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Supplementary Note 1. Model of the effect of phosphatase activity on detection threshold. 

1. Derivation of [RR~P] 

The Batchelor-Goulian TCS model1 depicts reactions for SK autophosphorylation/SK~P 

autodephosphorylation, SK~P/RR binding/unbinding, transfer of the phosphoryl group from SK~P 

to RR, SK/RR~P binding/unbinding, and dephosphorylation of RR~P by SK. The reactions, rate 

constants, and corresponding ordinary differential equations are depicted below: 

 

𝑑[𝑆𝐾~𝑃 · 𝑅𝑅]

𝑑𝑡
= 𝑘1[𝑆𝐾~𝑃][𝑅𝑅] − (𝑘−1 + 𝑘𝑡)[𝑆𝐾~𝑃 · 𝑅𝑅] 

𝑑[𝑆𝐾 · 𝑅𝑅~𝑃]

𝑑𝑡
= −(𝑘𝑝 + 𝑘−2)[𝑆𝐾 · 𝑅𝑅~𝑃] + 𝑘2[𝑆𝐾][𝑅𝑅~𝑃] 

𝑑[𝑆𝐾~𝑃]

𝑑𝑡
= 𝑘𝑘[𝑆𝐾] − 𝑘−𝑘[𝑆𝐾~𝑃] + 𝑘−1[𝑆𝐾~𝑃 · 𝑅𝑅] − 𝑘1[𝑆𝐾~𝑃][𝑅𝑅] 

𝑑[𝑆𝐾]

𝑑𝑡
= 𝑘−𝑘[𝑆𝐾~𝑃] − 𝑘𝑘[𝑆𝐾] + (𝑘𝑝 + 𝑘−2)[𝑆𝐾 · 𝑅𝑅~𝑃] + 𝑘𝑡[𝑆𝐾~𝑃 · 𝑅𝑅]

− 𝑘2[𝑆𝐾][𝑅𝑅~𝑃] 
𝑑[𝑅𝑅]

𝑑𝑡
= 𝑘−1[𝑆𝐾~𝑃 · 𝑅𝑅] − 𝑘1[𝑆𝐾~𝑃][𝑅𝑅] + 𝑘𝑝[𝑆𝐾 · 𝑅𝑅~𝑃] 

𝑑[𝑅𝑅~𝑃]

𝑑𝑡
= 𝑘𝑡[𝑆𝐾~𝑃 · 𝑅𝑅] + 𝑘−2[𝑆𝐾 · 𝑅𝑅~𝑃] − 𝑘2[𝑆𝐾][𝑅𝑅~𝑃] 

 

Following the authors, we assume that total SK (i.e. [SK]T) and RR (i.e. [RR]T) are constant and 

write:  

[𝑆𝐾]𝑇 = [𝑆𝐾~𝑃 · 𝑅𝑅] + [𝑆𝐾 · 𝑅𝑅~𝑃] + [𝑆𝐾~𝑃] + [𝑆𝐾] 
[𝑅𝑅]𝑇 = [𝑆𝐾~𝑃 · 𝑅𝑅] + [𝑆𝐾 · 𝑅𝑅~𝑃] + [𝑅𝑅~𝑃] + [𝑅𝑅] 

 

Then, at steady state, all differential equations equal zero and:  

[𝑅𝑅~𝑃] =
𝐶𝑝[𝑅𝑅]

𝐶𝑡 + [𝑅𝑅]
 

Where concentrations Ct and Cp are the composite rate constants and CEt and CEp represent the 

catalytic efficiencies (kcat/Km; sec-1 M-1) of the Michaelis reactions of kinase and phosphatase 

activity2: 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

 

(7) 

 (8) 

 

(9) 
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𝐶𝑡 = 𝑘−𝑘 ∗
𝑘−1 + 𝑘𝑡

𝑘1𝑘𝑡
=

𝑘−𝑘

𝐶𝐸𝑡
                                    𝐶𝑝 = 𝑘𝑘

𝑘−2 + 𝑘𝑝

𝑘𝑝𝑘2
=

𝑘𝑘

𝐶𝐸𝑝
 

In the limit where [SK]T << [RR]T, equation (8) can be substituted into equation (9) to give the 

following quadratic solution for [RR~P]1: 

