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Supplementary Figure 1: Illustration of AI model. We include ATP, ADP and P explicitly in the PdP cycle.
Controlling ATP and ADP/Pi concentration is equivalent to regulate forward/backward reaction rates through γ1 and γ2. We

choose a1,0[ATP](eq)=0.01, f−1,0[ADP](eq)=f−2,0[Pi]
(eq)=1 and set [ADP]=[Pi] so that there is only two free parameters. We

introduce γ1=[ATP](eq)/[ATP] and γ2=([ADP]·[Pi])/([ADP](eq)·[P](eq)). The equilibrium state is restricted by γ1γ2 = 1.
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Supplementary Figure 2: Irreversibility affects oscillation property by controlling the free energy dissipated
in the PdP cycle. ∆W is computed for both (a) the direct reverse scheme, and (b) the Michaelis-Menten scheme in the
full AI model. Dissipation from the PdP cycle (blue) and other reactions outside the PdP cycle (red) are calculated
separately. The part of dissipation that increase significantly when varying γ comes from the PdP cycle while the other
contributions from outside the PdP cycle remains roughly constant.
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Supplementary Figure 3: Different strategies of spending free energy decrease phase diffusion differently.

(a) Dependence of energy dissipation per period ∆W on irreversibility parameter γ1 and γ2. (b) γ1 = 0.8. D
decreases with 1/γ2 and eventually saturates to a nonzero value. (c) γ2 = 1. D continues to decrease as γ1 decrease.

The relative period variance declines as one over the oscillation amplitude, indicating the 1/N averaging effect.
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Supplementary Figure 4: Testing a different way of energy allocation in Brusselator.

Simulation parameters are: k2 = k
(eq)
2 /γ1, k−2 = k

(eq)
−2 /
√
γ2, and k−3 = k

(eq)
−3 /
√
γ2. (a) Different combinations of γ1

and γ2 are randomly chosen above the bifurcation (dashed line). It is clear that phase sensitivity χ grows when
farther away from thermal equilibrium. (b) The sensitivity-energy relation still indicates that χ is linearly enhanced

by dissipation per cycle. The dashed line is fitted by χmax = KW∆W + const.. The fitting parameters is
KW = 2.00× 10−2.
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Supplementary Figure 5: Free energy enhances phase sensitivity in AI model. In living organisms, the free energy
released by ATP hydrolysis is typically ∼ 12kBT , from which we infer that γ = γ1γ2 ≈ 10−5.2. This value is shown as the red
lines. (a) Dependence of phase sensitivity χ on parameter γ1 and γ2 in AI model. (b) The dependence of phase sensitivity χ
on energy dissipation per period ∆W for different choices of γ1,2. The linear relationship between the upper limit of χ and
the energy dissipation ∆W is shown by the black dashed line, and is fitted by χmax = KW ∆W + const. with the linearity
parameter KW ≈ 1.26 × 10−2. The width of the red line shows the range of ∆W for a realistic value of γ = 10−5.2.
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Supplementary Figure 6: A toy model for an ideal limit cycle oscillator. Two adjacent circles with N states each
are considered. The inner cycle is the stable limit cycle. The outer cycle represents the perturbed states where the phase
velocity is different from that on the limit cycle. The equilibrium transition rates between adjacent states (both forward and
backward) are given by kin, kout, and kjump shown. All the rates are regulated by nonequilibrium parameters γ+ (enhancing
forward) and γ− (suppressing backward) the same way. Three essential roles of free energy cost in regulating oscillatory
behaviors are illustrated at the bottom.
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Supplementary Figure 7: Optimal oscillation functions of Brusselator given a fixed energy budget. While
changing different combinations of γ1 and γ2 with fixed dissipation ∆W = 100, there exists (a) minimum phase diffusion and
(b) maximum phase sensitivity. In this case, the ideal performance can be achieved at − log γ1 ≈ 0.65.
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Supplementary Figure 8: Best strategy to utilize free energy for both low fluctuation and high sensitivity.
∆W is fixed at 100 in Brusselator model. (a) M is plotted against − log γ1. The minimum of phase diffusion is reached when
the forward and backward flux ratios are matched among different reaction pathways. (b) The dependence of net flux ratio
rw on different combinations of γ1 and γ2 suggests a negative correlation with phase sensitivity.
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Supplementary Figure 9: Design principle for phase responsiveness in AI model. We varied γ1,2 and fixed
∆W = 500. (a) χ is plotted against − log γ1. Phase sensitivity peaks at − log γ1 ≈ 4. (b) In AI model, we denote
w1 = f−2[M ][K]−f2[MpK], w2 = d2[MpK]−a2[Mp][K], w3 = f−1[Mp]([R]−[MR])−f1[MR], w4 = d1[MR]−a1[M ]([R]−[MR]).
The setting of parameters guarantees that w1 ≈ w2, w3 ≈ w4. Thus we define rw = (w1 + w2)/(w3 + w4). The dependence of
net flux ratio rw on − log γ1 shows a negative correlation with phase sensitivity.
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Supplementary Figure 10: Testing design principles with a KaiABC oscillator model. All kinetic rates are
experimentally measured [1]. Results are then compared with experiments in [1]. (a) Schematic of the model together with
the two design principles. Our theory propose that balancing the forward and backward transition leads to low phase diffusion
while unevenly distributing net flux favors higher sensitivity. (b) Experimental results of in vitro Kai system. Adapted from
[1]. Phosphorylation oscillation data (ATP%=100%) were used to estimate D in the system [2] and define subjective day and
night (rise/drop in P-KaiC%). PRC against an ADP pulse shows larger phase shifts (higher sensitivity) during the subjective

day. (c) The coarse-grained phosphorylation and dephosphorylation net flux J
(net)
U→D (blue line) and J

(net)
D→U (red line) are

computed during the PdP cycle. Our design principle would predict phase sensitivity to be higher during subjective day where
the backward-to-forward net flux ratio rw is smaller. This is supported by the experimentally measured PRC (panel b) in [1].
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Supplementary Figure 11: Existing phase resetting experiments. PRC against light and drug pulse is measured at
different ambient temperature in Neurospora (blue circle) [3], the unicellular dinoagellate Gonyaulax polyedra (green and cyan
triangles) [4] and chick pineal cell (red square) [5]. Error bars represent standard deviation estimated from original
experiments. Except for the case of light-PRC in Gonyaulax polyedra (cyan) where no significant temperature dependence
was observed, lowering temperature (smaller γ or more irreversible nonequilibrium reaction loop) in the other three cases
increases the PRC amplitude. The slope of the line, fitted to the case of Neurospora, is given by λ ≈ 18. According to our
theory, PRC amplitude ∆φ could be related to ambient temperature T through
∆φ/(∆r/rs) ≈ χ ∼ KW ∆W ∼ KWCW (− ln γ) = KWCW (∆G(0)/kBT0) × T/T0, where KW , CW are the scale factors of

