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Supplementary Note 1. Model of the effect of phosphatase activity on detection threshold.
1. Derivation of [RR~P]

The Batchelor-Goulian TCS model' depicts reactions for SK autophosphorylation/SK~P
autodephosphorylation, SK~P/RR binding/unbinding, transfer of the phosphoryl group from SK~P
to RR, SK/RR~P binding/unbinding, and dephosphorylation of RR~P by SK. The reactions, rate
constants, and corresponding ordinary differential equations are depicted below:

k,
SK~P + RR T—=SK~PsRR
e \;
o s
SK + RR <—SK0F§F§ P /k'
M = k,[SK~P][RR] — (k_; + k;)[SK~P - RR] @
W = —(kp + k_2)[SK - RR~P] + k;[SK][RR~P] @
% = ki [SK] = k_yc[SK~P] + k_1[SK~P - RR] = ky[SK~P][RR] )
d[jf]' = k_[SK~P] — ky[SK] + (k, + k_5)[SK - RR~P] + k.[SK~P - RR] @
— ky[SK][RR~P]
d[gtR] = k_1[SK~P - RR] — k1[SK~P][RR] + k[SK - RR~P] ©)
% ke[SK~P - RR] + k_5[SK - RR~P] — k;[SK][RR~P] ©

Following the authors, we assume that total SK (i.e. [SK]r) and RR (i.e. [RR]t) are constant and
write:

[SK]; = [SK~P - RR] + [SK - RR~P] + [SK~P] + [SK] ©)
[RR]; = [SK~P - RR] + [SK - RR~P] + [RR~P] + [RR] (8)

Then, at steady state, all differential equations equal zero and:

Cy[RR]

[RR~P] = —Ct +[RR]

9)
Where concentrations C; and C,, are the composite rate constants and CE; and CE, represent the
catalytic efficiencies (Keat/Km; sec’t ML) of the Michaelis reactions of kinase and phosphatase
activity?:
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In the limit where [SK]t << [RR]T, equation (8) can be substituted into equation (9) to give the

following quadratic solution for [RR~P]*:

[RR~P] = %(Ct +C, + [RR]7) — %\/(Ct +Cp + [RR]T)2 — 4C, * [RR]; (12)

2. Modulation of phosphatase activity

SK phosphatase activity can be described as a Michaelis reaction where the SK reversibly binds
RR~P and then irreversibly removes a phosphate. The catalytic efficiency (CE) of such a reaction
is defined as kcat/Km, which is equivalent to CE,. CE is a useful metric when comparing different
enzymatic activities, such as the phosphatase and kinase activity of a SK on its cognate response
regulator. A large number of point mutations have been found in SKs that predominantly decrease
the phosphatase activity, and therefore CE, of the enzyme, as compared to CE: Since the
individual rate constants of a TCS cannot be measured accurately, we modeled the effect of
phosphatase-diminishing mutations by scaling the value of CEp, which is linearly related to the
measurable C, parameter. We parameterized the above model using previously measured constants
for the PhoBR TCS? :
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3. Model of gene regulation

In a canonical TCS, phosphorylation induces RR dimerization and subsequent promoter binding
and regulation of transcription. We modelled these processes via a classical Hill function for
activatable promoters. In this function, b represent leaky transcription from the promoter in the
absence of activator, and (b + a) is the maximal transcription from the promoter. K,,, is the
equilibrium constant and the promoter is half activated when RR~P equals K,,,. The hill
coefficient, n, represents the level of cooperativity of RR~P binding.

RR~P™ (13)
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We used the following parameters to simulate a leaky output promoter.

a=09, b=01 K,=1M, n=2



4. TCS simulations

To simulate the TCS transfer function, we assumed that ligand concentration was linearly related
to the autokinase rate of the SK (kx), as previously?, scaling kk between 102 and 10* (Fig. 1b). To
simulate the effect of phosphatase-diminishing mutations, we varied the CE, term between 1072

and 10? fold that of WT. Python code for the simulations is included as Supplementary Material.

5. Relationship between K12 and dynamic range

We also examined the effect changes in phosphatase activity had on the dynamic range of the
TCS. We limited the effect of ligand induction on autokinase activity to the previously
mentioned scaling range of 10 to 10! of basal activity. The dynamic range was then calculated
as the ratio of the maximal promoter activity to the basal promoter activity. We found there was
a region of phosphatase activity where the detection threshold could be changed without
effecting the dynamic range (Supplementary Fig. 1). However, large decreases in phosphatase
activity resulted in basal levels of RR~P that were high enough to activate the promoter,
resulting in basal transcription and decreased dynamic range. Conversely, large increases in
phosphatase activity caused RR~P levels to remain low even at high induction, causing
decreased maximal expression from the TCS and decreased dynamic range.

