Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information for

Chemical synthesis of membrane proteins: a model study on the influenza virus B proton channel

Andreas C. Baumruck, Daniel Tietze, Lena Steinacker and Alesia A. Tietze*

*To whom correspondence should be addressed, Email: a.tietze@tietze-lab.de

Table of Contents

Tables	3-6
Figures	7-18

Table S1. Cleavable solubility tags used to increase the solubility and NCL described in the literature

Peptide length	Peptide name	For purificat ion	For ligation	Strategy	Linker	Solubility tag	Ref.
12, 14	dodecaalanine (Ala12) and chemotactic protein 10	x		Boc-SPPS	glycoamid ester ^a	(GlyArg ₄) ₄	1
12-48	model peptides	x		Fmoc-SPPS	4-Hmb ^a	Gly(ArgGlyGly)₃ Gly(LysGly) ₆	2
99	HIV-1 protease		х	Boc-SPPS	3- mercaptopropi onic acid ^ь	(Arg) ₆	3
124	ribonuclease A		Х	Boc-SPPS	3- mercptopropio nic acid ^ь	(Arg) ₆	4
53	insulin glargine	х		Fmoc-SPPS	HMBAª	(Lys)₅	5
40	cancer protein NY-ESO-1		х	Fmoc-SPPS, Boc-SPPS	HMBAª	(Arg) ₆	6
121	diacylglycerol kinase (DAGK1-121)		х	Boc-SPPS	thioglycolic acid ^ь	PPO/(Arg) ₆	7
79	dengue 2 capsid protein C (DEN2C)		X	Boc-SPPS	3- mercptopropio nic acid ^ь	(Arg) ₆	8
32	conotoxins	x		Fmoc-SPPS	PAM ^c	(Lys)4	9
42, 46	Aß42 and Aß46	x		Fmoc-SPPS	no linker	(Lys) ₂ , (Lys) ₃ ,(Lys) ₆	10
11	Q11		xe	Fmoc-SPPS	Mmsb-OH ^d	(Lys) ₆	11

HMBA – 4-hydroxymethylbenzoic acid PPO – poly(ethyleneglycol)–polyamide PAM – phenylacetamido a – pH-sensitive

b – self-cleavable during NCL

 $\operatorname{c-cleavable}$ by HF

d – reductive acidolysis using NH4I e – fragment condensation of two fragments

	Peptide	Calculated M _w [g/mol]	Experimental Mw ^[b] [g/mol]	t _R ^[c] [min]			
1	ALHFL-Hmp ^[a]	703.36	703.40	16.97/17.66 ^[d]			
2	ALHFL-Hmp-ADO ^[a]	848.43	848.51	17.15/17.65 ^[d]			
3	ALHFL-Hmp-ADO ₂ ^[a]	993.50	993.61	17.55/17.90 ^[d]			
4	ALHFL-Hmp-ADO- Lys ₅ ^[a]	1489.91	1489.02	6.62/6.97 ^[d]			
5	[Cys ²²]BM2(22-35)	1637.90	1637.91	7.98 ^[e]			
7	BM2(1-21)-NH ₂	2421.30	2422.35	12.55 ^[f]			
8	[Cys ¹¹ (Acm)]BM2(1- 21)-Hmp	2596.33	2597.32/2597.38	12.34/12.46 ^[9]			
9	[Cys ¹¹ (Acm)]BM2(1- 21)-Hmp-ADO ₂	2886.48	2887.56/2887.56	9.95/10.36 ^[h]			
10	[Cys ¹¹ (Acm)]BM2(1- 21)-Hmp-ADO-Lys₅	3382.89	3384.27	10.36 ^[g]			
11	[Cys ²²]BM2(22-51)	3530.97	3531.34	8.19 ^[i]			

Table S2. Analytical data for peptides used in this study

[a] Corresponds to abbreviation BM2(17-21);

[b] mass peaks detected as [M+H]⁺;

[c] retention times of peptides 1-5 and 8, 9 are given for both diastereomers, if applicable;

