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Supplementary Figure 1. t-SNE plots of all the follow-up samples based on log2 intensities of the

266 proteins. The samples have been colored based on A) individual B) gender and C) place of birth.
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Supplementary Figure 2. Longitudinal expression profiles of six proteins measured from A)
depleted serum samples collected from 15 children and analyzed with label-free quantitative profiling
and B) undepleted serum samples collected from additional 8 children and analyzed with targeted
SRM-based approach. Each line represents one child. Red=girls and blue = boys.
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Supplementary Table 4. DAVID functional classification results for the 266 proteins reliably
identified and quantified in the current study.

GO Category Count FDR
GO:0002576~platelet degranulation 49 3.16E-57
GO:0006508~proteolysis 48 1.52E-21
GO:0045087~innate immune response 41 4.69E-17
GO:0006956~complement activation 36 3.41E-43
GO:0006958~complement activation, classical pathway 36 7.06E-40
GO:0010951~negative regulation of endopeptidase activity 35 1.19E-30
GO:0007155~cell adhesion 35 3.69E-11
GO:0006898~receptor-mediated endocytosis 31 1.59E-20
GO:0007596~blood coagulation 30 4.95E-18
GO:0030198~extracellular matrix organization 27 4.32E-14
GO:0044267~cellular protein metabolic process 22 1.89E-13
GO:0030449~regulation of complement activation 19 1.31E-22
GO:0006953~acute-phase response 17 2.46E-15
GO:0006869~lipid transport 16 1.14E-09
GO:0042157~lipoprotein metabolic process 15 3.66E-13
GO:0007597~blood coagulation, intrinsic pathway 13 3.44E-15
GO:0042730~fibrinolysis 13 5.21E-14
GO:0006957~complement activation, alternative pathway 12 1.05E-15
GO:0034375~high-density lipoprotein particle remodeling 10 2.96E-10
GO:0043691~reverse cholesterol transport 10 2.77E-09
GO:0022617~extracellular matrix disassembly 14 1.92E-07
GO:0001895~retina homeostasis 11 6.99E-07
GO:0006955~immune response 27 2.42E-06
GO:0001523~retinoid metabolic process 12 2.95E-06
GO:0006911~phagocytosis, engulfment 10 3.20E-06
GO:0051918~negative regulation of fibrinolysis 7 3.92E-06
GO:0033344~cholesterol efflux 9 5.35E-06
GO:0050871~positive regulation of B cell activation 9 5.35E-06
GO:0017187~peptidyl-glutamic acid carboxylation 7 8.51E-06
GO:0008203~cholesterol metabolic process 12 9.86E-06
GO:0006910~phagocytosis, recognition 9 1.04E-05
GO:0001867~complement activation, lectin pathway 6 2.69E-05
GO:0019835~cytolysis 8 2.83E-05
GO:0033700~phospholipid efflux 7 5.32E-05
GO:0042158~lipoprotein biosynthetic process 6 1.57E-04
GO:0010873~positive regulation of cholesterol esterification 6 1.57E-04
GO:0050776~regulation of immune response 15 2.51E-04
GO:0006954~inflammatory response 22 7.49E-04
GO:0042742~defense response to bacterium 14 7.82E-04
GO:0042632~cholesterol homeostasis 10 8.50E-04
GO:0038096~Fc-gamma receptor signaling pathway involved in phagocytosis 12 0.00118
GO:0051384~response to glucocorticoid 11 0.001209
GO:0034384~high-density lipoprotein particle clearance 5 0.00128
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GO:0030195~negative regulation of blood coagulation 6 0.001528
GO:0050853~B cell receptor signaling pathway 9 0.002462
GO:0030168~platelet activation 12 0.002653
GO:0006465~signal peptide processing 7 0.002725
GO:0034372~very-low-density lipoprotein particle remodeling 5 0.002951
GO:0070328~triglyceride homeostasis 7 0.003498
GO:0050900~leukocyte migration 12 0.004736
GO:0034380~high-density lipoprotein particle assembly 5 0.005832
GO:0031639~plasminogen activation 5 0.010371
GO:0046470~phosphatidylcholine metabolic process 5 0.017077
GO:0051919~positive regulation of fibrinolysis 4 0.022937
GO:0006641~triglyceride metabolic process 7 0.02604
GO:0034374~low-density lipoprotein particle remodeling 5 0.026513



7

A.
Pr

ot
ei

ns
wi

th
si

gn
ifi

ca
nt

ge
nd

er
/lo

ca
tio

n
ef

fe
ct

s:
Be

st
M

od
el

Po
st

er
io

rR
an

k>
0.

