
SUPPLEMENTARY	NOTE	
	
Choice	 of	 parameters.	 Our	 approach	 includes	 two	 parameters:	 the	 proportion	 of	 genes	
selected,	which	we	set	to	10%,	and	the	window	size	around	each	gene,	which	we	set	to	100kb.	
To	 choose	 these	 two	parameters,	we	 ran	 the	 approach	with	 six	 different	 parameter	 settings	
({2%,	 5%,	 10%	 of	 genes}	 x	 {20kb,	 100kb	 windows})	 on	 two	 diseases—schizophrenia	 and	
rheumatoid	arthritis—and	two	corresponding	GTEx	tissues—brain	(all	brain	regions)	and	blood	
(LCLs	 and	 whole	 blood)—which	 are	 widely	 known	 to	 be	 disease-relevant	 tissues.	 We	
determined	that	of	 the	parameter	settings	we	tested,	10%	of	genes	and	100kb	produced	the	
most	 significant	 P-values	 for	 identifying	 brain	 enrichment	 for	 schizophrenia	 and	 blood	
enrichment	for	rheumatoid	arthritis,	so	we	used	these	parameters	for	the	remaining	analyses.	
Our	results	were	robust	to	these	choices	(Figure	S2).		
	
Number	of	gene	expression	samples	needed.	Because	the	GTEx	consortium	data	set	included	
tens	of	samples	for	many	of	the	tissues,	we	were	able	to	assess	how	sensitive	our	results	were	
to	the	sample	size	of	the	gene	expression	data	set	used	to	construct	the	gene	sets.	To	do	this,	
we	repeatedly	sub-sampled	our	data	set	to	a	variety	of	sample	sizes,	each	time	re-creating	gene	
sets	using	 the	 smaller	 sub-sampled	data	 set.	We	chose	 two	 results	 to	 re-analyze	 in	 this	way.	
First,	we	re-analyzed	cortex	enrichment	for	schizophrenia,	in	which	cortex	was	compared	to	all	
non-brain	 samples	 and	 was	 highly	 significant	 (Figure	 2).	 This	 result	 was	 very	 robust:	 the	
enrichment	was	highly	significant	in	all	of	our	downsampled	data	sets,	even	with	only	a	single	
cortex	 sample	 (Figure	 S11a).	 We	 then	 assessed	 enrichment	 for	 schizophrenia	 in	 the	 within-
brain	 analysis,	 in	which	 cortex	was	 compared	 to	 all	 other	 brain	 regions	 and	was	moderately	
significant	 (Figure	4a).	 In	 this	analysis,	 sample	size	was	more	 important,	and	while	 there	was	
high	variance	in	z-score	among	random	samples	at	a	given	sample	size,	there	was	a	clear	trend	
that	increasing	the	sample	size	increases	the	significance	of	the	enrichment	on	average	(Figure	
S11b).	In	conclusion,	these	analyses	provide	evidence	that	sample	size	can	be	important	when	
the	enrichment	being	identified	is	near	the	border	of	significance,	but	that	our	method	is	well-
powered	to	detect	strong	signals	even	with	a	single	sample	in	the	tissue	of	interest.	
	
Comparison	 to	 existing	methods:	 real	 phenotypes.	 To	 our	 knowledge,	 SNPsea1,2	 is	 the	 only	
existing	method	that	takes	as	 input	GWAS	summary	statistics,	together	with	a	matrix	of	gene	
expression	 values,	 and	 identifies	 enriched	 tissues	 and	 cell	 types.	 SNPsea	 leverages	 only	
genome-wide	 significant	 SNPs,	 rather	 than	all	 SNPs,	 a	notable	difference	 from	our	 approach.	
We	ran	SNPsea	on	the	summary	statistics	and	gene	expression	data	analyzed	 in	our	multiple-
tissue	 analysis;	 results	 are	 displayed	 in	 Figure	 S12	 and	 Table	 S11.	 We	 found	 that	 SNPsea	
identified	biological	plausible	enrichments	at	high	levels	of	significance	for	traits	such	as	LDL	for	
which	a	large	proportion	of	SNP-heritability	lies	in	genome-wide	significant	loci,	but	that	it	was	
not	well-powered	for	more	polygenic	traits;	for	example,	it	found	zero	tissues	with	FDR	<	5%	for	
bipolar	disorder,	while	our	approach	 found	many	brain	 regions	 to	be	enriched	at	P-values	as	
low	as	2e-12	(Figure	S1).	The	lack	of	power	of	SNPsea	on	more	polygenic	traits	is	unsurprising,	
as	SNPsea	leverages	only	genome-wide	significant	loci.	
	