[𝑅𝑅~𝑃] =
1

2
(𝐶𝑡 + 𝐶𝑝 + [𝑅𝑅]𝑇) −

1

2
√(𝐶𝑡 + 𝐶𝑝 + [𝑅𝑅]𝑇)

2
− 4𝐶𝑝 ∗ [𝑅𝑅]𝑇 

 

2. Modulation of phosphatase activity 

SK phosphatase activity can be described as a Michaelis reaction where the SK reversibly binds 

RR~P and then irreversibly removes a phosphate. The catalytic efficiency (CE) of such a reaction 

is defined as kcat/Km, which is equivalent to CEp. CE is a useful metric when comparing different 

enzymatic activities, such as the phosphatase and kinase activity of a SK on its cognate response 

regulator. A large number of point mutations have been found in SKs that predominantly decrease 

the phosphatase activity, and therefore CEp of the enzyme, as compared to CEt. Since the 

individual rate constants of a TCS cannot be measured accurately, we modeled the effect of 

phosphatase-diminishing mutations by scaling the value of CEp, which is linearly related to the 

measurable Cp parameter. We parameterized the above model using previously measured constants 

for the PhoBR TCS2 : 

 

𝑘−𝑘

𝐶𝐸𝑡
= 𝐶𝑡 = 0.8𝜇𝑀,        

𝑘𝑘

𝐶𝐸𝑝
= 𝐶𝑝 = 4𝜇𝑀,         𝑅𝑅𝑇 = 10𝜇𝑀 

 

3. Model of gene regulation 

In a canonical TCS, phosphorylation induces RR dimerization and subsequent promoter binding 

and regulation of transcription. We modelled these processes via a classical Hill function for 

activatable promoters. In this function, 𝑏 represent leaky transcription from the promoter in the 

absence of activator, and (𝑏 + 𝑎) is the maximal transcription from the promoter. 𝐾𝑚 is the 

equilibrium constant and the promoter is half activated when RR~P equals 𝐾𝑚. The hill 

coefficient, 𝑛, represents the level of cooperativity of RR~P binding. 

𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 =  𝑏 + 𝑎 ∗
𝑅𝑅~𝑃𝑛

𝐾𝑚
𝑛 + 𝑅𝑅~𝑃𝑛

 

We used the following parameters to simulate a leaky output promoter. 

𝑎 = 0.9,     𝑏 =  0.1,      𝐾𝑚 = 1 𝑀,      𝑛 = 2 

 

(12) 

 

(13) 

 

(11) 

 

(10) 
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4. TCS simulations 

To simulate the TCS transfer function, we assumed that ligand concentration was linearly related 

to the autokinase rate of the SK (kk), as previously3, scaling kk between 10-2 and 101 (Fig. 1b). To 

simulate the effect of phosphatase-diminishing mutations, we varied the CEp term between 10-2 

and 102 fold that of WT. Python code for the simulations is included as Supplementary Material. 

5. Relationship between K1/2 and dynamic range 

We also examined the effect changes in phosphatase activity had on the dynamic range of the 

TCS. We limited the effect of ligand induction on autokinase activity to the previously 

mentioned scaling range of 10-2 to 101 of basal activity. The dynamic range was then calculated 

as the ratio of the maximal promoter activity to the basal promoter activity. We found there was 

a region of phosphatase activity where the detection threshold could be changed without 

effecting the dynamic range (Supplementary Fig. 1). However, large decreases in phosphatase 

activity resulted in basal levels of RR~P that were high enough to activate the promoter, 

resulting in basal transcription and decreased dynamic range. Conversely, large increases in 

phosphatase activity caused RR~P levels to remain low even at high induction, causing 

decreased maximal expression from the TCS and decreased dynamic range. 

