
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

 

In this manuscript Fei at al. analyze a handful of models with  

biochemical oscillations and find that biochemical oscillators  

can get more precise and increase their sensitivity with an increase  

in energy dissipation. I have an extended list of points for the  

authors to address. As a summary of my critique: I am not sure  

whether the results presented in this paper are universal as there  

are simple examples of systems that get “less precise” with an increase  

in energy dissipation; their definitions only work for biochemical  

oscillators that display a limit cycle in the deterministic limit  

and there are examples of biochemical oscillators that do not display  

such limit cycle; at least one of their “design principles” has already  

been found in the literature.  

 

 

1) The definition of sensitivity and of phase diffusion seem to depend  

on the existence of limit cycle within the deterministic rate equation  

description. However, biochemical oscillations in stochastic systems  

can happen also in models that do not display a limit cycle in the  

deterministic limit (see A. J. McKane at al, J. Stat. Phys. 128, 165  

(2007))? How do you define these quantities in such cases? For a general  

master equation (or chemical master equation), what is the definition of  

phase diffusion? What is the relation between phase diffusion and the  

coherence time \tau_c for a general master equation?  



 

 

2) Just as an example, in Ref. 19 the authors consider a single cycle  

model towards the end of this reference. For such single cycle model  

(Fig 6 in the arXiv version of the paper) with arbitrary site dependent  

rates, what is the definition of phase diffusion, sensitivity and  

coherence time for this simple model? What is the relation between  

phase diffusion and coherence time in this model? The authors  

may restrict to the case N=3 states to simplify the discussion.  

 

 

3) It seems that the first “design principle” found by the authors is  

not new. In A. C. Barato and U. Seifert, Phys. Rev. E 95, 062409 (2017),  

there is a similar result (appendix A) showing that the precision of biochemical  

oscillators for a given “energy budget” is maximized by setting the kinetic  

parameters with an even distribution of the parameter \gamma among the  

different transitions.  

 

 

4) I think the results in this paper depend on kinetic parameters. There are  

models where biochemical oscillations can get less precise with the increase  

in energy dissipation. For such models there is an optimal amount  

of energy dissipation. In A. C. Barato and U. Seifert, Phys. Rev. E 95,  

062409 (2017), there are examples of models that contradict the behaviour  

found in Ref. 19. How universal are the results of this paper? What are  

the restriction on the kinetic parameters for the increase in energy  

dissipation to imply an increase in precision and sensitivity in biochemical  



oscillations? It does not seem to be hard to imagine a simple three state  

model where the “sensitivity“ would also show an optimal value as a function  

of the energy dissipation.  

 

 

5) Could the authors fully define the models in the supplement. For example,  

for the AI model they simply wrote down the deterministic rate equation. What  

kind of numerical method the authors used for this model? What is the chemical  

master equation for this model? The model seems to have irreversible  

reactions like X+R->X, which would lead to infinite energy dissipation according  

to formula (4). Could you clarify this point?  

 

 

6)There are examples of really bad writing in the supplement. The first paragraph  

of section SVI that contains equation S15 is one such example. The authors have to  

improve the supplement a lot. Some parts are really hard to follow.  

 

 

Overall, there is nothing particularly new on the fact that it is  

possible to find models where both precision and sensitivity improve with an  

increase in energy dissipation. The main question is: how universal this behaviour  

is? In other words, under which conditions on the kinetic parameters?  

 

 

 

Reviewer #2 (Remarks to the Author):  

 



In this manuscript, the authors proposed designing mechanisms for certain types of biological 
oscillators to increase both its sensitivity and robustness by varying the driven forces of free energy 
dissipations. This design is not allowed in the linear response regime but becomes possible in 
systems driven far away from equilibrium.  

 

The work is technically interesting. The question formulated in the abstract and introduction is an 
important one. Their result is in terms of forward and backward fluxes which seem like nice variables 
to use.  

 

However, there are two serious problems with the work that raise questions both about its validity 
and its relevance and thus prevent recommending this paper for publication:  

 

Biological oscillatory systems studied here are externally driven oscillators. But the authors define 
phase sensitivity and phase diffusion, the two central quantities of this paper and several others, in 
the absence of a driving signal. Many publications have shown that the results are very different 
when externally driven.  

 

The experimental connection shown in Fig 5 is a pretty far out interpretation of the experimental 
data. The paper would almost be stronger without it.  

 

Without experimental data, the paper could have been an interesting theoretical exercise in 
computing non-equilibrium steady state properties, suitable for specialized journals. But (1) above is 
a serious design flaw in even metaphorically linking the analysis to the biological systems the authors 
mention (or indeed any imagined context). Unless the authors can derive results for oscillators with 
external driving - the putative subject of the paper - one cannot recommend this manuscript for 
publication in an interdisciplinary journal.  

 

The above criticisms are detailed below:  

 

1. Externally forced vs unforced systems:  

 

As is widely appreciated, biological systems need to respond to relevant `external cues’ in 
environmental signals while also ignoring all kinds of irrelevant fluctuations within. The common 
sense way of modelling this is to define a quantity that quantifies each of these.  



 

Here, the authors choose to study oscillatory systems like circadian clocks and the authors define a 
phase sensitivity \chi for the former and a phase diffusion constant D for the latter concept.  

 

However, the definition of both quantities in this paper is quite problematic. These oscillators are 
always used in the context of an externally time varying signal that entrains the system. The 
`external cues’ could then be e.g., changes in amplitude or phase of that signal. A commonly studied 
example would be how these oscillators overcome `jet lag’ (i.e., how they quickly respond to phase 
changes of the external signal).  

 

Instead, in the authors’ calculations, there apparently is no driving signal at all. It is as if the `external 
cues’ is the presence of an external signal in the first place.  

 

This issue is important both for technical reasons and for motivational reasons. Technically, over the 
last 20 years, most papers on this subject have noted phase diffusion is very different in externally 
driven systems vs undriven systems - see papers by Gonze, Goldbeter etc. For more recent work on 
this topic, see recent work in Cell Systems from the Khammash group. Similarly, ten Wolde’s group 
has a recent work showing that driven systems have very different phase diffusion from the 
undriven system modelled here.  

 

In terms of motivation for the paper, it is also hard to imagine any situation for oscillators that 
operates without any entraining signal present all the time. In fact, the authors clearly recognize this 
since they define entrainability as a critical aspect (e.g., in the SI) and talk about synchronizability 
and about Arnold tongues in different parts of the paper. And yet all the calculations of phase 
diffusion were done without any periodic external drive that’s clearly present in all the examples 
mentioned in the paper and in the experimental systems this manuscript connects to.  

 

Perhaps the authors have restricted themselves to the case of no external signal because, with an 
external signal, the question of dissipation becomes quite academic. E.g., the external signal may 
also do work on the system and it is not clear this current kind of energy budgeting is relevant.  

In summary, it is hard to say what real question this calculation is directly relevant for, especially at 
the level required for journals like this. Further, existing works show why ignoring the ever-present 
periodic external signal is a bad idea in defining phase diffusion.  

 

 



 

2. Experimental data:  

 

The authors rely on two kinds of possible experimental support to their theory - see Fig 5. However, 
neither panel shows a check of the theory.  

 

Fig 5a: The authors first look at the temperature dependence of the phase response curve (PRC) in 
Neurospora and a couple of other organisms. The data shows that the size of the PRC generally 
increases with temperature but the authors want to conclude a lot more - that these relationships 
are linear and that their slopes are the same.  

 

To start with, two of the organisms have only two data points! Further, the x-axis has an extremely 
small range (for good reason as we’ll discuss later) and there are huge error bars in y, makes the 
slopes of these curves meaningless. To conclude that these relationships are linear and that their 
slopes are the same really requires a very very favorable reading of these results. Finally, a linear 
scaling is not enough to hang a hat on - even without any of the author’s theory, many other simple 
assumptions would predict the same. E.g., see works on temperature compensation in clocks.  

 

A more serious flaw is that the experiments in panel (a) were performed on living organisms. The 
effect of temperature on the phase response of a living organism can in no way be traced to the core 
oscillator’s properties alone! There is a reason the x-axis of Fig 5a has such a tiny range - the 
organisms would die for the kind of serious temperature changes that would actually test the 
author’s physical theory. To put another way, there is way too much biology going on in the 
temperature response data shown in Fig 5a to compare it to a Boltzmann factor.  

 

For example, Ref [45], from whom the PRC data on chick pineal cells was obtained, explicitly states 
that the change of the PRC results from an increase in the size of the limit cycle with temperature. 
Such larger amplitude oscillations result from multiple biological factors as discussed in the 
Discussions of that paper - it is hard to imagine how one could ascribe all or even most of the effect 
of such a temperature change to the kind of simple Boltzmann factor analysis done here.  