6. Analysis of the effect of kinase activity on detection threshold

We also examined the effect that changes in kinase activity could have on the detection threshold
of a TCS. Here, rather than increasing SK autophosphorylation (ki) as before (Fig 1b;
Supplementary Fig. 1), we simulated the effect of inducer by decreasing SK
autodephosphorylation (k) between 10% and 10°. With this change, we found that kinase activity
had similar control of detection threshold to that previously shown with phosphatase activity;
however, here decreases in kinase activity resulted in increases in detection threshold and
increases in kinase activity resulted in decreases in detection threshold (Supplementary Fig. 1).
This finding suggests that either phosphatase activity or kinase activity could serve as a tuning
knob for detection threshold. In this work, we focus on phosphatase activity for decreasing
detection threshold since this is easier to achieve by weakening phosphatase activity than
strengthening kinase activity.



Supplementary Note 2. Predictive model of soil nitrate concentrations.

To predict the concentration of nitrate in soil we collected nitrate transfer functions in soil on
three separate days (Supplementary Fig. 12). We observed significant day to day variability in
the high and low values of the cultures, and therefore normalized each day’s data to the high and
low for that day. Data from all days was fit with a hill function to obtain best fit parameters
(Methods).

To predict the nitrate concentration in fertilized soil based on GFP measurements we inverted the
hill function to obtain the following equation:

Nitrate = k n_r h ——[ I~ low 12
= * =
itrate /1 r’W erer iah —low (12)

Fertilizer transfer functions in soil were taken and GFP levels were measured (Supplementary
Fig. 12e). The parameterized inverted Hill functions of the NarX and NarX(C415R) TCSs were
used to predict nitrate concentrations as shown in Fig. 6b. Data points with predicted nitrate
concentrations outside of the range of the y-axis were not included in this plot. Accurate
detection ranges of the two TCSs were defined as the range in which the predicted nitrate values
were within 2-fold of the manufacturer supplied nitrate value.
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Supplementary Figure 1. Relationship between detection threshold and dynamic range of a

TCS.
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(a) The relationship between the detection threshold and dynamic range of the transfer functions
simulated in (Fig. 1b). (b) Model simulations of the relationship between TCS input
concentration and transcriptional output rate (i.e. transfer function) wherein SK kinase activity is
varied between 1% and 10,000% of wild-type (Supplementary Note 1). (c) The relationship
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Supplementary Figure 2. Design of the chimeric NarL-Ydfl response regulator and its
output promoter.

camR

All B. subtilis genetic systems engineered in this paper (Supplementary Table 4) are integrated
into the chromosome. The genetic systems are first constructed as linear double stranded DNA
fragments that we call Integration Modules (IMs) prior to integration (Methods). We utilize the
naming convention “iABxxx” where “i” indicates that the construct is an IM, “AB” indicates the
first and last initial of the individual who designed the IM, and “xxx” is a unique numerical
identifier. (a) We fused the REC domain of NarL to the DBD of Ydfl to connect the E. coli
NarXL TCS to transcription from the B. subtilis Pygt115 promoter. We selected the Ydfl DBD
due to the high degree of homology of Ydfl to NarL and because Ydfl regulates a single
promoter, Pyqss, in B. subtilis*, thus reducing the likelihood of unwanted fan-out cross-regulation.
Pyary is known to be regulated only by Ydfl, and thus does not naturally respond to nitrate. The
host YdfHI TCS, whose natural ligand is unknown, was knocked out using the IM in Panel D to
prevent its regulation of the Pyarj115 promoter. (b) An alignment of the linker region of the NarL
and Ydfl proteins. The residue at which the proteins were joined is shown with a triangle.
Identical and similar residues are highlighted with black and gray respectively. (c) The NarL-
Ydfl regulated Pyqry promoter. Ydfl operator sites are shown with an arrow and the -35 and -10
sequences are highlighted with gray.
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Supplementary Figure 3. Optimization of SK and RR expression levels for B. subtilis
nitrate sensing TCSs.