approximate linear relationships, and ∆G(0)/kBT0 is the free energy difference in units of thermal energy at room
temperature. The relative deviation of the limit cycle induced by perturbation ∆r/r is of order 10−1 to 1 based on
observations of resetting response trajectories in the experiments. Taking KW ≈ 10−2 and CW ≈ 102 from our simulations as
well ∆r/r and λ from the experiments, our theory would estimate ∆G(0)/kBT0 to be roughly 101 ∼ 102, which seems to be
biologically reasonable.
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Supplementary Figure 12: Examples of parametric PRCs for different models and perturbations. In general,
the amplitude of PRC increases with energy dissipation, as indicated by the enhanced phase sensitivity. This is a robust
result independent of the model used and the specific parameter perturbed. (a) PRC of the Brusselator model against a 30%
perturbation on k1 for 0.05 period. (b) PRC of the Brusselator model against a 20% perturbation on k3 for 0.05 period. The
elongation of the dead zone is due to the nonuniform velocity along the limit cycle, i.e., the oscillator spends a large amount
of time during the slow process. The parameters are: χ = 5.12, γ1 = 0.19, γ2 = 4.5 × 10−3 (blue);
χ = 10.38, γ1 = 0.12, γ2 = 5.6 × 10−3 (red); χ = 15.27, γ1 = 0.11, γ2 = 2.2 × 10−3 (green). (c) PRC of the AI model for a
perturbation of a 75% drop in k4 for 0.05 period. (d) PRC of the AI model for a perturbation doubling k1 for 0.05 period. In
the generic AI model, to which the Kai system belongs, PRCs are computed for different background levels of ATP/ADP
ratio or equivalently different values of γ: − log γ = 3.2 (blue); 3.8 (red); 5.0 (green). The free energy dissipation ∆W for
each γ choice is given in the legend. Amplitude of PRC increases as sensitivity χ is enhanced by − log γ or ∆W as shown in
the inset. The hollow circles in all the insets correspond to different choices of (γ1, γ2).
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Supplementary Figure 13: The generality of results is confirmed in the Brusselator model. In particular, we
fixed k1 = 1, k−3 = 1 at equilibrium, and search for the remaining two degrees of freedoms λ1 = k−1/k1 and λ2 = k3/k−3.
Different equilibrium reaction rates are chosen: (a) λ1 = 1, λ2 = 10−1, (b)λ1 = 3, λ2 = 10, (c)λ1 = 10, λ2 = 1; but the linear
enhancement of phase sensitivity by free energy cost is found in all the cases.

v1

0

r / rs

phase-space limit cycle

Example: Brusselator

limit cycle

generic

dissipative
non-
dissipative

1

w0

w1
perturbation

w0

w1 w

v0

v1

v
v

-1

(X, Y)

(X, Y+1)(X-1, Y+1)

(X-1, Y)

a

b

Supplementary Figure 14: Detailed illustration about the minimal model for limit cycle oscillation. (a)
Microscopically, the progression along the limit cycle is due to the transition between phase-space states. In the minimal
model, we confine the jumps to two possible directions v0 (non-dissipative reactions) and v1 (dissipative links). The direction
of progression in the phase-space v‖ is determined by the transition flux w0 and w1 along both directions. (b) An example of
the minimal model is the reversible Brusselator studied here. The non-dissipative links are achieved by reaction A� X, and
the dissipative links are realized by the nonequilibrium reaction loop. For this example, the angle between v0 and v1 is π/4.
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Supplementary Figure 15: Free energy dissipation lowers the effective temperature in Brusselator. By
actively regulating Teff of the system, energy cost makes it possible for biochemical oscillators to achieve both high accuracy
and high sensitivity.
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Supplementary Tables

Category Process Parameter Value

Basal Rates 
(without KaiA)

T→U 0.21 h-1

D→T 0.00 h-1

D→S 0.32 h-1

S→U 0.11 h-1

Maximal 
Effect of KaiA

U→T 0.4790 h-1

T→D 0.2130 h-1

S→D 0.5057 h-1

U→S 0.0532 h-1

T→U 0.0798 h-1

D→T 0.1730 h-1

D→S -0.3200 h-1

S→U -0.1100 h-1

Concentration 
Parameter

Concentration of 
KaiA causing 
half-maximal 

effect on KaiC
0.43 μM

concentration of 
KaiA (total) 1.3 μM

concentration of 
KaiC (total) 3.4 μM

Effect of 
ATP/ADP ratio

Effective relative 
affinity for ADP 

vs. ATP in kinase 
reactions

1.0

�k A
SD

�[A]total

�k A
UT

�k A
SU

�k0
DS

�k A
DT

�k 0
TU

�k A
US

�[C ]total

�k A
TD

�K1/2

�k0
SU

�k A
DS

�k0
DT

�k A
TU

�Krel

Supplementary Table 1. Rate constants used in the simulation of Rust model. Phosphorylation and dephosphorylation

processes are denoted by blue and red arrows respectively. We adopt the same parameter as in [1]. Apart from the

introduction of the Krel parameter to describe the relative effect of ADP on the kinase rates, all parameters use the values set

previously by experimental data in [6]. This table is a copy of Table S1 in [1].
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Supplementary Note 1. The Phase Reduction Method and Phase Response Curve for Biochemical Oscillator

We first introduce a powerful technique to study phase evolution of oscillation systems. Instead of dealing with the
entire system, the phase reduction method, developed first by Kuramoto [7, 8], is used to reduce complex dynamic
systems to a single phase variable. Here, we use the phase reduction method to study biochemical oscillators. Consider
a mixture of N species {X1, X2, . . . , XN} that interact, in some fixed volume V and at a constant temperature T ,
through M reaction channels. We specify the state of the system by a vector of concentration variables x(t) =
(x1(t), x2(t), . . . , xN (t)). The stochastic reaction kinetics of the system can be described by the chemical Langevin
equation (CLE) [9] as follows:

dxi
dt

= Fi(x, µ) + fi(x, µ, t) + ζi(x, µ, t) (1)

The reaction vector is Fi(x) =
∑M
j=1 vjiaj(x) where vji are the stoichiometric change of species i in the jth reaction,

and ajdt are the probability that jth reaction will occur (once) during t→ t+ dt. The term fi represents an external
perturbation, and the noise ζi can be expressed as:

ζi(t) = (V )−1/2
M∑
j=1

vji

√
aj(x)ξj(t), (2)

where M independent Gaussian white noise ξj(t) are associated with M reaction channels, with 〈ξj(t)〉 = 0 and
〈ξj(t)ξk(t′)〉 = δjkδ(t− t′).