 

Similarly, Ref [46], from which PRC data on dinoflagellates were obtained, states that the PRCs due 
to light actually showed no temperature dependence! The authors here use the drug PRC data from 
the paper which does show temperature dependence, showing conclusively that the PRC’s 
temperature dependence is not a property of the oscillator itself (the subject of the author’s study) 
but because of the many upstream and downstream temperature-sensitive processes. Indeed, Ref 



[46] discusses many such explanations and tries to quantify their contributions - e.g., drugs affect 
protein synthesis differently at different temperatures while light does not, temperature-sensitive 
phase angle between overt rhythm and the pacemaker phase etc. It seems hard to conceive of a 
situation where all of these strong obvious temperature effects are somehow less important than 
the subtle temperature dependence of the oscillator itself.  

 

I completely understand and support the author’s desire to build a solid physically grounded theory 
of one piece of the cellular system. We certainly need more of such theory, and the above criticism 
should not be a mistaken for a criticism of making modelling assumptions or studying subparts of a 
complex system. The problem is in comparing to two data points of whole organismal experiments 
to such a theory, when there are clearly much stronger biological effects at play.  

 

Finally, the putative connection to the Kai system suffers a different serious weakness. Several 
papers, e.g., from O’Shea lab which the authors cite, have shown experimentally that the size of the 
PRC is primarily set by the difference in ATP levels between day and night. The authors’ theory here 
links the size of the PRC to the absolute ATP levels, say, in the day. But all these other publications - 
from the time of Arthur Winfree’s book - have shown the strong impact of the difference between 
the day and night cycles on the height of the PRC.  

 

Again, it is hard to imagine a situation where the change in PRCs can be attributed to the absolute 
ATP levels when the effect of difference in ATP levels has already been documented to be the main 
dominant effect. In fact, Winfree’s famous classification of type 0 and type 1 PRCs is an example of 
how strong the latter effect is. (For general theory on this, one could consult Winfree’s book or 
Pikowsky’s book titled `Synchronization’. For a recent experiment on the Kai system satisfying this 
property, see the recent Molecular Cell paper from the O’Shea lab.)  

 

 

 

Reviewer #3 (Remarks to the Author):  

 

 

Fei et al. present a detailed analysis of how energy dissipation in oscillating reaction network is 
related to phase sensitivity and phase diffusion behavior. The work follows up on a previous work by  

authors which studied phase diffusion in oscillatory biochemical reactions. The current work mainly 
focuses on the relation between energy dissipation and phase sensitivity.  



The relation is illustrated on several simple models, but a general relation between the amount of 
dissipated energy and phase sensitivity is derived for all oscillatory circuits.  

I consider the work to be innovative and important, the results are sound and make testable 
predictions. In the present form, I would find the work suitable for PRX  

or similar journal, but for the broad audience of Nature Communications, I would ask for expansion 
of the part of the article that makes explicit connections with known biological oscillators.  

 

In particular, it is not clear to me that phase sensitivity is a general important feature for biological 
circuit. For instance, the circadian oscillations are  

synchronized by a long term exposure to daylight, rather than by a short perturbation. While the 
author's results on the relation between dissipated energy and phase sensitivity holds in general, it 
might  

not be the case that circuits are designed for achieving best phase sensitivity for a given amount of 
dissipated energy. In section C, predictions are made for the circuit properties that would optimize  

phase sensitivity / phase diffusion for a given amount of energy W. Can a comparison be made to 
parameters of known biochemical oscillator, such as the examples used in Fig 5a?  

 

 

Further points:  

 

1) The AI model is one of the main models used to illustrate the theoretical results, and should be 
hence presented in main text too (Figure S1). Various combinations of values of parameters 
\gamma_1 and \gamma_2  

are studied, I would be curious to include in the plot the typical values of \gamma = \gamma_1 
\gamma_2 (ie plugging into the gamma formula the typical concentrations of ATP, ADP, P and K_eq) 
encountered in PdP cycle  

in living systems.  

 

2) In the Brusselator model, why is k_1 and k_-1 not included in the forward/ backward rates?  

 

3) The biological oscillators studied in Fig 5 should be briefly introduced and described in 
Supplementary Information  

 



4) In the title of the article, I would suggest replacing "biochemical networks" by biochemical 
oscillatory systems" , as this more accurately describes the studied system  

 

5) Fig 5b and S9 captions should include also include description of blue data points in the inset 



Point-by-Point Responses to Comments from Reviewer #1 
 
Reviewer #1 (Remarks to the Author): 
 
In this manuscript Fei at al. analyze a handful of models with biochemical 
oscillations and find that biochemical oscillators can get more precise and 
increase their sensitivity with an increase in energy dissipation. I have an 
extended list of points for the authors to address. As a summary of my 
critique: I am not sure whether the results presented in this paper are 
universal as there are simple examples of systems that get “less precise” 
with an increase in energy dissipation; their definitions only work for 
biochemical oscillators that display a limit cycle in the deterministic limit and 
there are examples of biochemical oscillators that do not display such limit 
cycle; at least one of their “design principles” has already been found in the 
literature. 
 
1) The definition of sensitivity and of phase diffusion seem to depend 
on the existence of limit cycle within the deterministic rate equation 
description. However, biochemical oscillations in stochastic systems 
can happen also in models that do not display a limit cycle in the 
deterministic limit (see A. J. McKane at al, J. Stat. Phys. 128, 165 
(2007))? How do you define these quantities in such cases? For a general 
master equation (or chemical master equation), what is the definition of 
phase diffusion? What is the relation between phase diffusion and the 
coherence time \tau_c for a general master equation? 
 
Response: The type of oscillations reviewer 1 referred to are the noisy 
oscillations caused by stochastic resonance, where there is no limit cycle in 
the deterministic dynamics and the oscillation is driven primarily by noise. 
However, our current study focuses on a large class of biochemical 
oscillations where limit cycles do exist in the underlying deterministic 
dynamics. These systems are critical for various biological functions that 
require precise time-keeping. Specific examples include various biological 
clocks (e.g., the Kai system in Cyanobacteria), cell cycle oscillations, and 
biochemical oscillations (e.g., the cAMP oscillation in Dicty. cells). In these 
systems, the noise is caused by the stochastic nature of the intrinsic 
biochemical reactions, which degrades the quality of the oscillations. The 
goal of our current study is to find out how nonequilibrium effects with 
energy dissipation can help increase (or maintain) the performance of the 



oscillation, such as period accuracy and phase sensitivity, despite the 
presence of these large noises.  
 
While it is interesting to extend the concepts in our current study to other 
cases including the stochastic resonance models, it is beyond the scope of 
our current study. However, we have included some general ideas/thoughts 
on this subject in our response to the next question.  
 
Revision: To clarify the goal of our current study, we have now revised our 
manuscript to explicitly state that our focus is on systems with limit cycles in 
the underlying deterministic dynamics in the introduction section of the 
manuscript (page 1, right column).  
 
 
2) Just as an example, in Ref. 19 the authors consider a single cycle model 
towards the end of this reference. For such single cycle model (Fig 6 in the 
arXiv version of the paper) with arbitrary site dependent rates, what is the 
definition of phase diffusion, sensitivity and coherence time for this simple 
model? What is the relation between phase diffusion and coherence time in 
this model? The authors may restrict to the case N=3 states to simplify the 
discussion. 
 
Response: In general, we can determine the coherence time 𝜏" by 
computing the auto-correlation function 𝐶(𝑡) of the state variable, and fit it 
to 𝐶 𝑡 = 𝑒)*/,-×cos	(34*

5
), where T is the period of the oscillation. Once 

𝜏"	is determined, the phase diffusion constant is then given by: 𝐷7 =
𝛼×(2𝜋)3/𝜏", where 𝛼 is a constant dependent on the waveform of the 
oscillation. This is explained in detail in ref. 19 (Cao et al, Nat. Phys. 2015) 
for cases where a limit cycle exists in the deterministic equation with a well 
defined period T. For cases where there is no limit cycle in the deterministic 
equation, the same procedure can be carried out to determine the 
coherence time and phase diffusion constant with the only difference being 
that the “period” T needs to be determined by the peak of the power 
spectrum or the imaginary part of the eigenvalues of the Jacobian matrix of 
the stable fixed point. A paper by Qian and Qian (H Qian and M Qian, PRL, 
1999) gave a thorough analysis for the simple 3-states model mentioned. In 
addition, the phase sensitivity can also be defined even when there is no 
stable limit cycle as long as a certain perturbation induces a change in the 
state space. We can measure the phase shift between the perturbed and 



unperturbed stochastic trajectory by computing the cross-correlation 
function. A proper definition of phase sensitivity would then be the phase 
shift normalized by the perturbation strength. 
 
