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A. Dipole approximations for kernel matrix
The structure of the kernel matrix in equation (2.20) suggests that the off-diagonal entries
Ĝ(β, k; ξ(1); ξ(2)) can be approximated by expanding about the origin to obtain a dipole-like
representation.

For gratings I and II we define, respectively, ξ(1) = 0, ξ(2) = s. Then one can say, for ξ(2) =

ξ(1) + s, |s| � 1,

Ĝ(β, k; ξ
′(1), ξ(2)) = Ĝ(β, k; ξ

′(1); ξ(1) + s)' Ĝ(β, k; ξ
′(1); ξ(1)) + s · ∇Ĝ(β, k; ξ

′(1); ξ(1)),

(A.1)

Ĝ(β, k; ξ
′(2); ξ(1)) = Ĝ(β, k; ξ

′(1) + s; ξ(1))' Ĝ(β, k; ξ
′(1); ξ(1)) + s · ∇

′
Ĝ(β, k; ξ

′(1); ξ(1)),

where we have expanded around the lower grating’s front pin position vector ξ(1) = 0. The
notation ′ is used to distinguish between the arguments in both the expansions and the directional
derivatives; ∇ denotes that we are differentiating with respect to ξ(1), whereas ∇

′
signifies

differentiation with respect to ξ
′(1).

Let us consider the directional derivative terms in (A.1), which require differentiation of the
Green’s function (2.4). Define the function for the argument:

ρI(j, ξ
(1)) =

∣∣∣jae1 + ξ
′(1) − ξ(1)

∣∣∣=√(ja+ ξ
′(1)
1 − ξ(1)1

)2
+
(
0 + ξ

′(1)
2 − ξ(1)2

)2
. (A.2)

Referring to (A.1), (A.2), for ξ(1) = ξ
′(1) = 0, ρI = |j|a, we obtain

∂Ĝ

∂ξ
(1)
1

∣∣∣∣
ξ
′(1)=ξ(1)=0

=
−ja
ρI

∂Ĝ

∂ρI

∣∣∣∣
ξ
′(1)=ξ(1)=0

=− ∂Ĝ
∂ρI

∣∣∣∣
ξ
′(1)=ξ(1)=0

;
∂Ĝ

∂ξ
(1)
2

∣∣∣∣
ξ
′(1)=ξ(1)=0

= 0.

(A.3)
Using equations (A.1) and (A.3), we deduce

Ĝ12 = Ĝ(β, k; ξ
′(1); ξ(2))' Ĝ(β, k; ξ

′(1); ξ(1)) + s · ∇Ĝ(β, k; ξ
′(1); ξ(1)) (A.4)

' i

8β2

∞∑
j=−∞

[
H

(1)
0 (β|j|a) + 2i

π
K0(β|j|a) + βs1

(
H

(1)
1 (β|j|a) + 2i

π
K1(β|j|a)

)]
eikja.

Similarly,

Ĝ21 = Ĝ(β, k; ξ
′(2); ξ(1))' Ĝ(β, k; ξ

′(1); ξ(1)) + s · ∇
′
Ĝ(β, k; ξ

′(1); ξ(1)) (A.5)

' i

8β2

∞∑
j=−∞

[
H

(1)
0 (β|j|a) + 2i

π
K0(β|j|a)− βs1

(
H

(1)
1 (β|j|a) + 2i

π
K1(β|j|a)

)]
eikja.

We note that the expressions for Ĝ12 and Ĝ21 differ only by a change in sign for the sum of the
first order Bessel functions, and that the terms are independent of s2. This is unsurprising since
we are expanding around ξ(1) on the x-axis, but the approximation is only valid for sufficiently
small |s|. One may also consider the dipole approximation associated with expanding around the
vector ξd halfway between the two gratings, which yields the same expressions as for the lower
grating expansions (A.4), (A.5).