In the absence of perturbation and internal noise, Supplementary Equation (1) are reduced to deterministic kinetic
equations. Here, we consider the cases where the deterministic equations exhibit limit cycle behavior. For each state
xL along the limit cycle L we can define a phase variable φ. For simplicity, φ(xL) is chosen to progress along L with a
constant speed Ω = 2π/τ , where τ is the period. Following this definition, the deterministic phase evolution equation
of (1) can be expressed as

dφ

dt
≡ Ω = ∇xφ · F (x, µ). (3)

Now we consider the phase shift incurred by a parametric perturbation µ→ µ+ ∆µ for duration ∆t in our model.
In the linear response regime, the perturbation can be written as f(t) = ∂µF∆µ (0 ≤ t ≤ ∆t), and the perturbed
phase evolution equation becomes

dφ

dt
= (∇xφ)µ ·

(
F (x, µ) +

∂F (x, µ)

∂µ
∆µ

)
(4)

= Ω + Z(φ)µ∆µ (5)

where

Z(φ)µ = (∇xφ)µ ·
∂F (x(φ), µ)

∂µ
. (6)

The subscript µ indicates that all the quantities are measured under parameter µ. It should be noted that Z(φ),
known as the infinitesimal PRC function, is exactly the PRC normalized by perturbation intensity ∆µ and duration
∆t when they are sufficiently small [10].

Different external stimuli can have different PRC shapes since the second term in the right hand side of Supple-
mentary Equation (6) depends on the specific perturbations. But the first term ∇xφ, characterizing the topological
structure of the isochrons (see main text Fig. 1), is an intrinsic property of the limit cycle oscillator. Clearly, larger
∇xφ would produce larger phase shifts for the same deviation from the limit cycle.

Supplementary Note 2. Phase Sensitivity and Entrainability

Consider a biochemical oscillator exposed to external periodic signal εp(ω, t) (e.g., temperature, light, etc.) with
period 2π/ω and intensity ε. We further assume that the stimulus is applied on parameter µ. Interpreting this
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periodic driving force as time-dependent perturbation f(t) = ε∂µFp(ω, t) in Supplementary Equation Supplementary
Equation (1), we obtain the following dynamic equation for the phase φ

dφ

dt
= Ω + εZ(φ)µ · p(ω, t). (7)

In the main text, we studied the entrainment of the internal oscillator towards the external periodic signal when
ω = Ω. In general, there might be mismatch between the frequency of the oscillator (Ω) and that of the external
driving signal (ω). What is the range of synchronizable frequencies for a certain oscillator? By introducing phase
difference ψ = φ− ωt, and averaging over a period (since ψ is a slow variable for small ε), we have

dψ

dt
= (Ω − ω) + εE(ψ) (8)

where E(ψ) =
1

2π

∫ 2π

0

Z(ψ + θ)p(θ)dθ. Entrainment to external periodicity occurs when ψ̇ = 0 has one stable fixed

point. This condition places constraints on the signal frequency

εE(ψ)min +Ω < ω < εE(ψ)max +Ω (9)

Accordingly, we may define entrainability of a biochemical oscillator as E = E(ψ)max − E(ψ)min. How is E related
to phase sensitivity χ? We suggest that high phase sensitivity increases the amplitude of PRC, therefore enhancing
entrainability E . For example, if the signals take the form of square wave, i.e. the 2π periodic function p(θ) is a

Heaviside step function between −π and π, then E(ψ) =
1

2π

∫ π

0

Z(ψ + θ)dθ, which integrates the area under PRC.

One can imagine that as long as the shape of PRC remains approximately the same, E = E(ψ)max −E(ψ)min should
scale with the PRC amplitude.

Supplementary Note 3. Diffusive Phase Dynamics

Here, we consider the biochemical oscillator in the presence of internal noise. Interpreting the random “forces” ζi(t)
in Supplementary Equation 1 as a time-dependent perturbation, we can immediately write down the stochastic phase
evolution equation (first-order)

dφ

dt
= Ω +∇xφ · ζ(xL(φ), t) ≡ Ω + g(φ, t) (10)

Here, g(φ, t) is a τ -periodic function of φ but stochastically dependent on t, with 〈g(φ, t)g(φ, t′)〉 ≡ D(φ)δ(t− t′).
It is straightforward to see that a Langevin equation of the form (10) is equivalent to a Fokker-Planck equation (in

Stratonovich sense)

∂P (φ, t)

∂t
= − ∂

∂φ

(
Ω +

1

2
D′(φ)

)
P +

∂2

∂φ2
(DP ) (11)

We then introduce a new variable δφ = φ − Ωt to describe phase fluctuation. Let P̃ (δφ, t) denote the probability
distribution for δφ, then it immediately follows that

∂P̃

∂t
= −1

2

∂D(Ωt+ δφ)

∂(δφ)
P̃ +

∂2

∂(δφ)2
(D(Ωt+ δφ)P̃ ) (12)

In the weak noise limit, P̃ is a slowly varying function of t while ∂D/∂(δφ) and D fluctuate much faster so that
they may safely be time averaged over the period τ . Since the average of ∂D/∂(δφ)is zero, we are left with a simple
diffusion equation,

∂P̃

∂t
= Dφ

∂2P̃

∂(δφ)2
(13)

where Dφ = (2π)−1
∫ 2π

0
D(φ′)dφ′.
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Supplementary Note 4. Phase Diffusion and Coherence Time

Given the Langevin dynamics of phase φ (Supplementary Equation 10), we next calculate for a sinusoidal wave, x =

eiφ + c.c., the correlation function C(t) = 〈x(t+ s)x(s)〉s in which the average takes the form 〈...〉s = lim
S→∞

1
S

∫ S
0
...ds.

Notice that any oscillatory part with respect to s vanishes in the long time average. Thus, the autocorrelation function
is simplified to

〈x(t+ s)x(s)〉s =

〈[
exp(iΩ(t+ s) + i

∫ t+s

0

g(t′)dt′) + c.c.
][

exp(iΩs+ i

∫ s

0

g(t′)dt′) + c.c.
]〉

s

(14)

= eiΩt
〈

exp(i

∫ t

0

g(t′)dt′)
〉

+ c.c. (15)

In the last equation, we take off the subscript s since averaging over s is equivalent to the ensemble average. The

exponent δφ(t) =
∫ t

0
g(t′)dt′ can be interpreted as the phase fluctuation around the mean phase Ωt after time t. It is

clear, from the phase diffusion dynamics (Supplementary Equation 13), that the probability distribution of δφ evolves
as

P (δφ, t) =
1√

4πDφt
exp

[
− (δφ)2

4Dφt

]
, (16)

if we assume Dφ to be a constant for simplicity. After some straightforward calculations, the expression for autocor-
relation can be divided into two parts. The ensemble average〈

exp(i

∫ t

0

g(t′)dt′)
〉

=

∫
exp(iδφ)P (δφ)d(δφ) = exp(−Dφt) ≡ exp(−t/τc) (17)

gives the exponential decay of the autocorrelation function while eiΩt gives its oscillatory part. Thus, we show that
the autocorrelation function of any observable x is indeed in the form of main text Eq. (2). In general, we expect
that the coherence time would take the form τc = cD−1

φ , where c is a constant depending on the specific waveform of

the oscillation (c = 1 for sinusoidal wave).