3) It seems that the first “design principle” found by the authors is not new. 
In A. C. Barato and U. Seifert, Phys. Rev. E 95, 062409 (2017), there is a 
similar result (appendix A) showing that the precision of biochemical 
oscillators for a given “energy budget” is maximized by setting the kinetic 
parameters with an even distribution of the parameter \gamma among the 
different transitions. 
 
Response: The first “design principle” we found here is for reducing phase 
diffusion with a given energy budget, which is a generalization and 
extension of what we found in our previous work, see Fig. 4 in the 2015 
paper by Cao et al (Nat. Phys. 2015), where we defined an efficiency of 
suppressing phase diffusion and concluded from our simulation studies of 
the AI model that “This result indicates that high efficiency is achieved 
when the kinetic rates in the two halves of the PdP cycle (phosphorylation 
and dephosphorylation) are matched” as stated at the end of the caption of 
Fig. 4 in the 2015 Cao et al paper. Furthermore, as stated in 2015 Cao et al 
paper (page 4 bottom left): “In the Supplementary Information we show in a 
simple model of chemical reaction cycles that with a constant energy 
dissipation (that is, a fixed 𝛾), phase diffusion approaches its minimum 
when the forward and the backward rates along different steps of the cycle, 
for example, the PdP cycle, are matched.” This result seems to be similar 
to the one found in the simple discrete model in the recent work (A Barato, 
U Seifert, PRE, 2017) mentioned by the reviewer.  
 
However, despite their similarity, there are significant differences between 
the design principle found here and that studied in the Barato and Seifert 
paper. The major difference is caused by the fact that in the realistic 
models we studied (e.g., the Brusselator model and the activator-inhibitor 
(AI) model) the two chemical states (X and Y) are connected by two 
distinctive reversible chemical reactions (pathways) with four reaction rates 
(𝑤=

±,𝑤3
±) whereas in the simple discrete model used by Barato and Seifert 

(PRE 2017) the two states are only connected by two phenomenological 
transition rates. These two pathways may not be combined as they 
correspond to different biochemical reactions as illustrated in Fig. 2 in our 
manuscript, which explicitly shows the two antiparallel pathways between 
the two nearby states “X” and “Y” in the Brusselator model (here, 



antiparallel simply means that the “+” directions of the two pathways are 
opposite to each other). The same goes for the AI model where the 
bidirectional phosphorylation pathway and the bidirectional 
dephosphorylation pathway need to be considered separately: the inverse 
of phosphorylation reaction of a protein by ATP involves the recombination 
of ADP with the phosphate group on the protein back to ATP, it is not the 
dephosphorylation reaction of the phosphorylated protein to its un-
phosphorylated form and an inorganic phosphate.  
 
As illustrated in Fig. 2b for the Brusselator model, the existence of these 
two distinctive pathways leads to a local transition flux cycle between the 
two states characterized by an overall irreversibility parameter: 𝛾 =
𝑔=×𝑔3 =

@AB@CB

@AD@CD
< 1, where 𝑔= =

@AB

@AD
 and 𝑔3 =

@CB

@CD
 are the ratios of the forward 

and backward reaction rates for the two antiparallel reaction pathways. For 
a given 𝛾 or equivalently a given energy dissipation rate, we ask the 
question on how to choose 𝑔=	and 𝑔3	to minimize the phase diffusion and 
optimize the phase sensitivity. The first design principle we found is that the 
phase diffusion is minimized when these two ratios are the same 𝑔= = 𝑔3 =
𝛾.		Therefore, it is clear that this design principle is new as it can only be 

discovered when the two distinctive reaction pathways connecting nearby 
microscopic states are considered explicitly as we did in this work. The 
same goes for the second design principle that leads to a heightened 
phase sensitivity with a fixed energy budget.  
 
Overall, the two design principles identified in this work are new and only 
possible when realistic microscopic reactions are considered explicitly as 
we did in this work. 
 
Revision: We thank the reviewer for pointing out this new paper by Barato 
and Seifert (PRE 2017), which we now cite in our revised manuscript. We 
have also included a statement to clarify the difference between the design 
principles found here and that found in this previous work in the beginning 
of the subsection on design principles.  
   
4) I think the results in this paper depend on kinetic parameters. There are 
models where biochemical oscillations can get less precise with the 
increase in energy dissipation. For such models there is an optimal amount 
of energy dissipation. In A. C. Barato and U. Seifert, Phys. Rev. E 95, 
062409 (2017), there are examples of models that contradict the behaviour 



found in Ref. 19. How universal are the results of this paper? What are the 
restriction on the kinetic parameters for the increase in energy dissipation 
to imply an increase in precision and sensitivity in biochemical oscillations? 
It does not seem to be hard to imagine a simple three state model where 
the “sensitivity“ would also show an optimal value as a function of the 
energy dissipation. 
 
Response: We agree that the performance of a specific biochemical 
oscillator with a given energy budget will depend on its specific kinetic rate 
parameters. In fact, this is exactly the motivation for us to answer the two 
related questions in this work: (1) what is the optimal performance 
(minimum phase diffusion and maximum phase sensitivity) for a given 
energy budget if one has the freedom to choose all the kinetic rate 
parameters in realistic biochemical networks? (2) what are the design 
principles for choosing the kinetic rate parameters to reach the optimal 
performance?  
 
We believe that the results, which we presented here in our efforts to 
answer these two questions listed above, are universal as they apply to a 
wide set of different realistic biochemical oscillators where we showed that 
free energy dissipation indeed sets the upper bounds on the system’s 
ability to reduce phase diffusion and enhance sensitivity. As we clearly 
stated in our manuscript, energy dissipation is a necessary condition for 
enhancing performance in these nonequilibrium systems, but not sufficient. 
There are infinite ways to waste energy without enhancing performance. As 
can be seen from Fig. 3b&d in the current manuscript (or Fig. 4a in the 
2015 Cao et al Nat. Phys. paper), there are cases where systems dissipate 
more free energy but perform worse on either precision or sensitivity. 
Indeed, how to choose the key kinetic parameters within a realistic 
biochemical network to reach the optimal performance for a given energy 
dissipation is exactly one of the key questions (question (2) listed above) 
we addressed in this work by uncovering the two new design principles that 
lead to the optimal performance for a given energy budget.  
 
We do not know the exact reason for the non-monotonic dependence of the 
accuracy versus energy dissipation mentioned by the reviewer in a recent 
work. It could be caused by the constrained parameter space imposed by 
the specific (non-generic) network topology in an idealized model like that 
used in Barato and Seifert (PRE 2017). For example, the first design 
principle, which we found to be crucial for improving precision with a fixed 



energy budget, cannot be fully satisfied if one limits the reaction network to 
be that there is only one reversible reaction connecting two nearby states in 
such a simplified model (see our response to the previous question #3). 
 
What we did show in this work is this. In ALL the realistic models (the AI 
models, the Brusselator model, different models for the kai system, etc…) 
we studied where all distinctive pathways between two states are 
considered, when we search the parameter space thoroughly, i.e., allowing 
all key rate parameters to vary independently, the optimal performance 
always increases and eventually saturates with the energy dissipation.  
 
5) Could the authors fully define the models in the supplement. For 
example, for the AI model they simply wrote down the deterministic rate 
equation. What kind of numerical method the authors used for this model? 
What is the chemical master equation for this model? The model seems to 
have irreversible reactions like X+R->X, which would lead to infinite energy 
dissipation according to formula (4). Could you clarify this point? 
 
Response and Revision: Thanks for the question, we have now revised 
the Supplement Information to include full details of the models studied and 
the numerical method used (we used the Gillespie algorithm) in the Section 
SV entitled “Details of the Models”. In particular, for the AI model, we have 
calculated the energy dissipation of the reactions outside the PdP cycle 
(e.g., R+X—>X) by including reverse rates in these “outside” reactions as 
done in Barato and Seifert (PRE 2017) or by introducing a pool of “inactive” 
activators and inhibitors in the system (see the new Section SV.A in SI for 
details). We found that as long as the reverse rates for those reactions are 
fixed (which is true because they represent transcription or translation 
processes in real biological systems), the energy dissipation in these 
reactions remains constant and they can be relatively small for a 
reasonable choice of parameters. More importantly, the energy cost due to 
the reactions outside of the PdP loop remains roughly a constant 
independent of the key nonequilibrium parameters ( 𝛾=, 𝛾3) in the PdP 
cycle. We have added a sentence clarifying the fact that the dissipation 
outside the PdP cycle in the AI model is roughly constant and does not play 
a direct role in regulating the oscillation of the system with the details 
included in the SI (section SV and Fig. S2). 
 