The	DEPICT	software3	 includes	a	method	for	identifying	disease-relevant	tissues	and	cell	types	
from	GWAS	summary	statistics	and	gene	expression	data.	However,	this	method	takes	as	input	
only	the	GWAS	summary	statistics	and	not	gene	expression	data;	the	method	is	designed	to	be	
run	only	with	the	Franke	lab	data	set3,4,	which	is	built	into	the	software.	Thus,	DEPICT	could	not	
be	used	to	obtain	the	results	in	our	brain-specific	and	immune-specific	analyses,	for	which	we	
analyzed	data	sets	that	allowed	us	to	differentiate	among	tissues	and	cell	types	within	each	of	
these	 systems.	 However,	 DEPICT	 does	 perform	 a	 multiple-tissue	 analysis	 analogous	 to	 the	
Franke	lab	data	set	component	of	our	multiple-tissue	analysis,	and	so	we	ran	DEPICT	on	the	set	
of	 summary	 statistics	 that	we	 analyzed.	 Like	 SNPsea,	DEPICT	 is	 run	on	 a	 subset	 of	 SNPs,	 but	
unlike	SNPsea,	DEPICT	documentation	recommends	that	it	be	run	twice,	once	on	SNPs	that	pass	
genome-wide	significance	at	5e-8,	and	once	on	SNPs	that	pass	a	less	stringent	threshold	of	1e-
5;	we	followed	this	recommendation,	and	our	results	are	displayed	in	Figures	S13	and	S14	and	
Tables	S12	and	S13.	We	determined	that	DEPICT	failed	to	identify	some	enrichments	identified	
by	our	analysis	of	 the	Franke	 lab	data	set,	 such	as	brain	enrichment	 for	 several	brain-related	
traits	 (epilepsy,	Tourette	 syndrome,	neuroticism,	and	 smoking	 status),	but	 that	 it	 identified	a	
large	 number	 of	 enrichments	 for	 other	 traits	 and	 tissues	 that	 our	 approach	 did	 not	 find.	 In	
simulations	described	below,	we	 found	 that	DEPICT	 sometimes	 reported	 significant	 results	 in	
the	absence	of	true	enrichment.	
	
Our	 approach,	 described	 in	 Figure	 1,	 has	 two	main	 steps:	 constructing	 a	 genome	annotation	
from	gene	 expression	data,	 and	 testing	 this	 annotation	 for	 enrichment	with	GWAS	 summary	
statistics	using	stratified	LD	score	regression.	We	tested	whether	the	success	of	our	approach	
depended	on	using	 stratified	LD	score	 regression	 in	 the	second	step	by	 instead	analyzing	 the	
specifically	 expressed	 gene	 annotations	 from	 the	 first	 step	 using	 MAGMA5,	 a	 gene	 set	
enrichment	method	that	allows	inclusion	of	a	window	around	each	gene	and	leverages	all	SNPs	
in	 the	 gene	 set	 (Figure	 S15,	 Table	 S14).	MAGMA	and	 LDSC-SEG	 identified	many	of	 the	 same	
enrichments,	 but	 MAGMA	 identified	 several	 enrichments	 that	 LDSC-SEG	 did	 not.	 We	
hypothesized	that	this	may	occur	because	in	this	analysis,	we	did	not	use	the	option	in	MAGMA	
to	 incorporate	 gene-level	 covariates.	 In	 simulations	 described	 below,	 we	 determined	 that	
MAGMA	can	 report	 significant	 results	 in	 the	 absence	of	 true	enrichment	due	 to	uncorrected	
genomic	 confounding	 if	 no	 covariates	 are	 included	 to	 ameliorate	 potential	 confounding.	We	
leave	 an	 exploration	 of	 how	 best	 to	 use	 covariates	 in	 MAGMA	 to	 account	 for	 potential	
confounding	while	preserving	power	for	future	work.	
	
For	 comparison	 purposes,	 we	 report	 LDSC-SEG	 results	 for	 the	 multiple	 tissue	 analysis	 as	 a	
heatmap	in	Figure	S2a,	in	addition	to	the	scatter	plots	in	Figure	2	and	Figure	S1.	
	
Comparison	 to	 existing	 methods:	 simulated	 phenotypes.	We	 performed	 simulations	 using	
genotypes	 from	 Genetic	 Epidemiology	 Research	 on	 Aging	 (GERA)	 data	 set6–8	 with	 47,360	
individuals	 and	 6,507,309	 SNPs	 with	 imputation	 R2	 >	 0.5.	 We	 simulated	 five	 genetic	
architectures,	 where	 “null”	 refers	 to	 a	 heritable	 trait	 with	 no	 tissue-specific	 enrichment	 and	
“causal”	refers	to	a	heritable	trait	with	cortex	enrichment:		



1. (Polygenic	 null)	 All	 SNPs	 causal,	 causal	 SNP	 effects	 are	 drawn	 independently	 from	 a	
normal	 distribution	with	mean	 zero	 and	 constant	 variance	 across	 the	 genome,	with	 a	
total	heritability	of	0.9.	