8
&

sc
vp

re
d.

fa
ct

or
_v

s2
>0

.9
&

sc
vp

re
d.

fa
ct

or
_v

s1
>0

.9
.

M
od

el
1:

y
~

id
,M

od
el

2:
y

~
ag

e
+

id

G
en

eN
am

e
U

ni
Pr

ot
Ac

ce
ss

io
n

Va
ri

ab
le

si
nc

lu
de

d
in

th
e

be
st

G
P

m
od

el
B

es
tM

od
el

Po
st

er
io

rR
an

k
sc

vp
re

d
fa

ct
or

vs
m

od
el

2
sc

vp
re

d
fa

ct
or

vs
m

od
el

1
sc

vp
re

d
fa

ct
or

2
vs

1
AC

TG
1;

AC
TB

P6
32

61
;P

60
70

9
lo

ca
tio

n,
ag

e,
id

0.
90

69
0.

92
46

5
0.

99
92

0.
99

83
5

AF
M

P4
36

52
lo

ca
tio

n,
ag

e,
id

0.
98

3
0.

99
41

0.
99

95
5

0.
99

54
5

AP
O

C3
P0

26
56

ge
nd

er
,lo

ca
tio

n,
ag

e,
id

0.
85

07
5

0.
97

2
0.

96
61

5
0.

72
51

5
AT

RN
O

75
88

2
lo

ca
tio

n,
ag

e,
id

0.
89

99
5

0.
97

77
5

0.
99

92
5

0.
99

58
CP

B2
Q

96
IY

4
ge

nd
er

,ag
e,

id
0.

84
62

0.
99

19
0.

99
7

0.
95

73
5

CT
BS

Q
01

45
9

se
as

on
,id

0.
88

16
0.

92
24

5
0.

90
69

0.
14

31
IG

FA
LS

P3
58

58
ge

nd
er

,ag
e,

id
0.

81
72

5
0.

96
67

0.
98

39
0.

78
98

5
O

LF
M

1
Q

99
78

4
lo

ca
tio

n,
ag

e,
id

0.
99

55
0.

99
84

1
0.

99
87

PV
R

P1
51

51
lo

ca
tio

n,
ag

e,
id

0.
90

3
0.

90
71

0.
99

94
5

0.
99

83
PZ

P
P2

07
42

ge
nd

er
,ag

e,
id

0.
84

3
0.

99
11

5
0.

96
94

5
0.

00
16

SP
AR

C
P0

94
86

lo
ca

tio
n,

ag
e,

id
0.

89
31

0.
95

04
5

0.
96

98
0.

95
21

VW
F

P0
42

75
lo

ca
tio

n,
ag

e,
id

0.
90

78
0.

90
87

0.
99

73
5

0.
99

80
5

Su
pp

le
m

en
ta

ry
Ta

bl
e

6.
Pr

ot
ei

ns
wh

os
e

ex
pr

es
si

on
le

ve
ls

ar
e

af
fe

ct
ed

by
ge

nd
er

,b
irt

h
pl

ac
e

an
d

se
as

on
at

sa
m

pl
in

g
ba

se
d

on
G

P
m

od
el

lin
g.



8B
.S

ug
ge

st
iv

e
G

P
m

od
el

s
of

lo
ng

itu
di

na
lp

ro
te

in
ex

pr
es

si
on

pr
of

ile
s(

be
st

m
od

el
po

st
er

io
rr

an
k

be
tw

ee
n

0.
5

an
d

0.
8)

.P
ro

te
in

sw
ith

su
gg

es
tiv

e
ge

nd
er

/lo
ca

tio
n

ef
fe

ct
s.

Be
st

M
od

el
Po

st
er

io
rR

an
k<

=0
.8

&
Be

st
M

od
el

Po
st

er
io

rR
an

k>
0.