6)There are examples of really bad writing in the supplement. The first 
paragraph of section SVI that contains equation S15 is one such example. 



The authors have to improve the supplement a lot. Some parts are really 
hard to follow. 
 
Response and Revision: We thank the reviewer for pointing this out. The 
SI is now thoroughly revised to make it more comprehensible. 
 
Overall, there is nothing particularly new on the fact that it is possible to find 
models where both precision and sensitivity improve with an increase in 
energy dissipation. The main question is: how universal this behaviour is? 
In other words, under which conditions on the kinetic parameters? 
 
Response: This is a good question. By demonstrating the results in 
different realistic biochemical oscillators and in the stochastic Stuart-
Laudau equation analytically, we believe that one of the main results, i.e., 
the energy dissipation sets the bound (optimal performance limit) for both 
the phase diffusion and the phase sensitivity, are universal (see our 
response to question #4). Furthermore, the two design principles on how to 
choose the microscopic reaction rates to achieve these two seemingly 
contradictory performance limits (low phase diffusion and high phase 
sensitivity) at the same time are also general since they were verified in all 
the realistic biochemical oscillators we studied and novel (see our response 
to question #3). These design principles exactly answer the reviewer’s 
question on what are the conditions under which these universal bounds 
can be achieved. We believe these design principles are important not only 
to understand the mechanisms of realistic biochemical oscillators but also 
to design efficient synthetic oscillators.     
 
 



Point-by-Point Responses to Comments from Reviewer #2  
 
In this manuscript, the authors proposed designing mechanisms for certain 
types of biological oscillators to increase both its sensitivity and robustness 
by varying the driven forces of free energy dissipations. This design is not 
allowed in the linear response regime but becomes possible in systems 
driven far away from equilibrium. 
 
The work is technically interesting. The question formulated in the abstract 
and introduction is an important one. Their result is in terms of forward and 
backward fluxes which seem like nice variables to use. 
 
However, there are two serious problems with the work that raise questions 
both about its validity and its relevance and thus prevent recommending 
this paper for publication: 
 
Biological oscillatory systems studied here are externally driven oscillators. 
But the authors define phase sensitivity and phase diffusion, the two central 
quantities of this paper and several others, in the absence of a driving 
signal. Many publications have shown that the results are very different 
when externally driven. 
 
The experimental connection shown in Fig 5 is a pretty far out interpretation 
of the experimental data. The paper would almost be stronger without it. 
 
Without experimental data, the paper could have been an interesting 
theoretical exercise in computing non-equilibrium steady state properties, 
suitable for specialized journals. But (1) above is a serious design flaw in 
even metaphorically linking the analysis to the biological systems the 
authors mention (or indeed any imagined context). Unless the authors can 
derive results for oscillators with external driving - the putative subject of 
the paper - one cannot recommend this manuscript for publication in an 
interdisciplinary journal. 
 
Response: First, we would like to thank the reviewer for the positive 
comments on the importance of the general problem and the soundness of 
our technical work. The two main criticisms turn out to be very constructive 
and have prompted us to carry out additional work to address them. The 
revised manuscript with new results on entrainment to external periodic 
signals incorporated and with predictions for future experiments clarified is 



a much better and satisfying end product. The details of our response and 
changes we made are given following each specific comment below.      
 
The above criticisms are detailed below: 
 
1. Externally forced vs unforced systems: 
 
As is widely appreciated, biological systems need to respond to relevant 
`external cues’ in environmental signals while also ignoring all kinds of 
irrelevant fluctuations within. The common sense way of modelling this is to 
define a quantity that quantifies each of these. 
 
Here, the authors choose to study oscillatory systems like circadian clocks 
and the authors define a phase sensitivity \chi for the former and a phase 
diffusion constant D for the latter concept. 
 
However, the definition of both quantities in this paper is quite problematic. 
These oscillators are always used in the context of an externally time 
varying signal that entrains the system. The `external cues’ could then be 
e.g., changes in amplitude or phase of that signal. A commonly studied 
example would be how these oscillators overcome `jet lag’ (i.e., how they 
quickly respond to phase changes of the external signal). 
 
Instead, in the authors’ calculations, there apparently is no driving signal at 
all. It is as if the `external cues’ is the presence of an external signal in the 
first place. 
 
This issue is important both for technical reasons and for motivational 
reasons. Technically, over the last 20 years, most papers on this subject 
have noted phase diffusion is very different in externally driven systems vs 
undriven systems - see papers by Gonze, Goldbeter etc. For more recent 
work on this topic, see recent work in Cell Systems from the Khammash 
group. Similarly, ten Wolde’s group has a recent work showing that driven 
systems have very different phase diffusion from the undriven system 
modelled here. 
 
In terms of motivation for the paper, it is also hard to imagine any situation 
for oscillators that operates without any entraining signal present all the 
time. In fact, the authors clearly recognize this since they define 
entrainability as a critical aspect (e.g., in the SI) and talk about 



synchronizability and about Arnold tongues in different parts of the paper. 
And yet all the calculations of phase diffusion were done without any 
periodic external drive that’s clearly present in all the examples mentioned 
in the paper and in the experimental systems this manuscript connects to. 
 
Perhaps the authors have restricted themselves to the case of no external 
signal because, with an external signal, the question of dissipation 
becomes quite academic. E.g., the external signal may also do work on the 
system and it is not clear this current kind of energy budgeting is relevant. 
In summary, it is hard to say what real question this calculation is directly 
relevant for, especially at the level required for journals like this. Further, 
existing works show why ignoring the ever-present periodic external signal 
is a bad idea in defining phase diffusion. 
 
Response and Revision: We thank the reviewer for pointing out this 
important issue of entrainment by external signals, which we have 
overlooked in the previous version of our manuscript. We have rectified this 
problem now by studying the entrainment process by considering the case 
when the internal oscillator is coupled with an external periodic signal to 
demonstrate the relationship between entrainability and the phase 
sensitivity. These new results are now included in a new subsection in the 
Result section entitled: “The relation between phase sensitivity and 
entrainment to external periodic driving” in the revised manuscript with a 
new figure (Fig. 4) to demonstrate the dependence of entrainment to 
external periodic signals on phase sensitivity and energy dissipation that 
we studied before. 
 
To briefly summarize the new results, we have studied dynamics of the 
phase difference between the internal oscillator and the external signal by 
using direct simulations and the phase reduction method. We found that an 
initial phase difference, e.g., due to a sudden change of the phase in the 
external driving signal, is damped to zero with the damping rate directly 
proportional to the phase sensitivity studied before. As a result, the 
entrainment time 𝑡I is inversely proportional to the phase sensitivity 𝜒 (see 
Eq. (8) and Fig. 4a in the revised manuscript) and therefore 𝑡I decreases 
as more energy is dissipated as shown in Fig. 4b in the revised manuscript.  
Furthermore, we showed that even though the phase of the oscillator in the 
entrained state does not diffuse, it still fluctuates with the variance of the 
phase fluctuation 𝜎3 linearly proportional to the phase diffusion constant 𝐷 
we studied before in the absence of the external signal (see Eq. (9) and 



Fig. 4c in the revised manuscript). Therefore, the phase fluctuation 𝜎3  in 
the entrained state also decreases with the energy dissipation as shown in 
Fig.4d in the revised manuscript (Note that technically it is straightforward 
to include the time-varying kinetic rate driven by external periodic signal in 
our energy dissipation calculation). 
 
Overall, by establishing the relationship between the entrainment time and 
phase fluctuation with the phase sensitivity and phase diffusion that we 
studied before, we were able to show that the performance of entrainment 
characterized by the entrainment time and the phase fluctuation can be 
improved by free energy dissipation in the internal oscillation circuit.      
 
2. Experimental data: 
 
The authors rely on two kinds of possible experimental support to their 
theory - see Fig 5. However, neither panel shows a check of the theory. 
 
Fig 5a: The authors first look at the temperature dependence of the phase 
response curve (PRC) in Neurospora and a couple of other organisms. The 
data shows that the size of the PRC generally increases with temperature 
but the authors want to conclude a lot more - that these relationships are 
linear and that their slopes are the same. 
 