[d] HPLC conditions: 15-45 % eluent B in 30 min;

[e] HPLC conditions: 20-80 % eluent B in 20 min;

[f] HPLC conditions: 50 - 99 % eluent B in 15 min, detection was at 220 nm at a flow rate of 1 mL/min, C18 column;

[g] 10 – 20% eluent B in 5 min followed by 20 – 70% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column;

[h] 40 - 80 % eluent B in 20 min, at a flow rate of 1 mL/min, C18 column;

[i] 20-40 % eluent B in 30 min at a flow of 1 mL/min, C18 column.

Table S3. Ligation results for model peptides

	Ligated fragments	[²² Cys(Acm)]BM2(17-35) (6), [%] ^[a]	Hydrolyzed ester (ALHFL-C∝OOH) [%] ^[a]
1+5	ALHFL-Hmp + [Cys ²²]BM2(22-35)	87	13
2+5	ALHFL-Hmp-ADO + [Cys ²²]BM2(22-35)	86	14
3+5	ALHFL-Hmp-ADO ₂ + [Cys ²²]BM2(22-35)	85.4	14.6
4+5	ALHFL-Hmp-ADO-Lys₅ + [Cys ²²]BM2(22-35)	84	16

[a] determined through integration of RP-HPLC chromatogram

	Ligated fragments	[Cys ¹¹ (Acm)]BM2(1- 51))(12a)/ hydrolyzed ester	[Cys ¹¹ (Acm)]BM2(1- 51) (12a)/ hydrolyzed ester	[Cys ¹¹ (Acm)]BM2(1 -51) 12a)/ hydrolyzed ester
		([Cys ¹¹ (Acm)]BM2(1- 21)-C ^α OOH)	([Cys ¹¹ (Acm)]BM2(1- 21)-C ^α OOH)	([Cys¹¹(Acm)]BM2(1-21)-C [∝] OOH)
		in ligation buffer A ^[a]	in ligation buffer B ^[a]	in ligation buffer C [%] ^[a]
8a+11	[Cys ¹¹ (Acm)]BM2(1-21)- Hmp diastereomer A+ [Cys ²²]BM2(22-51)	n.d.	n.d.	96/4
8b+11	[Cys ¹¹ (Acm)]BM2(1-21)- Hmp diastereomer B+ [Cys ²²]BM2(22-51)	n.d.	n.d.	97/3
9a+11	[Cys ¹¹ (Acm)]BM2(1-21)- Hmp-ADO ₂ diastereomer A + [Cys ²²]BM2(22-51)	n.d.	65/45	96/4
9b+11	[Cys ¹¹ (Acm)]BM2(1-21)- Hmp-ADO ₂ diastereomer B + [Cys ²²]BM2(22-51)	n.d.	n.d.	96/4
10+11	[Cys ¹¹ (Acm)]BM2(1-21)- Hmp-ADO-Lys ₅ + [Cys ²²]BM2(22-51)	80/20	n.d.	88/12

Table S4. Ligation results for BM2 peptides in ligation buffers A, B and C

[a] determined through integration of RP HPLC chromatogram

Table S5. Characterization of BM2(1-51) products 12a, 12b and 12c

	Peptide	Molecular formula	Calculated M _w [g/mol]	Experimental M _{w^[a] [g/mol]}	t _{R^[b] [min]}
12a	[Cys ¹¹ (Acm), Cys ²²]BM2(1-51)	C273H448N77O67S4	1202,85	1202,45	16.33
12b	[Cys ¹¹ (Acm)]BM2(1-51)	C273H447N77O67S3	1196,24	1196,08	14.96
12c	BM2(1-51)	C270H442N76O66S3	1182,02	1181,86	19.47

[a] mass peaks detected as [M+5H]⁵⁺;

[b] HPLC conditions:45 - 70 % eluent B in 30 min, detection was at 220 nm at a flow rate of 1 mL/min, C4 column