5
&

sc
vp

re
d.

fa
ct

or
_v

s2
>0

.9
&

sc
vp

re
d.

fa
ct

or
_v

s1
>0

.9
.

M
od

el
1:

y
~

id
,M

od
el

2:
y

~
ag

e
+

id

G
en

eN
am

e
U

ni
P

ro
tA

cc
es

si
on

V
ar

ia
bl

es
in

cl
ud

ed
in

th
e

be
st

G
P

m
od

el
B

es
tM

od
el

Po
st

er
io

rR
an

k
sc

vp
re

d
fa

ct
or

vs
m

od
el

2
sc

vp
re

d
fa

ct
or

vs
m

od
el

1
sc

vp
re

d
fa

ct
or

2
vs

1
AC

AN
P1

61
12

lo
ca

tio
n,

ag
e,

id
0.

56
70

5
0.

96
55

1
1

AM
BP

P0
27

60
ge

nd
er

,lo
ca

tio
n,

se
as

on
,ag

e,
id

0.
76

80
5

0.
95

76
0.

97
23

5
0.

76
7

BT
D

P4
32

51
lo

ca
tio

n,
ag

e,
id

0.
56

76
0.

96
77

0.
93

03
0.

08
67

C4
B

P0
C0

L5
ge

nd
er

,id
0.

50
77

5
0.

94
06

0.
93

53
0.

01
75

C8
A

P0
73

57
lo

ca
tio

n,
se

as
on

,ag
e,

id
0.

69
38

5
0.

97
51

5
0.

94
13

5
0.

27
73

D
EF

A3
;D

EF
A

1P
59

66
6;

P5
96

65
lo

ca
tio

n,
id

0.
67

68
0.

99
76

0.
99

68
0.

00
02

D
PP

4
P2

74
87

lo
ca

tio
n,

ag
e,

id
0.

72
85

5
0.

98
2

0.
96

27
5

0.
35

1
F5

P1
22

59
ge

nd
er

,s
ea

so
n,

ag
e,

id
0.

67
57

5
0.

99
38

0.
99

68
0.

71
38

5
F9

P0
07

40
lo

ca
tio

n,
ag

e,
id

0.
63

28
0.

99
55

0.
99

77
0.

98
05

FN
1

P0
27

51
ge

nd
er

,lo
ca

tio
n,

se
as

on
,ag

e,
id

0.
58

04
5

0.
99

84
0.

99
73

0.
70

39
5

G
G

H
Q

92
82

0
se

as
on

,a
ge

,id
0.

71
53

5
0.

99
78

1
0.

99
89

H
BB

P6
88

71
lo

ca
tio

n,
ag

e,
id

0.
59

67
5

0.
94

98
5

0.
94

52
0.

71
48

H
SP

G
2

P9
81

60
lo

ca
tio

n,
se

as
on

,ag
e,

id
0.

57
03

0.
98

79
0.

99
93

0.
97

26
5

IT
IH

1
P1

98
27

lo
ca

tio
n,

se
as

on
,ag

e,
id

0.
74

03
0.

99
92

5
0.

99
92

0.
19

90
5

LI
LR

A
3

Q
8N

6C
8

lo
ca

tio
n,

ag
e,

id
0.

69
91

0.
97

32
0.

94
62

5
0.

07
71

LY
Z

P6
16

26
lo

ca
tio

n,
ag

e,
id

0.
50

62
5

0.
97

27
0.

97
15

0.
78

14
N

CA
M

1
P1

35
91

ge
nd

er
,lo

ca
tio

n,
ag

e,
id

0.
62

68
0.

97
12

0.
99

99
0.

99
97

5
PG

LY
RP

2
Q

96
PD

5
ge

nd
er

,a
ge

,id
0.

51
81

5
0.

97
02

5
0.

99
86

5
0.

99
49

PT
G

D
S

P4
12

22
se

as
on

,a
ge

,id
0.

74
10

5
0.

96
44

5
0.

99
03

0.
96

57
5

SE
RP

IN
A1

P0
10

09
ge

nd
er

,lo
ca

tio
n,

ag
e,

id
0.

60
98

5
0.

92
62

0.
90

26
5

0.
41

59
5

TG
FB

I
Q

15
58

2
lo

ca
tio

n,
ag

e,
id

0.
54

99
5

0.
99

98
5

1
0.