Supplementary Note 5. Details of the Models

A. Activator-Inhibitor Model

The main components of the model are the activator R and the inhibitor X (Supplementary Figure 1, see also [2]
for details). The kinetics can be described by:

d[R]

dt
= k0[Mp] + k1S − k2[X][R]

d[X]

dt
= k3[Mp]− k4[X]

d[M ]

dt
= f2[MpK] + d1[MR]− a1[M ][R]− f−2[M ][K]

d[MR]

dt
= a1[M ][R] + f−1[Mp][R]− (f1 + d1)[MR]

d[Mp]

dt
= f1[MR] + d2[MpK]− f−1[Mp][R]− a2[Mp][K]

d[MpK]

dt
= a2[Mp][K] + f−2[M ][K]− (f2 + d2)[MpK]

(18)

with mass conservation constraints: [M ] + [MR] + [Mp] + [MpK] = MT , [K] + [MpK] = KT , where MT and KT

denote the total concentrations of enzyme M and phosphatase K. We take symmetric parameters: k0 = k1 = k3 = 1,
k4 = 0.5, S = 0.4, KT = 1, MT = 10, a2 = 100, f1 = f2 = d1 = d2 = 15. The PdP regulated rates are
a1 = a1,0[ATP], f−1 = f−1,0[ADP] and f−2 = f−2,0[Pi] (see caption of Supplementary Figure 1 for details). The
irreversibility parameter γ = (d1d2f−1f−2)/(a1a2f1f2) = γ1γ2.
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Note that the reverse reactions in the AI motif are very weak so that they can be neglected in studying the kinetics
and the free energy dissipation in the PdP cycle. However, for thermodynamic consistency, we can include all the
reverse reactions outside the PdP cycle and compute the additional dissipation on these reactions outside of the PdP
cycle.

There are different ways to introduce the reverse reactions outside of the PdP cycle. One is proposed in Appendix
F of Barato and Seifert[11], who directly write down the reverse reactions of those irreversible processes, and assign
them with some small rates ε. Another approach is to introduce a pool of “inactive” activators and inhibitors Ri
and Xi. The generation/degradation of R and X in the original model can be regarded as transformation from/to
Ri and Xi following the Michaellis-Menten (MM) kinetics. The complete activator-inhibitor model can therefore be
described by a set of chemical reactions as follows

PdP cycle: M +R+ ATP
a1,0


d1

M ·R ·ATP
f1


f−1,0

Mp +R+ ADP,

Mp +K
a2


d2
Mp ·K

f1


f−2,0

M +K + Pi

(19)

AI motif (direct reverse): ∅
k1S


k−1

R, X
k4


ε4

∅, X +R
k2


k−2

X

Mp

k0


k−0

R, Mp

k3


k−3

X

(20)

AI motif (MM): Ri
k1


k−1

R, X
k4


k−4

Xi, X +R
k2a


k2d

X ·R
k2


k−2

X +Ri,

Mp +Ri
k0a


k0d

Mp ·Ri
k0


k−0

Mp +R, Mp +Xi

k3a


k3d

Mp ·Xi

k3


k−3

Mp +X.

(21)

It is straightforward to write down the deterministic kinetic equations for these elementary reactions. The corre-
sponding chemical master equation can also be written down in a similar manner as in [11], even with the negligible
reverse reactions.

In our simulations, we chose parameter values k−i/ki = ε4 = 10−4(i = 0, 1, . . . , 3) for the direct reverse scheme
and [Xi] = [Ri] = 1, k−1 = 10−2k1 = 4 × 10−3, k−4 = 10−2k4 = 5 × 10−3, k−2 = 10−6k2 = 0.1, k2a = 10−4k2d =
106, k0 = k3 = 3, k−0 = k−3 = 3 × 10−4, k0a = k0d = k3a = k3d = 104 for the Michaelis-Menten scheme. Since the
reverse rates are negligible and the MM rates are chosen to separate the timescale, they don’t have any significant
effect on the original dynamics of the system, and therefore the phase sensitivity and diffusion. On the other hand,
the total energy dissipation of the system depends on the value of reverse reaction rates. However, for reasonable
choices of the reverse reaction rates as used here, the energy dissipation due to these processes outside of the PdP
cycle remains relatively small, as shown in Supplementary Figure 2. More importantly, the energy cost outside of
the PdP cycle does not vary much with γ as shown in Supplementary Figure 2 for both the direct reverse scheme
and the MM scheme. In this paper, we are primarily interested in the part of dissipation that affects the oscillatory
behavior of the system when ATP and/or ADP concentrations are varied in the PdP cycle (Supplementary Figure
2). Therefore, the simplified version of AI model (irreversible AI motif) is a reasonable approximation to study the
relationship between performance of the oscillation and the free energy cost within the PdP cycle.

B. Brusselator

The reversible Brusselator is described in the main text. The deterministic kinetic equations for reactants X and
Y are:

d[X]

dt
= k1[A]− k−1[X]− k0

2[B][X] + k0
−2[D][Y ] + k3[X]2[Y ]− k−3[X]3

dY

dt
= k0

2[B][X]− k0
−2[D][Y ]− k3[X]2[Y ] + k−3[X]3

(22)

In this model, concentration [B] and [D] are fixed and absorbed in the reaction rate constant, resulting in pseudo
first order rates with k2 = k0

2[B] and k−2 = k0
−2[D]. We choose parameter values [A] = 1, k1 = k−1 = 1 and set

k2 = k3 = k−2 = k−3 = 1 at equilibrium in the simulation to highlight the effects of irreversibility γ1 and γ2 introduced
to the system.

To test the generality of our main text Eq. (6), we also studied different implementations of γ1, γ2 ( Supplementary
Figure 4) and various kinetic rates ( Supplementary Figure 13) in the Brusselator model. We confirmed the linear
enhancement of phase sensitivity by energy dissipation is not just a special case for certain kinetic rates or γ1, γ2
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partitions.

C. Simulation Methods

The Gillespie algorithm[12] is used for both models to simulate the stochastic reaction kinetics. We use volume
V = 100 for all calculations. For given kinetic rates and the volume V , we simulated N = 300 trajectories starting
from the same initial condition over 25 periods. We compute autocorrelation function for each trajectory and then
average over N trajectories to get Cxx(t) for further analysis. In the absence of external driving, we fit Cxx(t) with
main text Eq. (2), i.e. a damped oscillation, and calculate τc/τ as a proxy for the dimensionless diffusion constant
D. For the periodically driven oscillators, we infer D from the steady state phase variance described in the main text
Result Section C.