To start with, two of the organisms have only two data points! Further, the 
x-axis has an extremely small range (for good reason as we’ll discuss later) 
and there are huge error bars in y, makes the slopes of these curves 
meaningless. To conclude that these relationships are linear and that their 
slopes are the same really requires a very very favorable reading of these 
results. Finally, a linear scaling is not enough to hang a hat on - even 
without any of the author’s theory, many other simple assumptions would 
predict the same. E.g., see works on temperature compensation in clocks. 
 
A more serious flaw is that the experiments in panel (a) were performed on 
living organisms. The effect of temperature on the phase response of a 
living organism can in no way be traced to the core oscillator’s properties 
alone! There is a reason the x-axis of Fig 5a has such a tiny range - the 
organisms would die for the kind of serious temperature changes that 
would actually test the author’s physical theory. To put another way, there 
is way too much biology going on in the temperature response data shown 
in Fig 5a to compare it to a Boltzmann factor. 



 
For example, Ref [45], from whom the PRC data on chick pineal cells was 
obtained, explicitly states that the change of the PRC results from an 
increase in the size of the limit cycle with temperature. Such larger 
amplitude oscillations result from multiple biological factors as discussed in 
the Discussions of that paper - it is hard to imagine how one could ascribe 
all or even most of the effect of such a temperature change to the kind of 
simple Boltzmann factor analysis done here. 
 
Similarly, Ref [46], from which PRC data on dinoflagellates were obtained, 
states that the PRCs due to light actually showed no temperature 
dependence! The authors here use the drug PRC data from the paper 
which does show temperature dependence, showing conclusively that the 
PRC’s temperature dependence is not a property of the oscillator itself (the 
subject of the author’s study) but because of the many upstream and 
downstream temperature-sensitive processes. Indeed, Ref [46] discusses 
many such explanations and tries to quantify their contributions - e.g., 
drugs affect protein synthesis differently at different temperatures while 
light does not, temperature-sensitive phase angle between overt rhythm 
and the pacemaker phase etc. It seems hard to conceive of a situation 
where all of these strong obvious temperature effects are somehow less 
important than the subtle temperature dependence of the oscillator itself. 
 
I completely understand and support the author’s desire to build a solid 
physically grounded theory of one piece of the cellular system. We certainly 
need more of such theory, and the above criticism should not be a 
mistaken for a criticism of making modelling assumptions or studying 
subparts of a complex system. The problem is in comparing to two data 
points of whole organismal experiments to such a theory, when there are 
clearly much stronger biological effects at play. 
 
Finally, the putative connection to the Kai system suffers a different serious 
weakness. Several papers, e.g., from O’Shea lab which the authors cite, 
have shown experimentally that the size of the PRC is primarily set by the 
difference in ATP levels between day and night. The authors’ theory here 
links the size of the PRC to the absolute ATP levels, say, in the day. But all 
these other publications - from the time of Arthur Winfree’s book - have 
shown the strong impact of the difference between the day and night cycles 
on the height of the PRC. 
 



Again, it is hard to imagine a situation where the change in PRCs can be 
attributed to the absolute ATP levels when the effect of difference in ATP 
levels has already been documented to be the main dominant effect. In 
fact, Winfree’s famous classification of type 0 and type 1 PRCs is an 
example of how strong the latter effect is. (For general theory on this, one 
could consult Winfree’s book or Pikowsky’s book titled `Synchronization’. 
For a recent experiment on the Kai system satisfying this property, see the 
recent Molecular Cell paper from the O’Shea lab.) 
 
Response and Revision: We thank the reviewer for these insightful 
comments regarding possible experimental evidence/verification for our 
theoretical work. There are two comments here – one for the in vivo 
systems we found in the existing literature on PRC in different temperature 
as shown in the original Fig. 5a and the other for the Kai system in 
cyanobacteria. We address these two comments separately in the 
following. 
 
(1) The measured PRC at different temperatures in different in vivo 

systems: The reason we mentioned these experiments is to search for 
existing experiments that measure the PRC amplitude to a given 
perturbation (light, temperature, drug) under different energetic 
conditions, in particular at different background ATP/ADP ratios. Our 
theory predicts that the PRC amplitude for a given perturbation (e.g., a 
rise in temperature from 30C to 35C in a 0.1 period window) will 
decrease as the background ATP/ADP ratio decreases. However, we 
did not find such experiments in existing literature. The closest thing we 
found was the temperature-dependent PRC curves that we included in 
the manuscript. Interestingly, in the experimental systems we found, 
Neurospora, Gonyaulax polyedra and chick pineal cell, except for the 
case of light response in chick pineal cell where no obvious T -
dependence is found, PRC amplitudes indeed increase with T0/T, which 
seems to be consistent with our theory. However, we agree with the 
reviewer that we need to be very careful about interpreting these 
temperature dependent PRC experiments due to the fact that many 
kinetic rates may depend on temperature. 

 
Revision: We have rewritten/shortened and significantly toned down the 
discussion on the temperature-dependent PRC measurements in the 
existing literature. We now present them only as the start of our efforts 
to find experimental test of our theory and caution the readers about 



interpretation of the data by stating explicitly in the revised manuscript 
that: “we need to caution that many internal variables in biological 
systems may depend on T, therefore these temperature-dependence 
measurements in in vivo systems may not serve as direct tests of our 
theory.” We have also moved Fig. 5a to the SI (Fig. S11) to avoid any 
undue attention to these data beyond what we described in the revised 
manuscript. We believe the revised discussion on these existing data is 
appropriate and it set the stage for the next paragraph where we 
propose explicitly a doable experiment in the Kai system that can be 
used directly to test our theory. 
  
(2) The Kai system: The best place to test our theory is the in vitro Kai 

system. We think our work presented in this manuscript and the 
corresponding predictions are new, beyond what has already been 
done/known in the literature for the Kai system. In particular, for the 
data published in the 2011 Science paper by Rust-Golden-O’Shea as 
mentioned by the reviewer, the background ATP is kept at nearly 
100% (ADP level is 0% to start with), the perturbation they used to 
obtain the PRC is the drop in ATP level or the increase in the ADP 
level (Fig. 2E in the Rust paper) during a small pulse of time window 
(~4hrs). When the strength of the perturbation, i.e., the level of ADP% 
during the pulse (fixed at 4hrs), is increased, the PRC amplitude 
increases linearly with the strength of the perturbation strength. This 
is simply due to linear response theory, totally consistent with any 
reasonable models including ours. However, this is not the main point 
of our work. The main prediction of our work is that if the ATP% in the 
background changes (e.g., from 99% ATP to 60% ATP), then the 
PRC for a fixed perturbation (both strength and duration) will change 
with the background ATP%. In particular, the PRC amplitude will be 
larger in a background with the higher ATP% (99%) than that in a 
background with the lower ATP% (60%).  

 
Revision: We have rewritten this part of the discussion and 
introduced a new figure (Fig. 6) to propose a clean and doable 
experiment to test our theory in the in vitro Kai system. In the 2011 
Rust paper, the ATP% is used as the perturbation itself with the 
background ATP% kept close to 100%. To test our theory, we 
propose to use temperature as the perturbation for the PRC 
measurements. Our predictions can be tested by measuring the 
temperature-PRC at different background ATP% levels. Changing 



background ATP% is achievable as demonstrated in the Rust et al 
2011 Science paper and subsequent work from the Rust group (e.g., 
C. Phong et al, PNAS 2013). To make our predictions more 
quantitative, we have now calibrated the AI model, to which the Kai 
system belongs, to generate the same temperature-PRC shape as 
the one measured by Yoshida et al (Yoshida et al, PNAS 106, 1648-
1653 (2009), see the new Fig. 6a for details. Then, the PRC for the 
same perturbation but for reduced levels of energy dissipation can be 
computed. As shown in the new Fig. 6b, the PRC amplitude 
decreases with lowered level of energy dissipation. These 
temperature-PRC’s at different energy dissipation levels (or different 
background ATP/ADP ratios) serve as explicit predictions for future 
experiments to test. We have been in contact with Michael Rust, who 
believe these proposed experiments haven’t been done before and 
they can be carried out to test our theory.    

 
 
 
 
 
 
 
 



Point-by-Point Responses to Comments from Reviewer #3 
 
 
Fei et al. present a detailed analysis of how energy dissipation in oscillating 
reaction network is related to phase sensitivity and phase diffusion 
behavior. The work follows up on a previous work by authors which studied 
phase diffusion in oscillatory biochemical reactions. The current work 
mainly focuses on the relation between energy dissipation and phase 
sensitivity. The relation is illustrated on several simple models, but a 
general relation between the amount of dissipated energy and phase 
sensitivity is derived for all oscillatory circuits. I consider the work to be 
innovative and important, the results are sound and make testable 
predictions. In the present form, I would find the work suitable for PRX 
or similar journal, but for the broad audience of Nature Communications, I 
would ask for expansion of the part of the article that makes explicit 
connections with known biological oscillators. 
 