99
03

TI
M

P1
TI

M
P1

ge
nd

er
,a

ge
,id

0.
74

59
0.

92
63

5
0.

96
93

5
0.

91
54

5
TL

N
1

TL
N

1
ge

nd
er

,se
as

on
,id

0.
54

47
0.

96
32

5
0.

90
94

5
0

VT
N

VT
N

lo
ca

tio
n,

id
0.

51
84

0.
98

76
0.

98
89

5
0.

63
43



9

Supplementary Table 7. Samples and study subjects.

Study subject and samples for label-free quantitative proteomics profiling
Time of sample collection

ChildID Gender Birth
place

Mode  of
delivery

Time of
Birth

3
months

6
months

12
months

18
months

24
months

36
months

Child1 Female Finland Vaginal Oct-2008 Feb-09 May-09 Dec-09 Apr-10 Oct-10 Nov-11
Child2 Male Finland Vaginal Sep-2008 Dec-08 Apr-09 Oct-09 Mar-10 Aug-10 Oct-11
Child3 Male Finland Vaginal Jan-2009 Mar-09  - Jan-10 Aug-10 Jan-11 Jan-12
Child4 Male Finland Vaginal Jan-2009 Apr-09 Jul-09 Jan-10 Jul-10 Jan-11 Jan-12
Child5 Male Finland Vaginal Mar-2009 Jun-09 Sep-09 Apr-10 Aug-10 Mar-11 Mar-12
Child6 Female Finland Vaginal Jan-2009 Apr-09 Aug-09 Feb-10 Aug-10 Jan-11 Jan-12
Child7 Female Finland Vaginal May-2009* Jul-09 Oct-09 May-10 Nov-10 May-11 Apr-12
Child8 Female Finland Vaginal Jul-2009 Oct-09 Jan-10 Jun-10 Jan-11 Jun-11 Aug-12
Child9 Female Finland Vaginal Jul-2009 Oct-09 Feb-10 Aug-10 Dec-10 Aug-11 Jul-12

Child10 Male Finland
Cesarean
section Sep-2009 Dec-09 Mar-10 Oct-10 Mar-11 Oct-11 Sep-12

Child11 Male Finland Vaginal Nov-2009 Feb-10 May-10 Nov-10 May-11 Nov-11 Nov-12
Child12 Female Estonia Vaginal Jul-2009 Oct-09 Jan-10 Jul-10 Jan-11 Aug-11 Oct-12

Child13 Female Estonia Vaginal Aug-2009 Nov-09 Feb-10 Sep-10 Mar-11 Oct-11 Oct-12
Child14 Female Estonia Vaginal Feb-2010 May-10 Aug-10 Mar-11 Jul-11 Feb-12 Mar-13
Child15 Female Estonia Vaginal Feb-2010 May-10 Sep-10 Mar-11 Aug-11 Feb-12 Mar-13

* no cord blood sample analyzed

Study subjects and samples for targeted SRM validations
Time  of sample collection

ChildID Gender
Birth
place

Time of
Birth

3 months
(ID*)

6  months
(ID*)

12 months
(ID*)

24 months
(ID*)

36 months
(ID*)

ChildA Male Finland Feb-2010 Jun-10 (26) Aug-10 (21) Feb-11 (18) Feb-12 (17) Apr-13 (2)
ChildB Female Finland Feb-2009 May-09 (12) Sep-09 (38) Feb-10 (13) Feb-11 (4) Jan-12 (33)
ChildC Male Finland Apr-2009 Jul-09 (1) Oct-09 (29) Apr-10 (15) Apr-11  (27) Mar-12 (20)
ChildD Female Finland Aug-2009 Nov-09 (40) Mar-10 (-) Sep-10 (23) Aug-11  (22)  Aug-12 (24)
ChildE Male Estonia Jan-2010 May-10 (16) Jul-10  (36) Feb-11 (6) Jan-12 (35) Feb-13 (39)
ChildF Female Estonia Feb-2009 Jul-09 (8) Sep-09  (9) Mar-10 (19) Mar-11 (5) Mar-12 (7)
ChildG Male Estonia Jul-2009 Oct-09 (11) Jan-10 (31) Jun-10 (34) Jun-11 (10) Jul-12 (14)
ChildH Female Estonia Jul-2009 Nov-09 (3) Jan-10 (30) Jul-10 (37) Aug-11 (32) Nov-12 (25)