In Fig. A.1, we illustrate the efficacy of this approach for a typical example with kx = 1.1 for
two choices of the shift vector s= (0.05, 0.025), s= (0.01, 0.005). The exact values for the real
parts of the G12 entry of the kernel matrix are plotted using a dashed (blue) curve, and those
evaluated by the dipole-approximating function are plotted in solid (black), with s= (0.05, 0.025)

in Fig. A.1(a), and s= (0.01, 0.005) in Fig. A.1(b). The improvement in the accuracy of the
approximation for a smaller value of |s| is clearly evident in part (b).
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Figure A.1: Comparison of approximating function (solid black curve) for real parts of the G12

entries of the kernel matrix and their exact values (dashed blue curves) for kx = 1.1 and β in the
range 2≤ β ≤ 9 for two shift vectors s: (a) s= (0.05, 0.025), (b) s= (0.01, 0.005).

B. Evaluation of the coefficients for dipole approximation
Recalling equations (2.31), (2.32) we give the explicit expressions required to evaluate the
coefficients Sn, Dn for a truncated semi-infinite grating (with truncation parameter L) using
the wave scattering method. To determine s · ∇ξg(β; ξ; ξ

(1)), s · ∇ξ(1)g(β; ξ; ξ(1)) we require the
following functions and derivatives:

ρξ =

[(
ξ1 − ξ

(1)
1

)2
+
(
ξ2 − ξ

(1)
2

)2] 1
2

,
∂g

∂ρξ
=− i

8β

[
H

(1)
1 (βρξ) +

2i

π
K1(βρξ)

]
,

∂ρξ
∂ξk

=
ξk − ξ

(1)
k

ρξ
;

∂ρξ

∂ξ
(1)
k

= −
(ξk − ξ

(1)
k )

ρξ
. (B.1)

For the additional term s · ∇ξ

(
s · ∇ξ(1)g(β; ξ; ξ(1))

)
in (2.32), we also require the function g(1)ξ

and its derivative:

g
(1)
ξ =H

(1)
1 (βρξ) +

2i

π
K1(βρξ);

∂g
(1)
ξ

∂ρξ
= βH

(1)
0 (βρξ)−

H
(1)
1 (βρξ)

ρξ
− 2i

π

[
βK0(βρξ) +

K1(βρξ)

ρξ

]
.

(B.2)
Using the above formulae, equation (2.31) becomes

−eiβja cosψ =
i

8β2

L−1∑
n=0

{
Sn

[
H

(1)
0 (β|j − n|a) + 2i

π
K0 (β|j − n|a)

]
(B.3)

+ Dn
βs1(j − n)a
|j − n|a

[
H

(1)
1 (β|j − n|a) + 2i

π
K1 (β|j − n|a)

]}
, j = 0, 1, 2, . . .
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Similarly, equation (2.32) becomes

− iβeiβja cosψ [s1 cosψ + s2 sinψ] =
i

8β2

(L−1∑
n=0

−Sn
{
βs1(j − n)a
|j − n|a

[
H

(1)
1 (β|j − n|a)

+
2i

π
K1 (β|j − n|a)

]}
+

L−1∑
n=0

Dn

{
s21

(
β2
[
H

(1)
0 (β|j − n|a)− 2i

π
K0 (β|j − n|a)

]

− β

|j − n|a

[
H

(1)
1 (β|j − n|a) + 2i

π
K1 (β|j − n|a)

])
+

βs22
|j − n|a

[
H

(1)
1 (β|j − n|a)

+
2i

π
K1 (β|j − n|a)

]})
, j = 0, 1, 2, . . . (B.4)

We can express this system of equations in matrix form:(
F(1)

F(2)

)
=

i

8β2

(
M(1) M(2)

−M(2) M(3)

)(
S
D

)
, (B.5)

where M(1),±M(2),M(3) are L× L block matrices and F(1), F(2),S,D are L× 1 column vectors
with entries:

M
(1)
jn = H

(1)
0 (β|j − n|a) + 2i

π
K0 (β|j − n|a) ,

M
(2)
jn =

βs1(j − n)a
|j − n|a

[
H

(1)
1 (β|j − n|a) + 2i

π
K1 (β|j − n|a)

]
,

M
(3)
jn = s21

(
β2
[
H

(1)
0 (β|j − n|a)− 2i

π
K0 (β|j − n|a)

]
− β

|j − n|a

[
H

(1)
1 (β|j − n|a)

+
2i

π
K1 (β|j − n|a)

])
+

βs22
|j − n|a

[
H

(1)
1 (β|j − n|a) + 2i

π
K1 (β|j − n|a)

]
;

F
(1)
j = −eiβja cosψ, F

(2)
j =−iβeiβja cosψ [s1 cosψ + s2 sinψ] . (B.6)

