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Supplementary information 

Supplementary Information accompanies this paper at online. 

 

Supplementary text 

Analysis of TEs in Magnaporthales. 

 

Supplementary figure legends 

 

Supplementary figure S1. 

Bacterial-derived HGTs in the Magnaporthales. (A) Phylogenetic tree of a hypothetical protein. 

(B) Phylogenetic tree of an antibiotic biosynthesis monooxygenase. Statistical support (>0.8) is 

indicated for each branch. Magnaporthales are shown in brown text and prokaryotes in black 

text. The clade identity of each major Magnaporthales lineage is shown. 

 

Supplementary figure S2. 

(A) Comparison of the total length of transposable element (TE) hits predicted by the REPET 

v2.5 pipeline as a percentage of genome size across ten fungi in the Magnaporthaceae. The ten 

fungi are organized according to phylogenetic relatedness, with the most basal species given on 

the right and most derived species on the left. TEs predicted as Class I are shown in red, Class II 

in green, and those of unknown class in blue. The proportion of TE hits (Total %/Class I %/Class 

II %/Unknown %) are as follows: Pseudohalonectria lignicola (3.44/2.98/0.45/0.01), Ophioceras 

dolichostomum (1.95/1.34/0.59/0.02), Magnaporthe oryzae 70-15 (11.88/7.64/3.71/0.53), 

Magnaporthe grisea (1.45/1.13/0.32/0.00), Magnaporthe salvinii M69 (2.07/1.89/0.15/0.04), 

Falciphora oryzae (15.35/11.30/3.67/0.38), Gaeumannomyces graminis (6.88/5.67/0.95/0.27), 

Magnaporthiopsis incrustans (4.58/3.90/0.67/0.00), Magnaporthiopsis poae 

(0.64/0.49/0.13/0.03), and Magnaporthiopsis rhizophila (8.01/7.62/0.39/0.00). 

(B) Comparison of lengths for predicted transposable elements (TEs) grouped by orders as a 

percentage of genome size for each of the ten Magnaportheaceae genomes. Shown are the Class I 

orders: LTR, LINE and DIRS, as well as, Class II orders: TIR and Helitron. The “OTHER” 



category encompasses all other TEs predicted by REPET for a given genome, including those of 

unknown class. 

 

Supplementary figure S3.  

Comparison of di-nucleotide RIP indices produced by RIPCAL for six TE superfamilies across 

ten Magnaportheaceae genomes. TE superfamilies based on the Wicker system (Wicker et al. 

2007) are arranged in rows by class and order: DIRS (Class I, DIRS-like), I (Class I, LINE), 

Copia (Class I, LTR), Gypsy (Class I, LTR), Helitron (Class II, Helitron-like), and Tc1-Mariner 

(Class II, TIR). Evidence for RIP (indicated by *) is supported with index values (TpA / ApT) ≥ 

0.89 (red bars) and (CpA + TpG) / (ApC + GpT) ≤ 1.03 (blue bars). These cutoff values are 

based on previous work on Neurospora crassa76. Entries left blank either have less than ten 

respective TE sequences ≥ 80bp or no single sequence ≥ 300 bp as described in Methods. For the 

results shown, all include one or more sequence over 500 bp in length. 

 

Supplementary table S1.  

Raw sequence reads of five species in Magnaporthales. 

 

Supplementary table S2.  

Genome assembly and annotation statistics of five species in Magnaporthales. 

 

Supplementary table S3.  

CEGMA analysis to identify 248 conserved core eukaryotic genes in assembled genomes of five 

species in Magnaporthales. 

 

Supplementary table S4.  

The 321 cases of HGT that are either supportive or inconclusive (regardless of branch support) 

that need further investigation. 

 

Supplementary table S5.  

Ortholog groups (OGs) that show evidence of positive selection (FDR ≤ .01) in the wood, blast, 

and root infecting fungal clades. 



 

Supplementary table S6.  

Over-represented GO terms shared between the root and blast pathogenic fungal clades that may 

comprise common gene families that elucidate pathogen adaptation. 

 

Supplementary table S7.  

Blast2GO enrichment analyses that highlight 54, 42, and 25 over-represented “most specific” 

gene ontology (GO) terms in each major fungal clade, respectively. 

 

Supplementary table S8.  

List of identifiers of the secretome and small secreted proteins (SSPs), and species-specific SSPs 

in Magnaporthales species.  

 

Supplementary table S9.  

List of identifiers of the clade-specific secretome and small secreted proteins (SSPs) in 

Magnaporthales species.  