6. Analysis of the effect of kinase activity on detection threshold 

We also examined the effect that changes in kinase activity could have on the detection threshold 

of a TCS.  Here, rather than increasing SK autophosphorylation (kk) as before (Fig 1b; 

Supplementary Fig. 1), we simulated the effect of inducer by decreasing SK 

autodephosphorylation (k-k) between 103 and 100. With this change, we found that kinase activity 

had similar control of detection threshold to that previously shown with phosphatase activity; 

however, here decreases in kinase activity resulted in increases in detection threshold and 

increases in kinase activity resulted in decreases in detection threshold (Supplementary Fig. 1). 

This finding suggests that either phosphatase activity or kinase activity could serve as a tuning 

knob for detection threshold. In this work, we focus on phosphatase activity for decreasing 

detection threshold since this is easier to achieve by weakening phosphatase activity than 

strengthening kinase activity. 

  

 



 

 

5 

Supplementary Note 2. Predictive model of soil nitrate concentrations. 

To predict the concentration of nitrate in soil we collected nitrate transfer functions in soil on 

three separate days (Supplementary Fig. 12). We observed significant day to day variability in 

the high and low values of the cultures, and therefore normalized each day’s data to the high and 

low for that day. Data from all days was fit with a hill function to obtain best fit parameters 

(Methods). 

To predict the nitrate concentration in fertilized soil based on GFP measurements we inverted the 

hill function to obtain the following equation: 

𝑁𝑖𝑡𝑟𝑎𝑡𝑒 =  𝑘 ∗ √
𝑟

1 − 𝑟

𝑛
, 𝑤ℎ𝑒𝑟𝑒 𝑟 =

[𝐺𝐹𝑃] − 𝑙𝑜𝑤

ℎ𝑖𝑔ℎ − 𝑙𝑜𝑤
 

Fertilizer transfer functions in soil were taken and GFP levels were measured (Supplementary 

Fig. 12e). The parameterized inverted Hill functions of the NarX and NarX(C415R) TCSs were 

used to predict nitrate concentrations as shown in Fig. 6b. Data points with predicted nitrate 

concentrations outside of the range of the y-axis were not included in this plot. Accurate 

detection ranges of the two TCSs were defined as the range in which the predicted nitrate values 

were within 2-fold of the manufacturer supplied nitrate value. 

  

(12) 
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Supplementary Figure 1. Relationship between detection threshold and dynamic range of a 

TCS.  

(a) The relationship between the detection threshold and dynamic range of the transfer functions 

simulated in (Fig. 1b). (b) Model simulations of the relationship between TCS input 

concentration and transcriptional output rate (i.e. transfer function) wherein SK kinase activity is 

varied between 1% and 10,000% of wild-type (Supplementary Note 1). (c) The relationship 

between the detection threshold and dynamic range of the transfer functions simulated in Panel 

B.   
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Supplementary Figure 2. Design of the chimeric NarL-YdfI response regulator and its 

output promoter. 

All B. subtilis genetic systems engineered in this paper (Supplementary Table 4) are integrated 

into the chromosome. The genetic systems are first constructed as linear double stranded DNA 

fragments that we call Integration Modules (IMs) prior to integration (Methods). We utilize the 

naming convention “iABxxx” where “i” indicates that the construct is an IM, “AB” indicates the 

first and last initial of the individual who designed the IM, and “xxx” is a unique numerical 

identifier. (a) We fused the REC domain of NarL to the DBD of YdfI to connect the E. coli 

NarXL TCS to transcription from the B. subtilis PydfJ115 promoter. We selected the YdfI DBD 

due to the high degree of homology of YdfI to NarL and because YdfI regulates a single 

promoter, PydfJ, in B. subtilis4, thus reducing the likelihood of unwanted fan-out cross-regulation. 

PydfJ is known to be regulated only by YdfI, and thus does not naturally respond to nitrate. The 

host YdfHI TCS, whose natural ligand is unknown, was knocked out using the IM in Panel D to 

prevent its regulation of the PydfJ115 promoter. (b) An alignment of the linker region of the NarL 

and YdfI proteins. The residue at which the proteins were joined is shown with a triangle. 

Identical and similar residues are highlighted with black and gray respectively. (c) The NarL-

YdfI regulated PydfJ promoter. YdfI operator sites are shown with an arrow and the -35 and -10 

sequences are highlighted with gray. 
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Supplementary Figure 3. Optimization of SK and RR expression levels for B. subtilis 

nitrate sensing TCSs. 