* sampleID



Covariate selection for longitudinal proteomics

data using additive Gaussian process regression

Lu Cheng, Aki Vehtari, Harri Lähdesmäki

May 18, 2017

Abstract

We would like to identify the most relevant factors that affect protein
levels in the blood. To do this, we use Gaussian process regression to fit
the proteomics time series data. In the model selection part, we use leave-
one-out cross-validation and stratified cross-validation to select covariates
for each protein.

1 Data description

We analyze mass-spectrometry proteomics data for a group of healthy children.
The experiment is set up like this. Each child goes to the clinics at 3, 6, 12, 18,
24, 36 months age. Blood samples are taken at each visit. The samples are then
analyzed together to provide the serum protein levels at those time points.

For each child, we have the following explanatory variables: age (sample date
- birth date), location (Finnish or Estonian), gender, season (sample date - a
common date for all child), id (id of the child).

The response variables are serum protein levels measured by mass-spectrometer
and quantified by maxQuant software. The protein intensities are in log2 scale.
There are 3 technical replicates for each sample. The median of the 3 technical
replicates is taken as the final protein intensity. For each protein in a sample,
we compute the median using only those technical replicates where the protein
has been detected.

Note that many proteins can be measured in a single sample, but we analyze
each protein independently. We also remove proteins that are detected in less
than 50% of all available samples. In our data, we analyzed 266 proteins in total.

2 Additive Gaussian process and model selec-
tion

We describe our computational methods for a single protein by ignoring the
protein index for simplicity. We can represent our data as follows: we have a
continuous response variable Y and we have 5 explanatory variables X, in which
2 (age, season) are continuous explanatory variables and 3 (location, gender,
id) are binary/categorical explanatory variables. We want to find out which
explanatory variables can best explain the response variable.

1



The first question we want to answer is what modeling framework should
we use. Commonly used modeling frameworks include linear mixed model and
generalized linear mixed model. In practice we find linear mixed models can not
fit the data very well, since the data shows nonlinear trends. We decide to use
Gaussian Processes (GP) to handle the nonlinearity in the data. The general
form is

y = f(x) + ε, (1)

where f(x) can be any smooth non-linear function and ε is the noise.
GP is parameterized by its mean m(x) and covariance matrix k(x, x′). In

practice we usually center the data points such that the mean is 0. This practice
leads to the specification of a zero-mean GP prior, which has less complex
formulations while keeping the same modeling power. Assume f(x) has non-zero
mean µ and the noise ε has zero mean in Equation 1, we can rewrite it as
(y − µ) = (f(x)− µ) + ε, which shows the effects of centering.

The key part of GP modeling are the choices of the covariance functions. We
can think the function f(x) is a composed function of some more basic nonlinear
functions that only involves one or two explanatory variables. Here “compose”
means addition and multiplication, e.g. f(x) = f1(x1) + f2(x2) + f3(x3) +
f4(x4, x5), where multiplication refers to the interaction of covariates x4 and x5
(or their covariance functions) in f4(x4, x5). Different ways of “composing” leads
to different models.

Let us use M to denote a model and θ to denote parameters of the covariance
functions of model M (including noise variance). We use cross-validation to
compare different models. Specifically, we split the data set into small portions,
then iteratively use one portion as test data and the others as training data.
In the end, we would like to obtain the predictive density of one portion yi
conditioned on the rest y−i, i.e. p(yi|y−i) =

∫
θ
p(yi|θ)p(θ|y−i)dθ. Note that the

predictive density can be obtained using sampling techniques since p(θ|y−i) can
be sampled and p(yi|θ) can be computed analytically. See [1] and [2] for more
details.