To solve this system for a given incident field, the Bessel function derivatives require
evaluation, in particular for the M(3) terms which introduce logarithmic singularities for the cases
j = n (the main diagonal entries in the block matrices). The first derivative expressions in M(2)

have leading order terms:

iβρξ[−iπ + 4 ln (βρξ)− 4 ln 2− 2 + 4γ]

2π
+O

(
(βρξ)

3
)
, ρξ = |j − n|a,

where γ represents the Euler constant, and which vanish for j = n. The second order derivatives
may be expressed in the form:

iβ2

π

[
2|s|2

(
ln (βρξ) + γ − ln 2 +

π

4i

)
+ (s21 − s22)

]
+O

(
(βρξ)

2
)
, (B.7)

which possesses a logarithmic term that grows slowly as j→ n. For sufficiently small |s|2, we
approximate these terms using

− 1

8π

[
2|s|2

(
ln

(
β|s|
2

)
− 4β|s|+ γ − ln 2 +

π

4i

)
+ (s21 − s22)

]
(B.8)

for typical frequencies and shift vectors s that we consider here. The logarithmic term is replaced
by the asymptotic term

ln

(
β|s|
2

)
− 4β|s|.

Note the change in the coefficient for (B.8) compared with (B.7), arising from the multiplication
by the Green’s function coefficient i/(8β2).
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C. Derivation of algebraic system for herringbone
Recalling from equation (3.1) that the total flexural displacement u(x, y) is given by

u(x, y) = uinc(x, y) +

∞∑
n=0

A
(I)
n g(β;x, y;na1, b/2) +

∞∑
m=0

A
(II)
m g(β;x, y; s1 +ma1, s2 + b/2)

+

∞∑
c=0

A
(III)
c g(β;x, y; ca2,−b/2) +

∞∑
d=0

A
(IV)
d g(β;x, y; t1 + da2, t2 − b/2), (C.1)

the system of linear algebraic equations for the full pinned herringbone system is

− eiβ[ja1 cosψ+(b/2) sinψ] =

∞∑
n=0

A
(I)
n g(β; ja1, b/2;na1, b/2)

+

∞∑
m=0

A
(II)
m g(β; ja1, b/2; s1 +ma1, s2 + b/2) +

∞∑
c=0

A
(III)
c g(β; ja1, b/2; ca2,−b/2)

+

∞∑
d=0

A
(IV)
d g(β; ja1, b/2; t1 + da2, t2 − b/2)

j = 0, 1, 2, . . . (C.2)

− eiβ[(s1+la1) cosψ+(s2+b/2) sinψ] =

∞∑
n=0

A
(I)
n g(β; s1 + la1, s2 + b/2;na1, b/2)+

∞∑
m=0

A
(II)
m g(β; s1 + la1, s2 + b/2; s1 +ma1, s2 + b/2) +

∞∑
c=0

A
(III)
c g(β; s1 + la1, s2 + b/2; ca2,−b/2)

+

∞∑
d=0

A
(IV)
d g(β; s1 + la1, s2 + b/2; t1 + da2, t2 − b/2)

l= 0, 1, 2, . . . (C.3)

− eiβ[pa2 cosψ−(b/2) sinψ] =
∞∑
n=0

A
(I)
n g(β; pa2,−b/2;na1, b/2)

+

∞∑
m=0

A
(II)
m g(β; pa2,−b/2; s1 +ma1, s2 + b/2) +

∞∑
c=0

A
(III)
c g(β; pa2,−b/2; ca2,−b/2)

+

∞∑
d=0

A
(IV)
d g(β; pa2,−b/2; t1 + da2, t2 − b/2)

p= 0, 1, 2, . . . (C.4)
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− eiβ[(t1+qa2) cosψ+(t2−b/2) sinψ] =
∞∑
n=0

A
(I)
n g(β; t1 + qa2, t2 − b/2;na1, b/2)+

∞∑
m=0

A
(II)
m g(β; t1 + qa2, t2 − b/2; s1 +ma1, s2 + b/2) +

∞∑
c=0

A
(III)
c g(β; t1 + qa2, t2 − b/2; ca2,−b/2)