(a) We constructed iND138 wherein NarL-YdfI (Supplementary Fig. 2) is expressed from an 

IPTG-inducible promoter and sfGFP is expressed from the NarL-YdfI~P activated PydfJ115 output 

promoter (Supplementary Fig. 2). iND138 is integrated into the amyE locus. (b) NarX, 

NarX(C415R), and NarX(D558V) are expressed from a xylose-inducible promoter in iND27, 

iND71, and iND72, respectively. Each of these IMs is integrated into the ganA locus of a strain 

also containing iND138, resulting in a complete TCS. (c) We induced the expression of NarL-

YdfI and each NarX variant to different extents in two dimensions in the presence and absence of 

nitrate, measured the resulting sfGFP output, and calculated the dynamic range, or ratio of sfGFP 



 

 

9 

fluorescence in each condition. To compare detection thresholds of the wild-type and mutant 

sensors (Fig. 2), we selected a single set of induction conditions that resulted in large dynamic 

range of all three sensors (10µM IPTG, 1% xylose; brown boxes).  
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Supplementary Figure 4. Engineering the iso-SK expression strain. 

For the iso-SK experiment, we aimed to utilize the IPTG and xylose induction modules 

(Supplementary Fig. 3) to control NarX and NarX(C415R) expression, respectively. However, 

because we lacked other inducible promoter systems, we first replaced the xylose-inducible 

NarL-YdfI promoter (Supplementary Fig. 3) with a constitutive version. (a) We utilized xylose 

inducible NarX(C415R) and differentially applied nitrate in the media to screen five constitutive 

B. subtilis promoters (PliaG, PyqxD, PlepA, Pveg, and PrpsD) for the ability to drive appropriate levels 

of NarL-YdfI expression. Note that the translation rate of RBS3-sfGFP (Supplementary Table 

2) is weaker than the translation rate of RBS4-sfGFP2 since this construct was made prior to 

optimization of sfgfp translation, resulting in lower GFP levels when compared to other data in 

this paper.  (b) NarX(C415R)/NarL-YdfI performance at different SK and RR expression levels. 

We selected PliaG, which gave the highest fold change, for the iso-SK experiment.  
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Supplementary Figure 5. Performance of the iso-SK expression strain. 

(a) The iso-SK strain device schematics. (b) The relationship between the detection threshold 

and dynamic range of the iso-SK strain at different expression levels. Points represent the best fit 

value of the parameter and error bars the 95% confidence interval of the fit parameter. 
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Supplementary Figure 6. Quantification of NarX and NarX(C415R) expression levels for 

the iso-SK experiment. 

(a, c) To quantify the relationship between IPTG and NarX expression and xylose and 

NarX(C415R) expression, we fused sfGFP to the C-terminus of each SK in separate test strains. 

(b,d) We then measured the IPTG and xylose transfer functions (Methods). Data points are the 

mean and error bars are the SEM of experiments on three separate days. Each data set is fit to a 

transfer function model (Methods). 
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Supplementary Figure 7. Tuning the detection threshold of the aspartate sensing Taz-

OmpR system by mutating the phosphatase hot spot. 

(a) Device schematic of the Taz-OmpR system utilized in this paper. Plasmid names are shown. 

(b) Output of Taz-OmpR with wild-type and previously-characterized mutations at the 

phosphatase hot spot (T436)5 in the absence and presence of aspartate. Circles are raw data and 

bars are means from experiments on three separate days (Methods). (c) Aspartate transfer 

functions of the four functional Taz-OmpR systems from panel ‘b’. Data points, error bars, and 

model fitting are as described in Supplementary Fig. 6. (d) The relationship between the 

detection threshold and dynamic range of the transfer functions in panel ‘c’. Data points and 

error bars, are as described in Supplementary Fig. 5. 
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Supplementary Figure 8. The NarX(C415R, D558V) double mutant does signal in response 

to nitrate.  