Table S6. Ligation buffers used for study

Ligation buffer A	8 M Urea, 0.2 M disodium phosphate, 150 mM MPAA, 100 mM TCEP, pH 7.0
Ligation buffer B	Ligation buffer A : TFE (2:1), pH 7.5
Ligation Buffer C	3 M Urea, 75 mM disodium phosphate,120 mM MPAA, 75 mM TCEP : HFIP (2:1), pH 7.5

MPAA = 4-mercaptophenylacetic acid, TCEP = tris(2-carboxyethyl)phosphine, TFE = 2,2,2-trifluoroethanol, HFIP = hexafluoro-2-propanol

Table S7. Deconvolution of CD spectra: (a) in TFE at wavelength 190-260 nm and **(b)** in liposome membrane POPC at wavelength 190-260 nm. Spectra deconvolution was performed using CDNN (Circular Dichroism analysis using Neural Networks) software.

a)

			TFE		
Sec. element	BM2(1-21) (7), %	BM2(1-51) (12a), %	BM2(1-51) (12c), %	AM2(22-46), %	BM2(1-33), %
Helix	76.6	66.3	63.30	92.3	55
Antiparallel	0.2	0.6	0.50	0	1.4
Parallel	2.7	3.5	4.80	0.9	5.1
Beta-Turn	10.2	12.0	11.60	7.7	13.4
Rndm. Coil	10.1	13.0	21.10	2.0	20
Total Sum	99.8	95.5	101.30	102.9	94.9

b)

	Liposome membrane (POPC)				
Sec element	BM2(1-21)	BM2(1-51)	BM2(1-33),		
Sec. element	(7), 70	(120), 70	70		
Helix	53.20	59.20	61.20		
Antiparallel	0.30	0.30	0.40		
Parallel	9.40	6.80	5.70		
Beta-Turn	11.10	11.00	11.40		
Rndm. Coil	50.10	35.40	27.80		
Total Sum	124.20	112.70	106.50		

¹H NMR (300 MHz, DMSO-D6): δ = 4.32 - 4.29 (t, 2H), 3.77-3.76 (d, 1H), 2.51 (CDCl3).

¹³C NMR (75 MHz, DMSO-D6): δ = 172.40, 70.05, 47.08, 39.95-38.84 (DMSO).

Figure S1. Characterization of 3-chloro-2-hydroxypropanoic acid (Hmp). (a) ¹H-NMR spectrum of Hmp in DMSO-d6, (b) ¹³C-NMR spectrum of Hmp in DMSO-d6

¹H NMR (300 MHz, CDCl₃): δ = 7.37 – 7.34 (m, 2H, H_{Ar}), 7.23 – 7.13 (m, 4H, H_{Ar}), 3.83 – 3.79 (m, 1H), 2.68 – 2.54 (m, 2H).

C)

¹³C NMR (75 MHz, CDCl₃): δ = 176.53, 144.28, 129.52, 128.12, 127.16, 68.94, 67.08, 36.08, 77.45-76.60 (CDCl₃).

Figure S2. Characterization of 2-hydroxy-3-(triphenylmethyl)thio-propanoic acid

(Hmp(Trt)-OH). (a) ESI-MS spectrum in negative mode, (b) 1H-NMR spectrum of Hmp(Trt)-OH in CDCl₃, (c) 13C-NMR spectrum of Hmp(Trt)-OH in CDCl₃

a)