We use two types of cross-validation in our time series data: leave-one-out
cross-validation (LOOCV) and statified cross-validation (SCV). LOOCV takes
out only a single data point (a single time point of an individual) and SCV takes
out all data points (with respect to time) of an individual. We compare two
models M1 and M2 by the following formula:

1

n

n∑
i=1

(log(p(yi|y−i,M1 ))− log(p(yi|y−i,M2 ))) , (2)

which compares the average prediction accuracy of the two models. If Equation
2 is greater than 0, then M1 is better than M2 , otherwise M2 is better than
M1 . This comparison does not provide a probability saying how much better
one model compares to the other. No matter M1 is better than M2 at all data
points, or M1 is only marginally better than M2 at a few data points, we will
get the same conclusion, which is not favorable in many cases.

We approximate the distribution of yi using Bayesian bootstraping [3], which
assumes yi only take values from the observations and have zero probability at all
other values. The probabilities of the observation values follow the n-dimensional
Dirichlet distribution Dir(1, 1, ..., 1). More specifically, we bootstrap the samples

2



N times. Each time we get the same n observations, with each observation
taking weight wbi (b = 1, . . . , N, i = 1, . . . , n) from the Dirichlet distribution.
Consequently, the value of Equation 2 can change for each bootstrap sample b.
We then summarize the N bootstrap results to obtain the probability that M1

is better than M2

1

N

N∑
b=1

δ

{
1

n

n∑
i=1

wbi(log(p(yi|y−i,M1 ))− log(p(yi|y−i,M2 )))

}
, (3)

where δ{·} is the Heaviside step function, wbi is the bootstrap weight for ith
data point in bth bootstrap iteration, and weights wb are sampled from the
n-dimentional Dirichlet distribution Dir(1, 1, ..., 1). See [4] for more details.
We call the result of Equation 3 loo factor or scv factor depending on the
cross-validation techniques used.

The above strategy also works when comparing multiple models. Instead
of calculating the heaviside step function in each boostrap iteration, we simply
take the model with the highest rank by sorting 1

n

∑n
i=1 wbi log(p(yi|y−i,Mm))

values of all models, where m indicates the model. In the end we count the
occurences Nm of each model being the best across all N bootstrap iterations
and the posterior probability of model m is Nm

N , which we term as posterior
rank probability.

3 Practical application

This section provides the technical details about how we perform the model
selection for the proteomics data. In our analysis, the protein intensities and
continuous covariates (age, season) are all standardized such that the mean is 0
and the standard deviation is 1. This specification allows conveniences to set
the parameter priors in GP regression.
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3.1 Model specification

We use GPstuff [5] to do Gaussian process regression. In our analysis, the full
model space contains 24 = 16 models, which are defined as follows:

M1 : f ∼ id
M2 : f ∼ age+ id+ age× id
M3 : f ∼ season+ id+ season× id
M4 : f ∼ location+ id

M5 : f ∼ gender + id

M6 : f ∼ season+ age+ id+ interaction terms

M7 : f ∼ location+ age+ id+ interaction terms

M8 : f ∼ location+ season+ id+ interaction terms

M9 : f ∼ gender + age+ id+ interaction terms

M10 : f ∼ gender + season+ id+ interaction terms

M11 : f ∼ gender + location+ id+ gender × location
M12 : f ∼ location+ season+ age+ id+ interaction terms

M13 : f ∼ gender + season+ age+ id+ interaction terms

M14 : f ∼ gender + location+ age+ id+ interaction terms

M15 : f ∼ gender + location+ season+ id+ interaction terms

M16 : f ∼ gender + location+ season+ age+ id+ interaction terms,

where each model uses a unique subset of covariates and the “interaction terms”
will be explained in a later paragraph. M1 is the constant model, which describes
the protein intensity of an individual using a single constant value. M2 is the
age model, in which age describes the common age effect and age× id describes
the individual specific age effect. Each term in a model such as age and age× id
refers to a covariance function (kernel) used in GP regression. An interaction
term is a product kernel of two kernels based on each covariate, e.g. age× id is
a product kernel of the age kernel and the id kernel. Higher order interactions
involving 3 or more covariates are not considered. We set the kernels and their
parameter priors as follows:

1. age (continuous), the square exponential kernel (gpcf_sexp()), the length
scale has the log-normal prior distribution (prior_loggaussian()) with
µ = 0 and σ2 = 1.3255, the mode is around 0.3 and the prior penalizes
small length scales; the magnitude has the log-uniform prior distribution
(prior_logunif()), which is implemented as an improper prior in GPstuff.
The posterior of the magnitude, however, is a proper distribution.