(a) We constructed iND138 wherein NarL-Ydfl (Supplementary Fig. 2) is expressed from an
IPTG-inducible promoter and sfGFP is expressed from the NarL-Ydfl~P activated Pyqt115 output
promoter (Supplementary Fig. 2). IND138 is integrated into the amyE locus. (b) NarX,
NarX(C415R), and NarX(D558V) are expressed from a xylose-inducible promoter in iND27,
IND71, and iIND72, respectively. Each of these IMs is integrated into the ganA locus of a strain
also containing iND138, resulting in a complete TCS. (c) We induced the expression of NarL-
Ydfl and each NarX variant to different extents in two dimensions in the presence and absence of
nitrate, measured the resulting sfGFP output, and calculated the dynamic range, or ratio of SftGFP
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fluorescence in each condition. To compare detection thresholds of the wild-type and mutant
sensors (Fig. 2), we selected a single set of induction conditions that resulted in large dynamic
range of all three sensors (L0uM IPTG, 1% xylose; brown boxes).
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Supplementary Figure 4. Engineering the iso-SK expression strain.

For the iso-SK experiment, we aimed to utilize the IPTG and xylose induction modules
(Supplementary Fig. 3) to control NarX and NarX(C415R) expression, respectively. However,
because we lacked other inducible promoter systems, we first replaced the xylose-inducible
NarL-Ydfl promoter (Supplementary Fig. 3) with a constitutive version. (a) We utilized xylose
inducible NarX(C415R) and differentially applied nitrate in the media to screen five constitutive
B. subtilis promoters (Piiag, Pyqxd, Plepa, Pveg, and Prpsp) for the ability to drive appropriate levels
of NarL-Ydfl expression. Note that the translation rate of RBS3-sfGFP (Supplementary Table
2) is weaker than the translation rate of RBS4-sfGFP2 since this construct was made prior to
optimization of sfgfp translation, resulting in lower GFP levels when compared to other data in
this paper. (b) NarX(C415R)/NarL-Ydfl performance at different SK and RR expression levels.
We selected Piiag, which gave the highest fold change, for the iso-SK experiment.
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Supplementary Figure 5. Performance of the iso-SK expression strain.

(a) The iso-SK strain device schematics. (b) The relationship between the detection threshold
and dynamic range of the iso-SK strain at different expression levels. Points represent the best fit
value of the parameter and error bars the 95% confidence interval of the fit parameter.
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Supplementary Figure 6. Quantification of NarX and NarX(C415R) expression levels for
the iso-SK experiment.

(a, ¢) To quantify the relationship between IPTG and NarX expression and xylose and
NarX(C415R) expression, we fused sfGFP to the C-terminus of each SK in separate test strains.
(b,d) We then measured the IPTG and xylose transfer functions (Methods). Data points are the
mean and error bars are the SEM of experiments on three separate days. Each data set is fit to a
transfer function model (Methods).
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OmpR system by mutating the phosphatase hot spot.

Tuning the detection threshold of the aspartate sensing Taz-

(a) Device schematic of the Taz-OmpR system utilized in this paper. Plasmid names are shown.
(b) Output of Taz-OmpR with wild-type and previously-characterized mutations at the
phosphatase hot spot (T436)° in the absence and presence of aspartate. Circles are raw data and
bars are means from experiments on three separate days (Methods). (c) Aspartate transfer
functions of the four functional Taz-OmpR systems from panel ‘b’. Data points, error bars, and
model fitting are as described in Supplementary Fig. 6. (d) The relationship between the
detection threshold and dynamic range of the transfer functions in panel ‘c’. Data points and
error bars, are as described in Supplementary Fig. 5.
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Supplementary Figure 8. The NarX(C415R, D558V) double mutant does signal in response
to nitrate.

(a) Device schematic of NarX double mutant TCS system. (b) TCS output and fold change at
different IPTG and xylose concentrations. There is little observable effect of SK induction on RR

function with or without nitrate, suggesting that signaling has been abolished due to the
combined effects of two phosphatase-reducing mutations. Note that iND48 contains the weakly
translating RBS3-sfGFP (Supplementary Table 2) as in Supplementary Fig. 4, resulting in
lower GFP levels when compared to other data in this paper.
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Supplementary Figure 9. The phosphatase hot spot residue is present in 64% of SKs.