Supplementary Note 6. Stochastic Analysis of Limit Cycle Oscillation

Here, we study the stochastic limit cycle oscillation analytically. For simplicity, we start with a 2-dimensional
system, such as the reversible Brusselator described above. In the absence of noise, the equations governing the
evolution of the system are given by the deterministic part of CLE (Supplementary Equation 1) in Supplementary
Note 1.

For any generic two-dimensional system undergoing a Hopf bifurcation, it is known that there exist an invertible
coordinate change T : (x1, x2)→ (r, θ) and parameter change locally (near the fixed point and the bifurcation point)
transforming its kinetic equations dxi/dt = Fi(x1, x2;α) into the Stuart-Landau normal form [13]:

dr

dt
= µr − β1r

3

dθ

dt
= ω + β2r

2

(23)

Applying the same transformation T to the CLE, we then obtain the stochastic Stuart-Landau equation (SLE)
with the original normal form plus the transformed noise terms expressed in the polar coordinate:

dr

dt
= µr − β1r

3 +
1√
V

M∑
j=1

qrj ξj(t)

dθ

dt
= ω + β2r

2 +
1√
V

M∑
j=1

qθj ξj(t)

(24)

where qrj = (ṽj1 cos θ + ṽj2 sin θ)
√
aj and qθj = (−ṽj1 sin θ + ṽj2 cos θ)

√
aj/r, and ṽji are transformed by T from

vji (stoichiometric change of species i in the j reaction, see Section Supplementary Note 1). Here µ, ω, β1, β2 are
parameters associated with reaction rate constants, i.e., original parameters in CLE. Unlike the deterministic version
of SLE, here r and θ are coupled to each other through internal noise, making it almost impossible for direct analysis.

However, we can use stochastic averaging method [14] to derive the approximate equations

dr

dt
= µr − β1r

3 +
qr√
V
ξr(t),

dθ

dt
= ω + β2r

2 +
qθ√
V r

ξθ(t),

(25)

where q2
r = 1/2π

∫ 2π

0
dθ
∑
j q

2
rj and q2

θ/r
2 = 1/2π

∫ 2π

0
dθ
∑
j q

2
θj are the average noise over a period. Equivalently, ξr

and ξθ are two independent, “unit normal” random variable. For small oscillation amplitudes, the leading order in q2
r

and q2
θ are both Q =

∑
j(ṽ

2
j1 + ṽ2

j2)a
(0)
j /2 where the superscript 0 indicates the values are measured at the fixed point.

The analysis so far are discussed in a 2D system; however, the results can be well extended to any higher dimensional
system whose central manifold is also 2 dimensional [13].

For the rest of this section, we explicitly demonstrate how the stochastic SLE is derived from the original CLE
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using the reversible Brusselator as an example. The chemical Langevin equation for the Brusselator model reads

dx

dt̂
= a− (1 + b+)x+ b−y + c+x

2y − c−x3 + ζx(t̂)

dy

dt̂
= b+x− b−y − c+x2y + c−x

3 + ζy(t̂)

(26)

where t̂ = k−1t is the dimensionless time. Other coefficients are given by: a = k1[A]/k−1, b+ = k2/k−1, b− = k−2/k−1,
c+ = k3/k−1, c− = k−3/k−1. Here, reaction rates ki are the same as defined in deterministic reaction equations, and
[A] is the concentration of A. The internal noise ζx and ζy, arising from six chemical reaction channels, are

ζx = (V )−1/2
[√

aξ1(t̂)−
√
xξ2(t̂)−

√
b+xξ3(t̂) +

√
b−yξ4(t̂) +

√
c+x2yξ5(t̂)−

√
c−x3ξ6(t̂)

]
ζy = (V )−1/2

[√
b+xξ3(t̂)−

√
b−yξ4(t̂)−

√
c+x2yξ5(t̂) +

√
c−x3ξ6(t̂)

] (27)

where ξi(t̂) are temporally uncorrelated, statistically independent, unit variance Gaussian white noise.

The fixed point is x0 = a, y0 = a(b+ + c−a
2)/(a2c+ + b−). We choose α = b+− bc to be the control parameter, and

express (26) in terms of the deviation (u, v) = (x− x0, y − y0) as

d

dt̂

(
u
v

)
= A(α)

(
u
v

)
+G(u, v;α) + ζ(x0, y0, u, v;α) (28)

where A(α) is the Jacobian matrix, and G(u, v;α) contains Taylor expansions in u, v starting with at least quadratic
terms.

Next, we perform a transformation to reduce the deterministic part to the normal form of a Hopf bifurcation[13],
and simultaneously transform the noise terms. This leads to equation

dz

dt̂
= (µ+ iω)z − (β1 − iβ2)|z|2z + η1(t̂) + iη2(t̂) (29)

where z = z1 + iz2 = reiθ whose real and complex parts are the transformed variable from u, v.

The entire process is tedious (see [13] for details), so we only list the results here:

µ(α) =
1

2
· a

2c+ − b−
a2c+ + b−

· α

ω(α) =
√
A2 − µ2 (30)

β(α) = β1(α)− iβ2(α) =
g20g11(2λ+ λ̄)

2|λ|2
+
|g11|2

λ
+

|g02|2

2(2λ− λ̄)
+
g21

2

where λ = µ(α) + iω(α) is the eigenvalue of A(α) and others are given by

A2 = a2c+ + b−

g20 =
−iλ
ω

[
c+y0(α)− 3ac− − 2ac+(1 +

λ̄

A2
)
]

g11 =
−iλ
ω

[
c+y0(α)− 3ac− − 2ac+(1 +

µ

A2
)
]

g02 =
−iλ
ω

[
c+y0(α)− 3ac− − 2ac+(1 +

λ

A2
)
]

g21 =
−iλ
ω

[
− 3(c− + c+)− c+

λ+ 2λ̄

A2

]
(31)
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The leading terms of η1 and η2 in (29) give

η1 =
1

2
√
V

(√
aξ1(t̂)−

√
x0ξ2(t̂)−

√
b+x0ξ3(t̂) +

√
b−y0ξ4(t̂) +

√
c+x2

0y0ξ5(t̂)−
√
c−x3

0ξ6(t̂)
)

η2 =
A

2
√
V

(√
aξ1(t̂)−

√
x0ξ2(t̂)

)
(32)

with 〈ηi(t̂)ηj(t̂′)〉 = QijV
−1δ(t̂− t̂′).

Supplementary Note 7. Isochron of Stuart-Landau Equation

To study the relation between entropy production rate and phase sensitivity in a stochastic SLE described above,
we first use the mean-field SLE Equation (23) to analyze the isochron structure of its limit cycle.

For µ > 0, the system starts to oscillate with a mean amplitude rs =
√
µ/β1 and angular velocity Ω = ω + β2r

2
s .