2. (Sparse	null)	Same	as	(1),	but	each	SNP	has	probability	0.001	of	being	causal.			
3. (Exon-enriched	null)	A	SNP	is	causal	if	and	only	if	it	is	in	an	exon,	causal	SNP	effects	are	

drawn	independently	from	a	normal	distribution	with	mean	zero	and	constant	variance	
for	all	exonic	SNPs,	with	a	total	heritability	of	0.9.	

4. (Polygenic	 causal)	 We	 use	 the	 annotation	 corresponding	 to	 cortex	 genes	 from	 the	
multiple-tissue	analysis	to	simulate	a	true	effect.	All	SNPs	are	causal,	causal	SNP	effects	
are	drawn	independently	from	a	normal	distribution	with	a	constant	variance	within	the	
cortex	annotation	and	constant	variance	outside	of	the	cortex	annotation	so	that	50%	of	
the	total	heritability	is	assigned	to	the	cortex	annotation,	50%	of	the	total	heritability	is	
distributed	uniformly	 across	 the	genome,	 and	 the	 total	 heritability	 is	 0.2.	We	 chose	a	
smaller	value	of	heritability	in	the	causal	simulations	because	we	wanted	to	test	power	
to	identify	true	enrichment	rather	than	control	of	type	I	error.	

5. (Sparse	causal)	Same	as	(4),	but	each	SNP	has	a	probability	of	0.001	to	be	causal.			
	

For	each	genetic	 architecture,	we	 simulated	phenotypes	and	 summary	 statistics	using	PLINK9	
(see	URLs)	with	100	 replicates	 for	each	genetic	architecture.	We	 then	 ran	 the	multiple-tissue	
analysis	as	described	above	for	every	method	on	each	of	the	simulated	data	sets,	and	for	each	
method	and	each	simulated	genetic	architecture	we	performed	FDR	correction	within	the	set	of	
100	simulated	phenotypes.	Results	are	displayed	in	Figure	S16	and	Table	S15.		
	
Of	 the	 five	methods	 tested	 (LDSC-SEG,	 SNPsea,	 DEPICT	 (1e-5),	 DEPICT	 (5e-8),	 and	MAGMA),	
only	LDSC-SEG	and	SNPsea	correctly	reported	no	significant	enrichments	passing	FDR<5%	for	all	
3	 null	 simulations	 (scenarios	 1-3).	 In	 particular,	 DEPICT	 with	 a	 threshold	 of	 1e-5	 reported	
significant	enrichments	at	FDR<5%	 for	all	 three	null	 simulations	 (scenarios	1-3),	while	DEPICT	
with	 a	 threshold	 of	 5e-8	 reported	 significant	 enrichments	 at	 FDR	 <	 5%	 for	 the	 sparse	 null	
simulation	 (scenario	 2).	 MAGMA	 correctly	 reported	 no	 significant	 enrichment	 for	 the	 null	
simulations	 with	 no	 enrichment	 (scenarios	 1-2)	 but	 reported	 a	 large	 number	 of	 significant	
enrichments	at	FDR<5%	for	the	null	simulation	with	enrichment	in	exons	(scenario	3);	we	note	
that	 we	 ran	 MAGMA	 without	 taking	 advantage	 of	 the	 option	 to	 incorporate	 gene-level	
covariates	which	would	likely	ameliorate	the	false	positives.		
	
All	 five	 methods	 reported	 significant	 cortex	 enrichments	 at	 FDR<5%	 for	 the	 sparse	 causal	
simulation	 (scenario	 5),	 but	 only	 MAGMA	 and	 LDSC-SEG	 reported	 significant	 cortex	
enrichments	for	the	polygenic	causal	simulation	(scenario	4).	These	simulations,	together	with	
the	 analysis	 of	 real	 phenotypes	 described	 above,	 indicate	 that	when	MAGMA	 is	 run	without	
covariates,	 only	 LDSC-SEG	 and	 SNPsea	 control	 type	 I	 error,	 and	 that	 of	 these	 two	methods,	
LDSC-SEG	is	better	powered	for	polygenic	traits.	
	
Relationship	of	power	and	sample	size	at	very	large	sample	sizes.	Power	increases	only	
modestly	with	sample	size	at	very	large	sample	sizes,	as	the	finite	size	of	the	genome	is	a	
stricter	constraint	for	highly	heritable	traits	at	these	sample	sizes:	for	example,	LD	score	



regression	coefficients	of	baseline	model	annotations	had	s.e.	that	were	only	1.29x	lower	on	
average	in	analyses	of	the	full	UK	Biobank	data	set	(average	N=438,682)	vs.	the	interim	UK	
Biobank	data	set	(average	N=140,026.)	
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