+

∞∑
d=0

A
(IV)
d g(β; t1 + qa2, t2 − b/2; t1 + da2, t2 − b/2)

q= 0, 1, 2, . . . (C.5)

The discrete Wiener-Hopf approach implemented in Section 2(b) is repeated here. We
introduce similar notation for N,M,C,D ∈Z:

u(Na1, b/2) =

{ 0, N ≥ 0

B
(I)
N , N < 0

(C.6)

u(s1 +Ma1, s2 + b/2) =

{ 0, M ≥ 0

B
(II)
M , M < 0

(C.7)

u(Ca2,−b/2) =

{ 0, C ≥ 0

B
(III)
C , C < 0

(C.8)

u(t1 +Da2, t2 − b/2) =

{ 0, D≥ 0

B
(IV)
D , D < 0

(C.9)

uinc(Na1, b/2) = F
(I)
N , uinc(s1 +Ma1, s2 + b/2) = F

(II)
M ; (C.10)

uinc(Ca2,−b/2) = F
(I)
C , uinc(t1 +Da2, t2 − b/2) = F

(II)
D . (C.11)

Here B(I)
N to B(IV)

D represent the unknown amplitudes of the total flexural displacement at the
points (Na1, b/2), (s1 +Ma1, s2 + b/2), (Ca2,−b/2) and (t1 +Da2, t2 − b/2) for, respectively,
N,M,C,D < 0 i.e. in the “reflection” region to the left of each grating pair. The field incident at
the pins is denoted by F (I)

N , F
(II)
M , F

(III)
C , F

(IV)
D .

Similar to the preceding case of Section 2(b), we consider the displacement (C.1) at four field
points r= (Na1, b/2), r= (s1 +Ma1, s2 + b/2), r= (Ca2,−b/2) and r= (t1 +Da2, t2 − b/2). As
the definitions (C.6)-(C.11) suggest, the scattering coefficients are extended for m,n, c, d < 0,
where they are evaluated to be zero since there are no pins present in this region. Assuming
the symmetric herringbone case (a1 = a2), after applying the discrete Fourier Transform to
equations (C.1)-(C.11) using Fourier variable k and indices of summation N , M , C and D, we
obtain:
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∞∑
N=−∞

B
(I)
N e

ikNa =

∞∑
N=−∞

F
(I)
N e

ikNa +

∞∑
n=−∞

A
(I)
n e

ikna
∞∑

j=−∞
g(β; ja, b/2; 0, b/2)eikja

+

∞∑
m=−∞

A
(II)
m eikma

∞∑
j=−∞

g(β; ja, b/2; s1, s2 + b/2)eikja

+

∞∑
c=−∞

A
(III)
c eikca

∞∑
j=−∞

g(β; ja, b/2; 0,−b/2)eikja

+

∞∑
d=−∞

A
(IV)
d eikda

∞∑
j=−∞

g(β; ja, b/2; t1, t2 − b/2)eikja, (C.12)

∞∑
M=−∞

B
(II)
M eikMa =

∞∑
M=−∞

F
(II)
M eikMa +

∞∑
n=−∞

A
(I)
n e

ikna
∞∑

j=−∞
g(β; s1 + ja, s2 + b/2; 0, b/2)eikja

+

∞∑
m=−∞

A
(II)
m eikma

∞∑
j=−∞

g(β; s1 + ja, s2 + b/2; s1, s2 + b/2)eikja

+

∞∑
c=−∞

A
(III)
c eikca

∞∑
j=−∞

g(β; s1 + ja, s2 + b/2; 0,−b/2)eikja

+

∞∑
d=−∞

A
(IV)
d eikda

∞∑
j=−∞

g(β; s1 + ja, s2 + b/2; t1, t2 − b/2)eikja, (C.13)

∞∑
C=−∞

B
(III)
C eikCa =

∞∑
C=−∞

F
(III)
C eikCa +

∞∑
n=−∞

A
(I)
n e

ikna
∞∑

j=−∞
g(β; ja,−b/2; 0, b/2)eikja

+

∞∑
m=−∞

A
(II)
m eikma

∞∑
j=−∞

g(β; ja,−b/2; s1, s2 + b/2)eikja

+

∞∑
c=−∞

A
(III)
c eikca

∞∑
j=−∞

g(β; ja,−b/2; 0,−b/2)eikja

+

∞∑
d=−∞

A
(IV)
d eikda

∞∑
j=−∞

g(β; ja,−b/2; t1, t2 − b/2)eikja, (C.14)