The phase φ is chosen to agree with θ on the limit cycle, i.e. φ(rs, θ) = θ. Next, we derive the expression of isochron,
which is a set of points with the same φ.

Consider an orbit start at (r0, θ0) outside the limit-cycle. The radial evolution is autonomous, following

r(t)2 =
r2
s

1 + κe−2µt
, (33)

where κ is a constant determined by initial condition r(0) = r0, and (r0/rs)
2 = 1/(1 + κ).

Suppose the point eventually approaches the limit cycle, and converges with the point of initial phase value θ. This
leads to the result

θ = θ0 +

∫
(θ̇ − ωs)dt = θ0 +

∫ ∞
0

β2(r(t)2 − r2
s )dt

= θ0 −
β2

β1
ln(

r0

rs
) (34)

Recall that the definition of phase is extended to the entire attracting basin of a limit-cycle oscillator by the asymptotic
phase convention. The isochorn can thus be calculated by setting θ = const., which leads to main text Eq. (12)

φ(r, θ) = θ − β2

β1
(ln r − 1

2
ln

µ

β1
) (35)

Supplementary Note 8. Energy Dissipation Enhances Phase Sensitivity

Now we turn to the stochastic SLE (25) to compute the entropy production (minimal free energy dissipation) of
the system. Let ∆ = Q/V , the Fokker-Plank equation for (25) is given by [2]

∂P

∂t
= −1

r

∂

∂r

(
rJr

)
− 1

r

∂

∂θ
Jθ

= −1

r

∂

∂r

(
r(µr − β1r

3)P − r∆∂rP
)
− 1

r

∂

∂θ

(
r(ω + β2r

2)P −∆r−1∂θP
)

(36)

where J = FP − D∇P is the probability flux; F and D are the force vector and noise matrix of (25) respectively.
The steady state probability distribution is

P ss(r, θ) = A exp
[
− (β1r

4/4− µr2/2)

∆

]
(37)

The normalization coefficient is given by A−1 = (2π)
∫

exp[−(β1r
4/4−µr2/2)/∆]rdr. The definition of phase requires

that the amplitude fluctuation is much smaller than r2
s = µ/β1, leading to the first constraint ρ = µ/

√
2β1∆� 1 [2].



19

The entropy production rate can be computed from FPE as

Ṡtot =

∫
JTD−1J

P
dx =

∫∫
‖J‖2

∆P
rdrdθ (38)

In this case, Jr = r(µr − β1r
3)P ss − r∆∂rP ss = 0, Jθ = r(ω + β2r

2)P ss. Thus, the minimal dissipation rate is given
by (kBT=1)

Ẇ =

∫∫
r2(ω + β2r

2)2P ss

∆
rdrdθ (39)

with free energy cost per cycle

∆W = Ẇ × 2π

〈Ω〉
=

2π

∆
× 〈r

2(ω + β2r
2)2〉

〈(ω + β2r2)〉
(40)

Note that the integrals (averages) we are going to calculate all take the form In =
∫∞

0
r2n exp[−(β1r

4/4 −
µr2/2)/∆]d(r2) =

∫∞
0
xn exp[−(β1x

2/4− µx/2)/∆]dx. Making the change of variable y = ρ(x/r2
s − 1), we have

In = exp(ρ2)(r2
s /ρ)n+1

∫ ∞
−ρ

(y + ρ)ne−y
2

dy (41)

In the limit of ρ � 1, integrals
∫∞
−ρ pn(y)e−y

2

dy can be estimated by simple Gaussian integrals
∫∞
−∞ pn(y)e−y

2

dy

where pn(y) are polynomials of degree n. Therefore, the leading terms in ∆W yields

∆W ≈ 2π

∆
× ω2r2

s + 2ωβ2r
4
s (1 + 1/2ρ2) + β2

2r
6
s (1 + 3/2ρ2)

ω + β2r2
s

= 4πρ2
(β2

β1

)
× κ2 + 2κ(1 + 1/2ρ2) + (1 + 3/2ρ2)

(1 + κ)

≈ 4πρ2(1 + κ)
(β2

β1

)
(42)

where κ = ω/β2r
2
s is another dimensionless parameter. If we assume that the radial contribution of phase sensitivity

is much greater, i.e., β2/β1 � 1, then χ ≈ β2/β1 and κ� 1. Inserting this into (42), the linear enhancement of χ by
energy dissipation emerges:

χ ≈ KW∆W (43)

where KW ≈ [4πρ2]−1 is a β2-independent constant.

Supplementary Note 9. A Toy Model to Understand the Relation Between Phase Sensitivity and Energy
Dissipation

To gain more insights into the microscopic mechanism of how free energy is used to enhance phase sensitivity, we
developed a simplified theoretical model of limit cycle oscillators. As shown in Supplementary Figure 6, the inner
ring represents the limit cycle with an amplitude (radius) rs and the outer ring represents the perturbed states with
an amplitude change ∆r. There are a total of 2 × N discrete states for both the inner and the outer cycles. The
equilibrium transition rates between adjacent states (both forward and backward) are given by kin, kout, and kjump.
In the nonequilbrium model, we consider the simple case where all forward rates (the thick arrows in Supplementary
Figure 6) are regulated by the same nonequilibrium factor 1/γ+; similarly backward rates by γ−. Note that even
though γ± are related to γ1,2 used before, they are not the same. These “microscopic” nonequilibrium factors γ± act
on all transition rates in the toy model whereas γ1,2 only acts on specific reactions in a realistic biochemical network.

The toy model has rotation symmetry in phase space, the steady state probability is evenly distributed at each
phase φi = 2πi/N(i = 1, . . . , N), i.e., P ss

in (φi) + P ss
out(φi) = 1/N with P ss

in (φi)� P ss
out(φi). The energy dissipation rate

are dominated by the inner cycle:

Ẇ ≈ −(1/γ+ − γ−)kin ln(γ+γ−). (44)
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When a perturbation moves the system to the outer cycle, a phase shift ∆φ results from the difference of angular

speeds ∆ω =
2π

N
(1/γ+−γ−)∆k between the two cycles with ∆k ≡ kout−kin. Assuming the time to jump back to the

inner cycle is τjump, we have ∆φ = ∆ω × τjump. The phase sensitivity, defined as the dimensionless phase gradient,
can thus be obtained:

χ =
∆φ

∆r/rs
=

1− γ+γ−
1 + γ+γ−

χ0, (45)

where ∆r/rs represents the relative deviation from limit cycle and τjump is determined by τ−1
jump = (k+

jump + k−jump) =

kjump(1/γ+ + γ−). The parameter χ0 ≡ 2π
N ×

∆k
kjump

/∆r
rs

is a sensitivity constant depending only on equilibrium

properties of the system.

