EKERDKEVSDDEAEEKEDKEEE
- 3. YGEFYK<mark>SLTNDWEDHLAVK</mark>HFSVEG
- 4. YLNFIRGVVDSEDLPLNISREMLQQS
- 5. ITGETKDQVANSAFVERLRKHGL

HSP90AB1

KEIFLRELISNASDALDKIRYESLTDPSKLDSGKELKIDIIPNPQERTLTLVDGIGMTKADLI NNLGTIAKSGTKAF HSPA8 (Hsc70)

- 1. NDQGNRTTPSYVAFTDTERLIGDAA
- 2. QRQATKDAGTIAGLNVLRIINEPTA
- 3. GIFEVKSTAGDTHLGGEDFDNRMVNHFI
- 4. SITRARFEELNADLFRGTLDPV
- 5. IPKIQKLLQDFFNGKELNKSI

PTGES3 (p23)

1. LCCLRKGESGQSWPRLTKERAKLNWLSVDFNNWKDWEDDS

Figure S2. A 9 % SDS-PAGE of purified EXO1 (1) and EXO2 (2). The molecular mass

standards in kDa are shown on the left.

Figure S3. Scheme depicting basic and precipitation-based protocols.