∞∑
D=−∞

B
(IV)
D eikDa =

∞∑
D=−∞

F
(IV)
D eikDa +

∞∑
n=−∞

A
(I)
n e

ikna
∞∑

j=−∞
g(β; t1 + ja, t2 − b/2; 0, b/2)eikja

+

∞∑
m=−∞

A
(II)
m eikma

∞∑
j=−∞

g(β; t1 + ja, t2 − b/2; s1, s2 + b/2)eikja

+

∞∑
c=−∞

A
(III)
c eikca

∞∑
j=−∞

g(β; t1 + ja, t2 − b/2; 0,−b/2)eikja

+

∞∑
d=−∞

A
(IV )
d eikda

∞∑
j=−∞

g(β; t1 + ja, t2 − b/2; t1, t2 − b/2)eikja. (C.15)

The resulting system is an extended version of that for the shifted pair presented in Section 2(b).
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D. Waveguide modes
In Table 1 we show computed values for the optimal grating separation b∗ for a waveguide
consisting of an unshifted pair of infinite gratings. The parameter η∗ represents an idealised
grating separation for first order waveguide modes, determined by the approximate waveguide
model for the Helmholtz operator (neglecting the evanescent modes for the biharmonic case) and
by (3.17). For gratings with unit periodicity (a= 1) and an incident plane wave characterised by
ψ, the optimised spectral parameter value β∗ is obtained for maximum single grating reflectance.
Using equation (3.18), a corresponding k∗x value is obtained. The various pairs of (β∗, k∗x) values
are used to determine resonant trapped modes, with excellent agreement with the approximate
waveguide model, as shown by columns 4 and 5 of Table 1.

Table 1: Resonant frequencies β∗ and wavenumbers k∗x, and the corresponding optimised grating
separation b∗, and idealised grating separation η∗ for first order waveguide modes, for pairs of
unshifted infinite gratings for various angles of incidence ψ.

ψ β∗ k∗x η∗ b∗

0 4.456001 0 0.705025 0.705251
π/60 4.438147 0.232275 0.708833 0.709101
π/30 4.387466 0.458615 0.719982 0.720367
π/20 4.311191 0.674419 0.73779 0.738331
π/15 4.217801 0.87693 0.761482 0.762182
π/12 4.11476 1.06498 0.790427 0.79126
π/10 4.007707 1.23845 0.824228 0.825150
7π/60 3.900536 1.39783 0.862728 0.863689
2π/15 3.79580 1.54389 0.905975 0.906927
3π/20 3.6950925 1.67754 0.954209 0.955108
π/6 3.599363 1.79968 1.00784 1.00866

11π/60 3.509134 1.91121 1.06748 1.06818
π/5 3.424645 2.01296 1.133905 1.134490
π/4 3.205694 2.26677 1.38593 1.386185
π/3 2.94716 2.55232 2.131946 2.131958

E. Non-resonant example for dipole approximation of herringbone
Here we present a comparison of the scattering coefficients and flexural displacement fields for a
non-resonant example of a herringbone system. For an incident plane wave characterised by ψ=

0.805 and β = 3.92, a symmetric herringbone system is defined by t= s− = (0.005,−0.015) with
shift vector magnitude |s|= 0.016 and spacing b= 1.3 (compare with Fig.11 in Section 3(d)(ii)).
The real parts of the total displacement fields are plotted for a mid-section (30≤ n≤ 60) for both
the full herringbone system (four semi-infinite gratings) and the dipole approximation with two
semi-infinite line arrays in, respectively, Figs. E.1(a), (b). The neighbourhoods of the front pins,
illustrating the end effects, are shown in Figs. E.1(c), (d).

The changes in both phase and the scattering pattern are significantly reduced for this non-
resonant example, when compared with the resonant case illustrated in Fig.11.
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(a) (b)

x
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x x

y

Figure E.1: Total displacement fields for the symmetric herringbone system with |s|= 0.016, b=

1.3, t= s− = (0.005,−0.015) for ψ= 0.805 and β = 3.92, L= 120 for (a,c) herringbone, (b,d)
dipole approximation.
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