In particular, it is not clear to me that phase sensitivity is a general 
important feature for biological circuit. For instance, the circadian 
oscillations are synchronized by a long term exposure to daylight, rather 
than by a short perturbation. While the author's results on the relation 
between dissipated energy and phase sensitivity holds in general, it might 
not be the case that circuits are designed for achieving best phase 
sensitivity for a given amount of dissipated energy. In section C, predictions 
are made for the circuit properties that would optimize phase sensitivity / 
phase diffusion for a given amount of energy W. Can a comparison be 
made to parameters of known biochemical oscillator, such as the examples 
used in Fig 5a? 
 
Response: There are two main questions raised by the reviewer. The first 
main question is about the relevance of phase sensitivity for entrainment by 
periodic external signals, which is the same question asked by reviewer #2 
(see our response to reviewer #2 regarding this question). We agree that it 
is important to understand the relationship between phase sensitivity and 
entrainment (or synchronization) by external periodic signals. We have now 
included a new subsection entitled “The relation between phase sensitivity 
and entrainment to external periodic signals” in the Results section. To 
summarize the new results briefly, we showed by both theoretical analysis 
and numerical simulations that the entrainment time te, i.e., the time it takes 
to synchronize with an external signal after a phase perturbation (e.g., jet-



lag), is inversely proportional to the phase sensitivity (see Eq. (8) and the 
new Fig. 4a in the revised manuscript). This means that the higher the 
phase sensitivity the shorter it takes to entrain with the external signal, 
which is a highly desirable property of the clock. We also showed that both 
the entrainment time and the phase fluctuations in the entrained state 
decrease with increased free energy dissipation (see Fig. 4b&c&d). Given 
the importance of entrainability for biological clocks (we all have the desire 
to get rid of the jet-lag as soon as possible), we believe it is reasonable to 
assume that biological clocks have evolved to enhance phase sensitivity 
and reduce phase fluctuation by using some of their resources including 
metabolic energy. As we showed in our work, energy dissipation is only a 
necessary condition to enhance phase sensitivity and maintain low 
fluctuation at the same time, there are infinite ways of wasting energy 
without achieving the desired effects. One main focus of our work is to 
discover the design principles to achieve the desired effects (high phase 
sensitivity and low phase fluctuation) with a fixed energy budget.       
 
The second main question is about direct comparison of our results with 
existing experiments. This is a very good question. However, for most of 
the experimental clock systems the biochemical rate constants in the 
underlying biochemical networks have not been measured, and in many 
cases the key biomolecules are not all identified. The best characterized 
clock system is the Kai system in cyanobacteria where the key plays (KaiA, 
KaiB, and KaiC, are identified). We have now analyzed a specific model of 
the Kai system with parameters measured by in vitro experiments to 
compare with our theory. A careful study of the experimentally measured 
parameters in the Kai system showed strong evidence in support of the two 
general design principles found in our study.  
 
Revision: We have now revised the manuscript to address the two main 
question raised by the reviewer: (1) We have now added a new subsection 
entitled “The relation between phase sensitivity and entrainment to external 
periodic signals” on pages 3-4 and a new figure (Fig. 4) in the Result 
section to describe the relation between entrainment to external periodic 
signals and the phase sensitivity and phase diffusion we studied before; (2) 
we have now added the new experimental evidences in support of the 
design principles in the kai system entitled “Experimental evidence in the 
Kai system” on page 6 right after we describe the two design principles in in 
the Result section.   
 



Further points: 
 
1) The AI model is one of the main models used to illustrate the theoretical 
results, and should be hence presented in main text too (Figure S1). 
Various combinations of values of parameters \gamma_1 and \gamma_2 
are studied, I would be curious to include in the plot the typical values of 
\gamma = \gamma_1 \gamma_2 (ie plugging into the gamma formula the 
typical concentrations of ATP, ADP, P and K_eq) encountered in PdP cycle 
in living systems. 
 
Response and Revision: Due to space limitation in the main text, we 
could not include the AI model and its results in the main text. They are 
included in the SI. If the reviewer feels strongly about it, we could combine 
Fig. S1 with Fig. 2 in the main text. However, that may take away space in 
Fig. 2 to describe the existence of multiple pathways between the chemical 
states (“X” and “Y”), which is crucial in deriving the design principles in our 
study. In addition, the AI model was shown/illustrated in our previous paper 
(see Fig. 1b in Cao et al, Nat. Phys. 2015), so we do not feel it is absolutely 
necessary to show it again here.   
 
About the reviewer’s second question, we agree that It is a good idea to 
include a typical value of 𝛾 in the performance plot for the AI model with the 
PdP cycle. In a living organism, the ATP hydrolysis energy is roughly 
12kBT, which makes 𝛾 = 𝛾=𝛾3 ≈ 𝑒)=3 ≈ 10)N.3. We have now included this 
typical value and show it as lines in the revised Fig. S5 in the SI. 
 
2) In the Brusselator model, why is k_1 and k_-1 not included in the 
forward/ backward rates? 
 
Response and Revision: We are not sure exactly what the reviewer’s 
question is. In our calculations of both the dynamics and the energetics of 
the system, we have included both the k1 and k-1 rates. Perhaps the 
question is in the context of the design principles? In that regard, the focus 
of our work here is to study the design principles on how to choose the 
kinetic rates within the key nonequilibrium reaction cycle (e.g., the cycle 
shown in Fig. 2), which drives the oscillation and determines its 
performance. Therefore, the forward and backward fluxes we considered in 
this work for the design principles are those within the irreversible reaction 
cycle.    
 



3) The biological oscillators studied in Fig 5 should be briefly introduced 
and described in Supplementary Information 
 
Response and Revision: In the revised manuscript, we choose to focus 
on a specific biological oscillator, the cyanobacteria circadian clock (the kai 
system), as all the relevant components of the system are known and there 
are available quantitative measurements of the underlying kinetic rates 
(see our response to one of the reviewer’s main questions). The details of 
the kai system and a simple kinetic model (section SXI) with all the 
measured parameters (Table S1) are given in the SI.  
 
4) In the title of the article, I would suggest replacing "biochemical 
networks" by biochemical oscillatory systems" , as this more accurately 
describes the studied system 
 
Response and Revision: We have changed the title according to the 
suggestion of the reviewer. 
 
5) Fig 5b and S9 captions should include also include description of blue 
data points in the inset 
 
Response and Revision: We have added descriptions in these figures to 
describe all data points shown.  



REVIEWERS' COMMENTS:  

 

Reviewer #1 (Remarks to the Author):  

 

I have read the answer to my questions carefully. I also read the  

manuscript. I did not check the supplement: I am trusting the authors  

improved it. Overall, I am quite satisfied with the answers to my  

questions. I think this manuscript is a nice contribution and of  

interest for people working on biophysics and statistical  

mehcnanics/nonequilibrium thermodynamics. I do have some further  

observations related to the answers but my recommendation is that  

the manuscript should be accepted. It is original and will generate  

further work on the relation between thermodynamics and biophysics.  

 

 

 

Concerning question 2  

 

I am not sure the authors have given a general definition of phase  

diffusion. I do know how to define \tau_c (as in Qian's paper) for any  

model but phase diffusion seems to be a tricky thing. It seems to me  

that their claim in the previous paper is that the relation between  

phase diffusion and \tau_c is a result and not a definition of phase  

diffusion. I would also know how to calculate it on a simulation of  

one of their models but I would have trouble defining it precisely. I  

guess it is related to some first passage time quantity. The authors  

might want to further discuss this point: can you present an equation  



with a precise definition of phase diffusion?  

 

 

Concerning point 4  

 

As the authors say, their result is a limit on optimal performance. As  

such they might be able to express it as an inequality. I am happy enough  

with their presentation, stating the result as an equality and stating it  

is relation valid for the optimal performance. However, if they could  

express it as an universal inequality it would be better.  

 

Even though the results from the PRE paper I mentioned are largely  

inspired by their nat phys paper, there is a big difference between  

both results. The result from the PRE paper is expressed as an  

inequality that is true for any stochastic process. Furthermore, it  

does not depend on the rate of energy dissipation but rather on the  

thermodynamic force \gamma (i.e. the inequality is independent of  

kinetic parameters). \gamma is something one would typically known  

(\gamma=20 for ATP in physiological conditions). The authors might want  

to further comment about that or maybe even try to express their results  

as inequalities (if it is possible).  