 
 
Supplementary Text 
 
Transposon Analyses 
Analysis of de novo TEs: REPET de novo predicted TEs from the TEdenovo pipeline were 
clustered using the CD-HIT server to check for similarities across the ten genomes. 580 initial 
sequences were clustered into 340 clusters containing, at most, 18 sequences with ≥ 80% shared 
sequence identity. The majority of TE clusters (337) contain TEs from only a single 
Magnaporthales taxon, suggesting that most of these elements are adapted to their genome of 
origin, and/or originated after diversification and speciation. Eight TE clusters were identified as 
containing TEs from two taxa, while one example was found to contain TEs from three and four 
taxa, respectively (Clusters 21 and 35). BLAST2GO was run on the representative sequence 
identified by CD-HIT for each cluster using the NCBI nt database. Cluster #21, with TEs from 
four taxa (G. graminis, M. incrustans, M. poae, and M. rhizophila), was checked using a large 
retrotransposon derivative (LARD) representative sequence from M. incrustans and produced a 
consensus hit of “proline permease mRNA 13508” (NCBI: XM_009228526.1) from the G. 
graminis tritici R3-111a-1 genome. Cluster #35 with TEs from three taxa (F. oryzae, M. poae, 
and M. rhizophila) was most similar to an F. oryzae unclassified TIR and returned a “telomere 
partial sequence” result from the M. oryzae 70-15 genome. Across all clusters, avirulence (AVR) 
genes from M. oryzae were the most common identification (33 hits), including: Pita-1 (19 hits), 
Pita-2 (2 hits) and Pia (12 hits). This is unsurprising given that AVR genes have been shown in 



previous work to occur near TE regions in M. oryzae (Singh et al. 2014, Zhang et al. 2014, 
Chuma et al. 2011). 
 
RIP analysis: Repeat families were assessed for evidence of RIP (Selker 1990; Cambareri et al. 
1989) using the RIPCAL program as indicated in Fig. S3 for the DIRS, I, Copia, Gypsy, Helitron 
and Tc1-Mariner TE superfamilies. With the exception of O. dolichostomum and M. rhizophila, 
evidence for RIP was found in at least one TE superfamily: P. lignicola (DIRS, Helitron), M. 
oryzae (DIRS, I, Copia, Helitron, Tc1-Mariner), M. grisea (I, Gypsy, Tc1-Mariner), M. salvinii 
(DIRS, Gypsy), F. oryzae (DIRS, Helitron), G. graminis (Helitron), M. incrustans (DIRS, 
Helitron), and M. poae (Copia, Gypsy). Fig. S3 also shows the di-nucleotide RIP indices (TpA / 
ApT) and (CpA + TpG) / (ApC + GpT) produced by RIPCAL for the above TE superfamilies. 
We note cutoffs for the RIP indices used originate from work on Neurospora crassa, so it is 
possible the given taxa might be better characterized using different values. 
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Table	S1.	Raw	sequence	reads	of	five	species	in	Magnaporthales.	
	
	

Species Strain Genome sequences Transcriptome sequences 
# read pairs read length # read pairs read length 

Ophioceras dolichostomum CBS114926 10,243,331 146 32,612,302 158 
Magnaporthiopsis rhizophila M23 18,996,598 146 28,734,571 158 
Magnaporthiopsis incrustans M35 25,862,061 146 18,109,452 158 
Nakataea oryzae M69 29,578,101 146 16,485,688 158 
Pseudohalonectria lignicola M95 25,160,531 146 17,510,655 158 
	



Table	S2.	Genome	assembly	and	annotation	statistics	of	five	species	in	Magnaporthales.	
	
	

Species Strain 
Scaffold Contig Assembly 

Size (Mb) 
GC 

ratio % 
# gene 
models N50 (bp) L50 N50 (bp) L50 

Ophioceras dolichostomum CBS114926 97,088 137 47,722 266 43.0 56 12,519 
Magnaporthiopsis rhizophila M23 251,881 52 57,017 268 39.9 54 12,210 
Magnaporthiopsis incrustans M35 164,440 74 59,869 205 39.3 56 12,933 
Nakataea oryzae M69 61,937 179 29,850 344 34.9 58 12,077 
Pseudohalonectria lignicola M95 103,568 122 29,851 188 41.6 54 12,176 
	
	



Table	S3.	CEGMA	analysis	to	identify	248	conserved	core	eukaryotic	genes	in	assembled	
genomes	of	five	species	in	Magnaporthales.	
	
	

Species Strain 
Complete Partial 

Total % Missing # 
genes % 

# 
genes % 

Ophioceras 
dolichostomum CBS114926 

237 0.96 6 0.02 0.98 
KOG0276, KOG1185, KOG2311, 
KOG3232, KOG4392 

Magnaporthiopsis 
rhizophila M23 

235 0.95 6 0.02 0.97 

KOG0261, KOG0292, KOG0969, 
KOG1123, KOG1185, KOG2311, 
KOG3232 

Magnaporthiopsis 
incrustans M35 

235 0.95 5 0.02 0.97 

KOG0261, KOG0291, KOG0434, 
KOG0969, KOG1123, KOG1185, 
KOG2311, KOG3232 

Nakataea oryzae M69 
236 0.95 5 0.02 0.97 

KOG0062, KOG0209, KOG0969, 
KOG1123, KOG1185, KOG2311, 
KOG3232 

Pseudohalonectria 
lignicola M95 

236 0.95 6 0.02 0.98 
KOG0062, KOG0434, KOG1185, 
KOG1466, KOG2036, KOG2311 
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