2. location (binary), categorical kernel times constant kernel; categorical
kernel (gpcf_cat()) returns 1 only if two input values are the same,
otherwise returns 0; prior distribution of the magnitude is a positive half
Student’s t-distribution (gpcf_constant()) with the location parameter
set to 0, the scale parameter set to 1, and the degree of freedom set to 4.

3. gender (binary), categorical kernel times constant kernel; magnitude prior
the same as for location.
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4. id (categorical), categorical kernel times constant kernel; magnitude prior
the same as for location.

5. season (continuous), periodic kernel gpcf_periodic, period = 12/(stan-
dard deviation of season covariate before standardization), length scale
prior is the same as for age, magnitude prior is a Student’s t-distribution
with the location parameter set to 0, the scale parameter to 1, and the
degree of freedom set to 4. Note that we impose the period to be exactly
12 months.

We assume a zero mean Gaussian noise and the prior for variance σ2 is scaled
inverse Chi-squared distribution (prior_sinvchi2()) with degree of freedom
ν = 1 and scale square (variance) σ2 = 0.1

Regarding the interaction terms, all pair-wise interactions of the covariates
in a model are included by default. We further set up and eliminate some
interaction terms by the following rules:

1. Continuous covariates such as age and season are accompanied with a
different length scale prior that allows for more rapid changes. For example,
the length scale prior for age in the interaction term is the positive half of
the Student’s t-distribution (prior_t()) with the location parameter set
to 0, the scale parameter set to 1, and the degree of freedom set to 4. This
prior allows small length scale.

2. Interactions of continuous covariates are not considered, since they will
bring too much flexiblity to the model and make the parameter inference
challenging.

3. We do not consider an interaction term involving id and another binary
covariate (location or gender) because the product kernel is in essence the
same as id kernel, as shown in M4 , M5 and M11 .

4. When considering an interaction term of a continuous covariate and a
binary covariate, the constant kernel part of the binary covariate is deleted
since the kernel of continuous covariate can already model the magnitude.
In other words, the interaction term is a product of a squared exponential
kernel and a categorical kernel.

5. When considering an interaction term of two categorical covariates, there
are two constant kernels in the interaction term by default, one for each
covariate. Only one constant kernel is kept due to redundency.

6. When there are more than 20 parameters in a model, we will first estimate
the parameters using MCMC (see Section 3.2) and then delete interaction
terms according to their explained variances. Interaction terms that explain
less than 0.02 of the total variance will be deleted. If there are still more
than 20 parameters, we will delete interaction terms with the least explained
variances such that the final model contains 20 parameters. With more than
20 parameters, the fast central composite design (CCD) (see Section 3.2)
inference algorithm is unreliable. We did not use MCMC in SCV since it
was very time consuming.
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We use both LOOCV and SCV to compare the aforementioned 16 models.
The results show that LOOCV is good at analyzing effects of shared covariates,
while SCV is good at analyzing effects of subgroup specific covariates. For
example, when comparing M4 versus M1 using LOOCV for a protein with
location effects, there is barely any difference between the two models. This
is because we can borrow strength from other times points of an individual to
estimate the leftout time point in LOOCV setting. If we use SCV, then we will
see M4 is much better than M1 , since M4 uses the location mean for prediction
whereas M1 uses the whole sample mean for prediction. On the other hand,
when we compare M2 versus M1 using SCV for a protein with age effect, the
predictions will be centered around the whole sample mean, which brings in
large error and can easily mask the slight improvement from age. As a result,
there is not too much difference between M2 and M1 . If we use LOOCV to
compare M2 and M1 , the age effect can be better detected since the baseline
protein level of an individual can be reliably estimated from other time points,
which circumvents the problem in SCV. We conclude that LOOCV is good at
analyzing effects of covariates that are shared by all individuals, while SCV is
good at analyzing effects of categorical covariates that are subgroup specific.