 

 

 

 

Reviewer #2 (Remarks to the Author):  

 



I have gone through the authors’ response and the revised paper. I find it hard to recommend 
publication because of two reasons:  

 

a. the theoretical physics contribution here does not go beyond several statistical physics papers 
published in recent years,  

 

b. the biological contribution in connecting to realistic clocks is weak at best and often incorrect or 
mischaracterizes prior experimental work.  

 

a. many statistical physics works in recent years have show the basic idea of this paper. The main 
result of this paper is not news to anyone in the field. However, the earlier papers (e.g., many by 
Barato/Seifert) use simplified models to get at the heart of the question. The authors here seem to 
want to extend those ideas to more realistic models.  

 

However, the complications introduced here don't make things more realistic - they don’t account 
for any major feature of real clocks. For example, the authors still do not really account for driving 
forces. In this revision, the authors have added a section on how weak driving gives variances that 
depend on various quantities. But their trade-off and analysis is still in terms of the undriven 
quantities and not the full driven quantity. Thus, the paper does not account for the most obvious 
feature of biological clocks - they are strongly driven by the external environment!  

 

So I don’t see how this paper is an advance over the numerous abstract statistical physics papers on 
the same topic.  

 

b. The above lack of significant new theory would be OK if this paper connected those earlier ideas 
to experiments. But the paper fails here for a different reason.  

 

I appreciate the authors removing some of the misleading experimental figures and related 
statements from the previous version. The cited experimental paper attributed the PRC effect to 
possible degradation of drugs at different temperatures - a far cry from the second law of 
thermodynamics!  

 

However, the revised section on Kai clocks is also poorly done. The new Fig 6 has a caption that 
when casually read, sounds like a great experimental link. However, the results shown are just about 



sensitivity \xi and reversibility \gamma - this relationship does not test the ideas about energy, 
diffusion and sensitivity laid out in the paper.  

 

Further, in the main text, the authors focus on one aspect of O’Shea’s 2011 paper while completely 
ignoring all subsequent and prior work. All these other works suggest that the authors’ prediction 
based on `reference’ value of a physiological parameter like ATP is completely swamped by a much 
bigger effect - namely, the change in the physiological parameter. As a recent example, in Aug 2017, 
O’Shea’s lab had a publication in Molecular Cell where concepts relevant to current paper were 
tested. Numerous other works on Drosophila and other clocks show the same result - e.g,. see the 
book on insect clocks by Saunders or any recent review of Winfree’s limit cycle work. In all of these 
works, the size of the PRC is mostly set by the change in physiological parameters like ATP and 
temperature and not the `reference‘ value of that parameter. (Even the concept of a ‘reference’ 
value is just not used in these experimental papers, for good reason.)  

 

To summarize, I don’t see this paper going beyond prior work either as a work of theoretical physics 
or in building a bridge to biology. I don’t see how this rises to the standards of novelty / impact 
asked for by journals like Nat. Comm.  

 

 

Reviewer #3 (Remarks to the Author):  

 

I am pleased by the modifications that the authors made to the manuscript that satisfy the concerns 
I raised previously. I think especially the comparison to Kai system and list of testable predicstions 
section make this now a better paper, suitable for publication in Nature Communications. 



 

 

Responses to comments from Reviewer #1 
 
Concerning question 2 
 
I am not sure the authors have given a general definition of phase 
diffusion. I do know how to define \tau_c (as in Qian's paper) for any 
model but phase diffusion seems to be a tricky thing. It seems to me 
that their claim in the previous paper is that the relation between 
phase diffusion and \tau_c is a result and not a definition of phase 
diffusion. I would also know how to calculate it on a simulation of 
one of their models but I would have trouble defining it precisely. I 
guess it is related to some first passage time quantity. The authors 
might want to further discuss this point: can you present an equation 
with a precise definition of phase diffusion? 
 
Response: Phase diffusion is defined following the general way of 
characterizing diffusive processes. From the dependence of the phase 
variance on time, i.e., ߪఝଶ(ݐ) ≡<(φ(t) - <φ(t)>)2>=  we can define the  ,ݐఝܦ
phase diffusion constant ܦఝ. In Supplementary Eq. 10, we provide a 
continuous phase equation which could be formally deduced from the 
original chemical Langevin equation (CLE) by using the phase reduction 
method. From this phase equation with noise (Eq. 10 in the SI), the phase 
variance can be computed and as we showed in Supplementary Eq. 13, 
the phase behaves in a diffusive with a phase diffusion constant that 
depends on the phase noise strength. 
 
We would like to point out that the relation between phase diffusion 
constant and autocorrelation time ߬ is not obtained by definition, it is a 
derived result as shown in Supplementary Eq. 17. In practice, it’s very 
difficult to compute the phase diffusion constant by deriving the phase 
equation from CLE. Since we only need the asymptotic diffusion constant 
(but not the detailed information in a short time less than one period), 
therefore we calculate the correlation function of a key state variable from 
our simulations to obtain the correlation τc, from which we can then 
determine the diffusion constant. 
 
Revision: We have added the general definition of phase diffusion in the 
paragraph above Eq. (2). To clarify the relation between phase diffusion 
and correlation time, we have now revised our manuscript (right before Eq. 



 

 

(2)) to explicitly state that the finite correlation time of stochastic oscillation 
is due to, but not a definition of, the diffusive phase dynamics. And this 
relationship provides a more practical way of computing the phase diffusion 
constant.    
 
 
Concerning point 4 
 
As the authors say, their result is a limit on optimal performance. As 
such they might be able to express it as an inequality. I am happy enough 
with their presentation, stating the result as an equality and stating it 
is relation valid for the optimal performance. However, if they could 
express it as an universal inequality it would be better. 
 
Even though the results from the PRE paper I mentioned are largely 
inspired by their nat phys paper, there is a big difference between 
both results. The result from the PRE paper is expressed as an 
inequality that is true for any stochastic process. Furthermore, it 
does not depend on the rate of energy dissipation but rather on the 
thermodynamic force \gamma (i.e. the inequality is independent of 
kinetic parameters). \gamma is something one would typically known 
(\gamma=20 for ATP in physiological conditions). The authors might want 
to further comment about that or maybe even try to express their results 
as inequalities (if it is possible). 
 
Response: This is an excellent suggestion. Actually, in the models we 
studied, there exist a minimal diffusion constant (Dmin) and a maximal 
sensitivity (χmax) for a given energy dissipation ∆ܹ per period as shown by 
the dashed lines in Figure 3 and Supplementary Figure 4&5. This best 
performance of phase fluctuation is consistent with the inequality in paper 
of Barato and Seifert PRL 2015. We have modified our text to explicitly 
introduce these optimal performance limits and express our results in the 
form of an inequality for the model parameters we have varied.  
   
We would like to point out that both the optimal sensitivity and the minimum 
phase diffusivity depends on ∆ܹ, the energy dissipation per period (in unit 
of kT), which means that they don’t depend on specific kinetic constants. 
This makes it suitable to compare ∆ܹ directly with the number of ATP 
hydrolyzed per period.  
 



 

 

Revision: We have now included the minimal diffusion constant (Dmin) and 
the maximum sensitivity (߯௫) in the text and in Fig. 3, re-expressed our 
Eq. 6 as an inequality to clarify the best performance, and also added 
another citation to a previous work (Barato and Seifert PRL 2015).  
 

 



 

 

Responses to comments from Reviewer #2 
 
Reviewer #2 (Remarks to the Author): 
 
I have gone through the authors’ response and the revised paper. I find it 
hard to recommend publication because of two reasons: 
 
a. the theoretical physics contribution here does not go beyond several 
statistical physics papers published in recent years, 
 
b. the biological contribution in connecting to realistic clocks is weak at best 
and often incorrect or mischaracterizes prior experimental work. 
 
a. many statistical physics works in recent years have show the basic idea 
of this paper. The main result of this paper is not news to anyone in the 
field. However, the earlier papers (e.g., many by Barato/Seifert) use 
simplified models to get at the heart of the question. The authors here 
seem to want to extend those ideas to more realistic models. 
 
 
However, the complications introduced here don't make things more 
realistic - they don’t account for any major feature of real clocks. For 
example, the authors still do not really account for driving forces. In this 
revision, the authors have added a section on how weak driving gives 
variances that depend on various quantities. But their trade-off and analysis 
is still in terms of the undriven quantities and not the full driven quantity. 
Thus, the paper does not account for the most obvious feature of biological 
clocks - they are strongly driven by the external environment! 
 
So I don’t see how this paper is an advance over the numerous abstract 
statistical physics papers on the same topic. 
 