(a) Development of the Hidden Markov Model (HMM) (Fig. 5a) of the conserved CA domain
G2 box region containing the GXGXG motif (Methods). An alignment of 12 SKs from diverse
sub-families that contain the G2 box (redrawn from Wolanin et al.®). The GXGXG motif is
underlined and the phosphatase hot spot residue within the motif is indicated (*). The bold white
“G” on black background is conserved in all 12 SKs. Boxes indicate positions with greater than
70% conservation of similar residues across all 12 SKs. Bold residues are similar to 70% of other
residues in the same column. (b) We identified 56,855 non-redundant SKs from genomes in the
NCBI RefSeq database (Methods). Using the G2 box HMM, we determined that 38,966 of these
SKs contain the G2 box region. Then, we eliminated those SKs wherein the G2 box region was
outside the kinase core, which is composed of the DhP and CA domains, or that lacked glycines
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at either of the final two conserved GXGXG positions. This restriction yielded 36,508 SKs (64%
of non-redundant SKs) that contain the phosphatase hot spot residue. (c) The distribution of
amino acids found at the phosphatase hot spot residue.
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Supplementary Figure 10. Detailed characterization of TtrS phosphatase hot spot mutants.

(a) Device schematic of E. coli TtrSR system used in this work. The mCherry transcriptional unit
has no function in this work. (b) Tetrathionate response of TtrSR with all 20 amino acids at the
TtrS phosphatase hot spot. We define functional mutants (*) as those with fold activation > 2.
Circles and bars are as described in Supplementary Fig. 7. (c) Relationship between
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hydropathy’ of the TtrS phosphatase hot spot residue and the tetrathionate response of the TCS.
(d) Tetrathionate transfer functions of the ten L627 mutants with the largest fold activation. Data
points, error bars, and model fits are as described in Supplementary Fig. 6.
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Supplementary Figure 11. Detailed characterization of ThsS phosphatase hot spot mutants.

(a-d) As described in Supplementary Fig. 10 but for the thiosulfate-activated ThsSR system.

19



a ’—q/

ND77 —O RBS RBS: Ch gyrA
i TIRNAP mCherry camR
ydfHIPrpsD PT7 B0015
b ¢ d Standard curve in soil € Fertilizer detection
. 1.0 1.0
— — —&- WT, 0 mM NaNO3
:i ] —s— WT, 25 mM NaNO; 08— { 08
o 400 =3 108 4= c415R 0 mM NanOs : .
e 2 —4+— C415R, 25 mM NaNO3
s £ : 0.6 - 0.6 |
Q
@ O i) i)
[ (%]
§ 200 + g 104 . ﬁ 0.4 + ﬁ 0.4 +
3 S © @
- = E 02 E 02
| o : s o] [e]
o 0] e £ £
0 - 102 L L LA B LR LLL e 8 0.0 T T 8 0.0
g e 107! 10° 0 540 % 1.0
o I o 1.
5 5 IPTG (M) 8 —— C415R ¢
E E S 0.8 S 0.8 A
: 3 = =
% 0.6 % 0.6 -
0.4 1 0.4
0.2 0.2
00 T T 00 T T
10! 108 107 108
Additional NaNO3 (uM) Additional fertilizer
(nitrate, uM)

Supplementary Figure 12. Nitrate measurements in soil.

(a) Device schematic of iND77, which both knocks out YdfHI expression and overexpresses
mCherry using T7 polymerase. To engineer the high and low fertilizer concentration soil sensor
strains, IND77 was combined with iND138 (NarL-Ydfl expression induction and sfGFP output)
and IND27 (NarX expression) or iND71 (NarX(C415R) expression) (Supplementary Fig. 3).
(b) Measurement of red fluorescence of B. subtilis with and without mCherry. (c) Expression
level optimization of NarL-Ydfl in the NarX and NarX(C415R) strains in soil (Methods). 0.3%
xylose is used to induce NarX (dark blue circles) and NarX (C415R) (light blue circles). The
dashed line indicates the conditions used for soil sensing experiments. (d) NaNO3z transfer
functions in soil of the NarX (top) and NarX(C415R) (bottom) TCSs. (e) Fertilizer transfer
functions in soil of the NarX (top) and NarX(C415R) (bottom) TCSs with the transfer function
fit from panel ‘d’. (d, e) Data points are the mean and error bars are as described in
Supplementary Fig. 6. See Supplementary Note 2 for additional details.
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a Example B. subtilis gate b Example E. coli gate
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Supplementary Figure 13. Example of the flow cytometry gating strategy.

Representative scatter plots that show the result of the density gating algorithm used to analyze
flow cytometry data (Methods) for both B. subtilis cells (a) and E. coli cells (b).
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