3.2 Inference

For each model, we use 4 independent MCMC (Markov chain Monte Carlo) chains
to infer the parameters, each of which is initialized with different parameter
values. Slice sampling [6] is used in the actual MCMC sampling. 2500 samples
are generated from each MCMC chain, 100 samples are discarded as burn-in
samples and the rest is thinned by 6, that is 400 approximately independent
samples in each chain. We then concatenate the independent samples of the 4
MCMC chains, that is 1600 samples. After that we use Potential Scale Reduction
Factor R̂ [7] to check the convergence of the MCMC chains. If 0.9 ≤ R̂ ≤ 1.1
we consider that the MCMC chains have converged. If not, we will repeat the
process at most 4 times, in each of which we combine new samples with previous
samples.

When performing LOOCV, we need to do the cross-validation n times such
that we get predictive density of each data item, i.e. p(yi|y−i) =

∫
θ
p(yi|θ)p(θ|y−i)dθ.

However, this is usually time consuming and we use importance sampling to
approximate the predictive density instead. Note that the leave-one-out posterior
p(θ|y−i) is very close to the full posterior p(θ|y) since there is only one data
point difference. Therefore we can use the full posterior p(θ|y) as the proposal
distribution in the importance sampling, which takes little time to sample from
the leave-one-out posterior p(θ|y−i). See more details in [1].

SCV is also time consuming if a separate MCMC inference is performed for
each fold. To make the inference time affordable, we use central composite design
(CCD) [8] to infer the parameters instead of MCMC. CCD assumes a unimode
posterior, then it finds and assigns weights to the representative points around
the posterior mode, after that it approximates the predictive density using these
representative points. CCD is much faster than MCMC and reliably accurate
for less than 20 parameters. Therefore we reduce the model size by removing
some negligible interaction terms if a model has more than 20 parameters.
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3.3 Model selection

There are two types of questions we are interested in.

1. Is there any age/seasonal effect in the data? Age/seasonal effect means
that the protein intensity changes in a common pattern along time in all
individuals. Since age and season are continuous covariates shared by all
individuals, we use LOOCV to compare the models. The model space for
LOOCV is constrained to {M1 , M2 , M3 , M6}. The selected best model
will then explain the age/seasonal effect. The following rules are adopted
to select relevant models.

(a) The best model is M2 (bestModelInd=2) and its posterior rank prob-
ability P (M2 |data) is higher than 0.5 (bestModelRank>0.5) and loo
factor versus M1 is larger than 0.95 (loofactor_2vs1>0.95) and
MCMC converged. This rule says that the protein in question has
significant age effect and no significant seasonal effect.

(b) bestModelInd=3 & bestModelRank>0.5 &

loofactor_3vs1>0.95 & MCMC converged. This rule says that the
protein in question has significant seasonal effect and no significant
age effect. There is no such protein in our result.

(c) bestModelInd=6 & bestModelRank>0.8 &

loofactor_6vs2>0.8 & loofactor_2vs1>0.95 & MCMC converged.
This rule says that the protein in question has both significant age
and seasonal effect. There is no such protein in our result.

(d) bestModelInd=6 & bestModelRank>0.5 &

loofactor_2vs1>0.95 & MCMC converged but does not satisfy the
previous rule, i.e. bestModelInd=6 & bestModelRank>0.8 &

loofactor_6vs2>0.8 & loofactor_2vs1>0.95 & MCMC converged.
This rule says that the protein in question has significant age effect,
but no significant seasonal effect.

There does not seems to be proteins with significant seasonal effect in
our result. We think this is probably because of sparse sampling in our
data, i.e. 6 time points per individual is not enough to reliably detect the
seasonal effect.

2. Is there any location / gender effect in the data? Location/gender effects
mean that the individuals belonging to a certain group (according to
location or gender) differ systematically from another group. Since gender
and location are categorical covariates specific to each subgroup, we use
SCV to compare all the models in the model space defined in section 3.1.
If the best model (highest posterior rank probability) contains gender or
location, then we think there is gender/location effect. To be considered as
significant, we require that (1) the posterior rank probability is higher than
0.8 and (2) the scv factors of the best model versus both the age model M2

and the constant model M1 to be greater than 0.9. If the posterior rank
probability is between 0.5 and 0.8, and the scv factors of the best model
versus both the age model M2 and the constant model M1 are greater
than 0.9, then we think the location / gender effect to be suggestive. Note
that the SCV results can be different to that of LOOCV results.
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The above filtering criteria are empirical and show satisfactory results.
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