Response: Indeed, employing tools from non-equilibrium statistical physics 
to understand biological functions has been an active area in the 
community recently. For oscillatory systems, in particular, most of them 
focus on the role of entropy production suppressing phase diffusion/period 
fluctuations (e.g., in Cao et al 2015 Nat. Phys. , and Barato and Seifert 
2017 PRE). However, here we mainly focus on how free energy dissipation 
can be utilized to enhance phase sensitivity. By studying biochemical 
network models, we also derived novel design principles for increasing 



 

 

precision and sensitivity, which is different from the ones studied in the 
simplified model in Barato and Seifert (PRE 2017). The key difference is 
that multiple reaction pathways, rather than just one single chemical 
process, connecting nearby microscopic states are considered explicitly in 
our analysis. 
 
In the revised manuscript, we do account for the periodic external driving 
force having the same (or nearly the same) period of the intrinsic limit cycle 
oscillation. As a result, the oscillation phase of the system can now 
synchronize to and fluctuate around the environmental reference. Although 
we only did linear perturbation analysis for small input, entrainment is 
essentially a weak driven process (as considered in Monti et al 2017 arXiv 
paper and Gupta et al 2016 Cell Systems paper). If the coupling is strong 
enough, any system can be driven to oscillate by periodic forcing. However, 
the internal system has to oscillate by itself to be entrained by weak forcing, 
and most biochemical systems do have their own intrinsic autonomous 
oscillation. It is thus clear that entrainment behavior must be dependent on 
both the external driving strength and internal property of the system. As 
shown in Eq. 8&9, besides being linearly proportional to the signal strength 
ε, both the time needed for synchronization te and the phase variance σ 
around the phase of the external driving signal are also related to the 
system’s internal properties, namely the phase sensitivity χ and diffusion 
constant D.  
 
The general discussion provided in Section C. “The relation between phase 
sensitivity and entrainment to external periodic driving” can be applied to 
specific models (such as Stuart-Landau equation) without difficulty. The key 
idea is that the entraining process can be and should be connected to the 
oscillators’ internal properties. 
 
Revision: We have now added a statement in the revised manuscript (in 
between Eq. (8) and Eq. (9)) to clarify the point that the external driving and 
the intrinsic property of the system together shape the entrainment 
process. 
 
b. The above lack of significant new theory would be OK if this paper 
connected those earlier ideas to experiments. But the paper fails here for a 
different reason. 
 



 

 

I appreciate the authors removing some of the misleading experimental 
figures and related statements from the previous version. The cited 
experimental paper attributed the PRC effect to possible degradation of 
drugs at different temperatures - a far cry from the second law of 
thermodynamics! 
 
However, the revised section on Kai clocks is also poorly done. The new 
Fig 6 has a caption that when casually read, sounds like a great 
experimental link. However, the results shown are just about sensitivity \xi 
and reversibility \gamma - this relationship does not test the ideas about 
energy, diffusion and sensitivity laid out in the paper. 
 
Further, in the main text, the authors focus on one aspect of O’Shea’s 2011 
paper while completely ignoring all subsequent and prior work. All these 
other works suggest that the authors’ prediction based on `reference’ value 
of a physiological parameter like ATP is completely swamped by a much 
bigger effect - namely, the change in the physiological parameter. As a 
recent example, in Aug 2017, O’Shea’s lab had a publication in Molecular 
Cell where concepts relevant to current paper were tested. Numerous other 
works on Drosophila and other clocks show the same result - e.g,. see the 
book on insect clocks by Saunders or any recent review of Winfree’s limit 
cycle work. In all of these works, the size of the PRC is mostly set by the 
change in physiological parameters like ATP and temperature and not the 
`reference‘ value of that parameter. (Even the concept of a ‘reference’ 
value is just not used in these experimental papers, for good reason.) 
 
Response: In principle, the most direct test of our theory would be some 
experiments measuring the relation between phase sensitivity χ and 
dissipation ∆W in real systems, as we did in Figure 3. One can 
quantitatively measure ∆W by, for example, measuring the ATP hydrolysis 
rate. However, for current experimental techniques, we think it’s much 
easier (and cleaner) to change the ratio of ATP and ADP concentration (or 
equivalently γ), which can be done experimentally in vitro. The free energy 
dissipation increases with the ATP/ADP ratio. (Supplementary Figure 2). 
 
As for the recent experimental works in the Kai system, we are fully aware 
of them, for example the recent paper by Gan and O’shea (Mol. Cell 2017) 
mentioned by the reviewer.  However, we did not find any solid evidence 
either supporting or contradicting our theory. For example, in Gan & 
O’Shea paper, the authors used temperature pulse to explore the 



 

 

geometric structure of the system’s limit cycle. By systematically scanning 
the pulse duration ∆t and the initial circadian phase φini at the time the pulse 
was given, they found multiple critical perturbations that induce stochastic 
phases following a 25°C pulse and thereby cause attenuation of circadian 
oscillations at the population-averaged level. This phenomenon is well 
understood theoretically as “black holes” of phase resetting, where the 
perturbed limit cycle cuts through the unstable singularity of the original 
“reference” limit cycle (see for example Murray’s “Mathematical Biology” for 
related). Gan and O’Shea did further experiments to verify this limit cycle 
framework for interpreting the indeterminate phases under critical condition. 
Our theory is consistent with the Gan & O’Shea work in general in at least 
the following two aspects: (1) a limit cycle model is sufficient for describing 
the induced phase shift; and (2) the geometric structure of the initial 
“reference” limit cycle is crucial to the oscillator’s phase response property. 
However, for the following two reasons, we find it hard to connect Gan & 
O’Shea (Mol. Cell 2017) with our theory directly (not to mention negating 
the claims made in our study): 

(1) Our theory predicts that given the same amount of perturbation, 
phase shift would change with different “reference” energetic state of 
the system (characterized by γ or ∆W). By contrast, their 
experiments fixed the “reference” state (starting from the same 
background temperature) and varied the perturbation strength 
variable ∆t. 

(2) Our theory is derived from linear perturbation analysis under the 
assumption that the perturbation is small, yet the interest of the 
experiments, i.e. “black holes”, happens only for sufficiently large 
perturbation ∆r / r ~ 100% of the limit cycle. Such critical condition 
clearly goes far beyond the assumption of our theory.  

 
Despite lacking direct relevance to our theory, Gan & O’Shea’s work clearly 
demonstrates a powerful experimental method for exploring the geometric 
structure of the isochrons in the system, which we studied theoretically 
using the phase reduction method. In fact, the quantitative techniques 
available and the relative simplicity of the Kai system are exactly the 
motivations for us to place our prediction in the Kai system. 
 
We agree that the change in the physiological parameter, which serves as 
the phase resetting signal, would also affect the response ∆φ. In 
Supplementary Equation 5, we identified two factors, besides the 
perturbation strength, that determine the phase shift — one perturbation-



 

 

independent parameter χ that characterizes the limit cycle geometry and 
depends solely on the “reference” state, and another perturbation-
dependent factor dF/dμ. Throughout our paper we have assumed that the 
latter factor does not vary much for different “reference” states, i.e. the 
same perturbation applied to the system would cause similar ∆r / r to the 
limit cycle geometry, which should be the case when the system is away 
from the onset of oscillation. Therefore, under this assumption, the 
response sensitivity χ should dominate the phase response. However, this 
assumption cannot be proved rigorously, therefore, we turned to direct 
numerical simulations. The results as we presented in Fig. 6 seem to be 
consistent with this assumption. Based on these considerations, we believe 
the predictions made in our paper about the Kai system as shown in Fig. 6 
represent doable and realistic tests of our theory. We have discussed with 
an expert experimentalist in the Kai system, Prof. Michael Rust from 
University of Chicago, about this particular prediction. Michael Rust 
believes it is an interesting and doable experiment.    
 
Revision: We have now explicitly stated our assumption right after 
introducing the concept of phase sensitivity in Eq.(1). To make it clearer, 
we further reiterate the hypothesis we made about the relative amplitude 
change before we present our predictions for experimental tests in the last 
paragraph of the paper. 
 
To summarize, I don’t see this paper going beyond prior work either as a 
work of theoretical physics or in building a bridge to biology. I don’t see how 
this rises to the standards of novelty / impact asked for by journals like Nat. 
Comm. 
 
 
Reviewer #3 (Remarks to the Author): 
 
I am pleased by the modifications that the authors made to the manuscript 
that satisfy the concerns I raised previously. I think especially the 
comparison to Kai system and list of testable predictions section make this 
now a better paper, suitable for publication in Nature Communications. 
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