From Supplementary Equation (44), the total energy dissipated per period is ∆W = Ẇ × τ ≈ −N ln(γ+γ−).
Together with Supplementary Equation (45), we have

χ = χ0
e∆W/N − 1

e∆W/N + 1
≈ KW∆W, when ∆W � N (46)

with KW = χ0

2N . The equation agrees with main text Eq. (6) from direct simulations and main text Eq. (16) from
analytical results.

In this simple model, the phenomenological phase-amplitude coupling parameter β2 introduced in SLE can be
calculated explicitly:

β2 =
∆ω

∆(r2)
= (2rs)

−1 ∆ω

∆r
=
π(γ−1

+ − γ−)∆k

Nrs∆r
, (47)

which clearly indicates that free energy cost of increasing forward rates and suppressing backward rates both strengthen
the phase-amplitude coupling β2, therefore enhancing the phase sensitivity.

Supplementary Note 10. Design Principles for Phase Sensitivity

All biochemical oscillation systems must have (1) at least one dissipative (nonequilibrium) reaction loop, and (2)
at least two different stoichiometric change vector directions in the phase space (no oscillation on a 1D chain). Here
we consider a minimal model in the phase space with only two possible “jumping” directions v0,v1 and v1 being the
dissipative link. Denote cos θ = 〈v0,v1〉. See Supplementary Figure 14 for details.

Specifically, the reactions that form the dissipative loop (like the one shown in main text Fig. 2c) are assumed to
have total transition fluxes w1 along the direction v1. In addition, we also include the reaction (along v0) that is not
directly driven by chemical force, e.g., the reaction between X and A in the Brusselator model. The net flux for this
non-dissipative reaction is denoted by w0.

To look for strategy in enhancing phase sensitivity of limit cycle oscillation, we calculate χ by projecting the
transition fluxes w (along) in the state space onto the phase (angular) direction and the amplitude (radial) directions.

We can compute

|∇x∗φ| =
∆w‖τjump × (2π/rs)

∆r/rs
= 2π

∆w‖/(∆r/rs)

∆w⊥/(∆r/rs)
(48)

where w‖ and w⊥ are the rates along and perpendicular to the limit cycle; τjump = ∆r/∆w⊥. The change of
transition rates ∆w are induced by a putative perturbation causing a relative change ∆r/rs of amplitude. Note
that the progression direction v‖ is determined by both dissipative and non-dissipative reactions. Let θ0,1 be the
angle between v0,1 and v‖. The direction of ∆w0,1 are chosen such that ∆w⊥ generates a jump process approaching
the limit cycle. Using the geometric relationship of different transition rate vectors, we can rewrite ∆w⊥, ‖ as
∆w‖ = ∆w1 cos θ1 −∆w0 cos θ0 and ∆w⊥ = ∆w1 sin θ1 + ∆w0 sin θ0. Plugging these expressions into Supplementary



21

Equation (48), we have

|∇x∗φ| = ∆w1(w1 + w0 cos θ)−∆w0(w0 + w1 cos θ)

(w1∆w0 + w0∆w1) sin θ

=
kq(kw + cos θ)− (1 + kw cos θ)

(kw + kq) sin θ
(49)

where kw = w1/w0 and kq = ∆w1/∆w0. In our model, we use w0 as a reference rate that doesn’t vary much with γ.
Next, we analyze the introduced dimensionless variables to search for the factors that affect phase sensitivity. The

ratio kq can be rewritten in the form

kq =
wf
w0
× |qf − (wb/wf )qb|

q0
≡ cw

|qf − rwqb|
q0

(50)

where wf,b is the net forward/backward flux along phase progression direction. qi = ∆wi/wi

∆r/rs
is the relative change of

transition rates induced by a perturbation given by a relative change ∆r/rs of the amplitude. qi characterizes the
sensitivity the transition determined by the nonlinearity in the underlying reaction rates. For example, reactions of
(pseudo) first order have qi ∼ 1; the autocatalytic reactions in the Brusselator model give qi ∼ 3.

By definition, the ratio of backward to forward flux rw varies between 0 and 1 along the circle. Also, we would
expect the factor cw = wf/w0 � 1 since it is, in general, greatly enhanced by reducing γ. Now using these two
parameters, kw can be expressed as cw(1−rw). Substituting these two expressions into Supplementary Equation (49),
we have |∇x∗φ| = F (cw, rw) and χ = max

arg rw
F (cw, rw). The function F takes the form

F (cw, rw) =

∣∣∣∣∣cw|qf − rwqb|(cw(1− rw) + cos θ)− (1 + cw(1− rw) cos θ)q0

sin θ[(1− rw)q0 + |qf − rwqb|]cw

∣∣∣∣∣ (51)

Note that c2w term dominates the numerator while cw leads the denominator. Thus for 0 < rw ≤ 1,

F (cw, rw) ∼ cw csc θ[q0|qf − rwqb|−1 + (1− rw)−1]−1, (52)

which is a decreasing function of rw. The maximum is achieved when min rw → 0. Equation (52) clearly indicates
that there are two major factors at play:

1. When dissipation increases, the general growing trend of χ is credited to cw, i.e., the overall enhancement of
global flux by decreasing γ;

2. At a fixed dissipation, the net flux ratio rw further fine tune the sensitivity; higher sensitivity is favored by
unbalanced net flux partition (small rw).

Supplementary Note 11. Verification of the Design Principles in Kai System

We further test the design principles in a mathematical model for the in vitro KaiC oscillator proposed by Rust
et al [1]. As shown in Supplementary Figure 10a, four KaiC phosphorylation states – unphosphorylated KaiC (U),
T432-phosphorylated KaiC (T), S431-phosphorylated KaiC (S), and double-phosphorylated KaiC (D) – form the
nonequilibrium loop. The (de)phosphorylation of different phosphorylated forms of KaiC depends on the global KaiA
activity, which is in term controlled by KaiB:

kp =
1

1 + rpKrel
×

kAphos[A]

K1/2 + [A]
(53)

kdp = k0
dphos +

kAdphos[A]

K1/2 + [A]
(54)

where rp is the [ADP]/[ATP] ratio and [A] is the concentration of free KaiA. For each of the (de)phosphorylation
processes, there is a basal rate constant in the absence of KaiA (k0

dphos), a rate constant describing the maximal

effect of KaiA (kA(d)phos) and a constant K1/2 describing the concentration of KaiA needed to produce a half-maximal

effect on KaiCs activity. Apart from the Krel parameter which describes the relative affinity of ATP and ADP, all
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parameters use the values set previously by experimental data (see Table S1 and [1, 6] for details). Note that kAphos

and k0,A
dphos are different for each phosphorylation/dephosphorylation link, and were separately measured [1, 6]. We

choose Krel = 1.0 in our simulation (same value in [1]) and set rp to 0 to mimic the experimental condition in [1]
(100% ATP).