(a) Device schematic of NarX double mutant TCS system. (b) TCS output and fold change at 

different IPTG and xylose concentrations. There is little observable effect of SK induction on RR 

function with or without nitrate, suggesting that signaling has been abolished due to the 

combined effects of two phosphatase-reducing mutations. Note that iND48 contains the weakly 

translating RBS3-sfGFP (Supplementary Table 2) as in Supplementary Fig. 4, resulting in 

lower GFP levels when compared to other data in this paper.  
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Supplementary Figure 9. The phosphatase hot spot residue is present in 64% of SKs. 

(a) Development of the Hidden Markov Model (HMM) (Fig. 5a) of the conserved CA domain 

G2 box region containing the GXGXG motif (Methods). An alignment of 12 SKs from diverse 

sub-families that contain the G2 box (redrawn from Wolanin et al.6). The GXGXG motif is 

underlined and the phosphatase hot spot residue within the motif is indicated (*). The bold white 

“G” on black background is conserved in all 12 SKs. Boxes indicate positions with greater than 

70% conservation of similar residues across all 12 SKs. Bold residues are similar to 70% of other 

residues in the same column. (b) We identified 56,855 non-redundant SKs from genomes in the 

NCBI RefSeq database (Methods). Using the G2 box HMM, we determined that 38,966 of these 

SKs contain the G2 box region. Then, we eliminated those SKs wherein the G2 box region was 

outside the kinase core, which is composed of the DhP and CA domains, or that lacked glycines 
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at either of the final two conserved GXGXG positions. This restriction yielded 36,508 SKs (64% 

of non-redundant SKs) that contain the phosphatase hot spot residue. (c) The distribution of 

amino acids found at the phosphatase hot spot residue. 
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Supplementary Figure 10. Detailed characterization of TtrS phosphatase hot spot mutants. 

(a) Device schematic of E. coli TtrSR system used in this work. The mCherry transcriptional unit 

has no function in this work. (b) Tetrathionate response of TtrSR with all 20 amino acids at the 

TtrS phosphatase hot spot. We define functional mutants (*) as those with fold activation > 2. 

Circles and bars are as described in Supplementary Fig. 7. (c) Relationship between 
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hydropathy7 of the TtrS phosphatase hot spot residue and the tetrathionate response of the TCS. 

(d) Tetrathionate transfer functions of the ten L627 mutants with the largest fold activation. Data 

points, error bars, and model fits are as described in Supplementary Fig. 6. 
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Supplementary Figure 11. Detailed characterization of ThsS phosphatase hot spot mutants. 

(a-d) As described in Supplementary Fig. 10 but for the thiosulfate-activated ThsSR system. 
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Supplementary Figure 12. Nitrate measurements in soil. 

(a) Device schematic of iND77, which both knocks out YdfHI expression and overexpresses 

mCherry using T7 polymerase. To engineer the high and low fertilizer concentration soil sensor 

strains, iND77 was combined with iND138 (NarL-YdfI expression induction and sfGFP output) 

and iND27 (NarX expression) or iND71 (NarX(C415R) expression) (Supplementary Fig. 3). 

(b) Measurement of red fluorescence of B. subtilis with and without mCherry. (c) Expression 

level optimization of NarL-YdfI in the NarX and NarX(C415R) strains in soil (Methods). 0.3% 

xylose is used to induce NarX (dark blue circles) and NarX (C415R) (light blue circles). The 

dashed line indicates the conditions used for soil sensing experiments. (d) NaNO3 transfer 

functions in soil of the NarX (top) and NarX(C415R) (bottom) TCSs. (e) Fertilizer transfer 

functions in soil of the NarX (top) and NarX(C415R) (bottom) TCSs with the transfer function 

fit from panel ‘d’. (d, e) Data points are the mean and error bars are as described in 

Supplementary Fig. 6. See Supplementary Note 2 for additional details. 
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Supplementary Figure 13. Example of the flow cytometry gating strategy. 

Representative scatter plots that show the result of the density gating algorithm used to analyze 

flow cytometry data (Methods) for both B. subtilis cells (a) and E. coli cells (b). 

8 9 10 11 12 13 14 15 16 17 
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