The kinetic equations of the model are [1]:

d[T ]

dt
= kU→T [U ] + kD→T [D]− kT→D[T ]− kT→U [T ]

≡ JU→T + JD→T − JT→D − JT→U (55)

d[D]

dt
= kT→D[T ] + kS→D[S]− kD→S [D]− kD→T [D]

≡ JT→D + JS→D − JD→S − JD→T (56)

d[S]

dt
= kU→S [U ] + kD→S [D]− kS→D[S]− kS→U [S]

≡ JU→S + JD→S − JS→D − JS→U (57)

[U ] = [C]total − [T ]− [D]− [S] (58)

[A] = max{0, [A]total − 2[S]} (59)

where [C]total and [A]total are the total concentration of KaiC and KaiA, and all the Js represent the chemical fluxes.
Each kX→Y is computed from Supplementary Equation (53 & 54) depending on the type of X → Y transition
(phosphorylation or dephosphorylation step). It is assumed here that S-state KaiC in complex with KaiB rapidly
sequesters KaiA with extremely high affinity (Supplementary Equation (59) above) [1].

Since not all the microscopic reverse reaction rates were measured experimentally, we test the first principle of
suppressing phase diffusion on the whole U → T → D → S → U cycle for an individual KaiC molecule. Instead of
having two states (“X” and “Y”) forming the cycle with two antiparallel pathways as in the case of the Brusselator
model, there are 4 states (U, T, D, S) with 4 links (pathways) between them in the KaiC phosphorylation cycle as
there are two phosphorylation sites (S and T) for a KaiC molecule. We calculate the ratio of forward to backward
flux rX�Y = JX→Y /JY→X on each link X � Y . Note that the direction of forward and backward directions X � Y
is chosen along the U → T → D → S → U cycle in accordance with the notation of parallel and antiparallel pathways
used in our theory. As we did in the Brusselator model, we compare the period-averaged ratio 〈rX�Y 〉τ to see whether
this ratio for different links along the cycle are balanced. Using the experimentally determined parameters, the KaiC
model yields

〈rU�T 〉τ = 1.10, 〈rT�D〉τ = 1.25, 〈rD�S〉τ = 1.07, 〈rS�U 〉τ = 1.14. (60)

This result strongly indicates that the balanced dissipative cycle of KaiC oscillation is properly designed to minimize
phase diffusion and enhance timing accuracy.

For the second principle of phase sensitivity, we calculate the net flux for each link J
(net)
X→Y = JX→Y −JY→X . The net

phosphorylation and dephosphorylation flux are then approximated as J
(net)
U→D = J

(net)
U→T +J

(net)
T→D and J

(net)
D→U = J

(net)
D→S +

J
(net)
S→U respectively. As shown in Supplementary Figure 10b, the backward-to-forward (in terms of phosphorylation

rhythm) net flux ratio rw is smaller during the subjective day than the night, indicating a higher phase sensitivity
during the phosphorylation phase. This argument is supported by the experimental PRC of in vitro Kai system
reported in [1] (shown in Supplementary Figure 10a). In our simulation the average rw during the subjective day
and night are 〈rw〉day ≈ 0.2 and 〈rw〉night ≈ 0.5. This result suggests that the Kai system differentially distributes
phosphorylation and dephosphorylation net flux to achieve desirable phase sensitivity.

Supplementary Note 12. Nonequilibrium Phase FRR

We now apply the same procedure as in (10) to noisy SLE (29), and focus on its phase dynamics. In this case,

Ω = ω + β2r
2
s , and the noise term takes the form g(φ, t) = (−β2

β1
/r)ηr + (1/r)ηθ, where ηr = η1 cos θ + η2 sin θ and



23

ηθ = −η1 sin θ + η2 cos θ. Particularly, we obtain

〈g(φ, t)g(φ, t′)〉 ≡ D(φ)δ(t− t′)

=
1

r2V

[(β2

β1

)2

Qrr − 2
(β2

β1

)
Qrθ +Qθθ

]
δ(t− t′) (61)

with

Qrr = Q+
1

2
(Q11 −Q22) cos 2θ +Q12 sin 2θ

Qθθ = Q+
1

2
(Q22 −Q11) cos 2θ −Q12 sin 2θ

Qrθ =
1

2
(Q22 −Q11) sin 2θ +Q12 cos 2θ

(62)

where Q = (Q11 +Q22)/2.
Using the stochastic average method, we can calculate

Dφ =
QV −1

r2
s

(β2
2/β

2
1 + 1) (63)

It is straightforward from (63) and main text Eq. (13) that the dimensionless phase diffusion constant is related to
phase sensitivity in the SLE model by

D = Dφ × T =
QV −1τ

r2
s

× χ2 (64)

This establishes a relation between phase diffusion constant D and sensitivity χ in a form very similar to the FRR. It’s
then natural to introduce an “effective temperature” Teff = D/χ2. In the regime near bifurcation, the physical meaning
of Teff = QV −1τ/r2

s can be interpreted as the relative amplitude fluctuations of oscillating species accumulated during
a cycle. For specific biochemical reactions, the foregoing analyses indicate that QV −1 is just some linear combinations
of period averaged Poisson noise arising from various reaction channels.

Unlike the equilibrium FRR, where the linear dependence is independent of other parameters, this phase FRR is
not unique. As seen from the expression (42) of dissipation ∆W , there are many degrees of freedom we can vary in
the high dimensional parameter space to break detailed balance, upon which both Teff and the relation between χ
and D depend. Three different situations are listed as follows:

1. µ is varied while other parameters are fixed: Teff ∼ ∆W−1, χ = const., and hence D ∼ ∆W−1;

2. β2 is varied while other parameters are fixed: Teff = const., χ ∼ ∆W, but at the cost of D ∼ χ2 ∼ ∆W 2;

3. µ and β2 are jointly regulated with constraint that µ ∝ β2: Teff ∼ ∆W−1/3, χ ∼ ∆W 1/3, and D ∼ ∆W 1/3 ∝ χ.

Indeed, the phase sensitivity can have positive correlation as well as negative one when changing parameters along
a certain direction. Nevertheless, if the direction is properly chosen, we can keep the best of both world, i.e., having a
high sensitivity and yet a small fluctuation. The biochemical oscillators fueled by nonequilibrium reaction loops, for
example, can generate a complex dependence like (30) on energy parameter γ.

As illustrated in the simple model shown in Supplementary Figure 6, our study revealed three tightly related effects
of free-energy dissipation in oscillatory systems: (1) Energy cost can constrain the probability distribution near the
stable limit cycle, i.e., significantly lowers the “effective temperature” for fluctuations around the limit cycle (see
Supplementary Figure 15). Consequently, even if the system is subjected to phase FRR, coherent oscillation and
phase responsiveness is compatible; (2) Extra energy dissipation is required for noisy oscillators to suppress phase
diffusion as shown here and in our previous work [2]; (3) Free energy consumption can be used to enhance the
phase-amplitude coupling, which in turn enhances the phase sensitivity to external signals/perturbations.
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