Figure S4. RP-HPLC and MALDI-TOF MS characterization of crude peptides and racemization behavior of Leu (directly attached to Hmp). (a) ALHFL-Hmp (1), (b) ALHFL-Hmp-ADO (2), (c) ALHFL-Hmp-ADO₂ (3) and purified (d) ALHFL-Hmp-ADO-Lys₅ (4). Eluent A was 0.1% TFA in water, eluent B was 0.1% TFA in acetonitrile and a gradient for (a-d) 15–45 % eluent B in 30 min, detection was at 220 nm at a flow rate of 1 mL/min, C18 column; MALDI-TOF MS spectra for (a-d) were recorded at a reflector mode (500 shots/min) and as matrix α -cyano-4-hydroxycinnamic acid (HCCA) was used. (e) Stacked HPLC chromatograms of crude L-Phe-D-Leu-Hmp (upper chromatogram) and L-Phe-L-Leu-Hmp (middle) and and the coelution of two dipeptides. HPLC conditions: 0–80 % eluent B in 15 min, detection was at 220 nm at a flow rate of 1 mL/min, C18 column. (f) ESI MS spectra of L-Phe-L-Leu-Hmp and L-Phe-D-Leu-Hmp with isotopic patterns as insert.

Figure S5. RP-HPLC and MSLDI-TOF MS characterization of purified [²²Cys]BM2(22-35) Cys-fragment (5). Eluent A was 0.1% TFA in water, eluent B was 0.1 % TFA in acetonitrile and a gradient: 20–80 % eluent B in 20 min, detection was at 220 nm at a flow rate of 1 mL/min, C18 column. MALDI-TOF MS spectra for (A-D) were recorded at a reflector mode (500 shots/min) and as matrix α -cyano-4-hydroxycinnamic acid (HCCA) was used.

Figure S6. RP-HPLC and MALDI-TOF MS characterization of purified (a)

[Cys¹¹(Acm)]BM2(1-21) (**7**), (**b**) [Cys¹¹(Acm)]BM2(1-21)-Hmp diastrereomer A/diastereomer B (**8a/8b**), (**c**) [Cys¹¹(Acm)]BM2(1-21)-Hmp-ADO₂ diastrereomer A/ diastereomer B (**9a/9b**), (**d**) [Cys¹¹(Acm)]BM2(1-21)-Hmp-ADO₂-Lys₅ (**10**). Eluent A was 0.1% TFA in water, eluent B was 0.1 % TFA in acetonitrile and a gradient: (**a**) 50 - 99 % eluent B in 15 min, detection was at 220 nm at a flow rate of 1 mL/min, C18 column; (**b**) 10 - 20% eluent B in 5 min followed by 20 - 70% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column; (**c**) 40 - 80% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column; (**c**) 40 - 80% eluent B in 5 min followed by 20 - 70% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column; (**c**) 40 - 80% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column; (**c**) 40 - 80% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column; (**c**) 40 - 80% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column; (**c**) 40 - 80% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column; (**c**) 40 - 80% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column; (**c**) 40 - 80% eluent B in 20 min, at a flow rate of 2 mL/min, C4 column. MALDI-TOF MS spectra for (**a-d**) were recorded at a reflector mode (500 shots/min) and as matrix α -cyano-4-hydroxycinnamic acid (HCCA) was used.

Figure S7. Desulfurization of peptide [Cys²²]**BM2(22-35) (5).** (a) RP-HPLC elution profile of the reaction mixture at different time points: 0 min (directly after reaction start) – 4 h. Initial peptide eluting at t_R = 9.68 min and reaction product [²²Ala]BM2(22-35) at t_R = 9.18 min. Eluent A was 0.1% TFA in water, eluent B was 0.1 % TFA in acetonitrile at gradient: 15 – 45 % eluent B in 30 min, detection was at 220 nm at a flow rate of 1 mL/min, C18 column. (b) ESI-MS of the reaction mixture after 4 h of reaction time. Following mass peaks belong to the product [Ala²²]BM2(22-35): 402.24 [M+4H]⁴⁺, 535.99 [M+3H]³⁺, 803.48 [M+2H]²⁺. The mass peak at 1073.30 [M+3H]³⁺belongs the **dimerized peptide 5** (BM2(22-35)).

Figure S8. (a) RP-HPLC elution profiles of Acm-group cleavage from [Cys¹¹(Acm)]BM2(1-51) (**12b**) in iodine/acetic acid solution at different time points 0 min (directly after reaction start) – 1 h. Reaction products are highlighted as **12c** and #. According to peak integration the yield of product **12c** after 10 min is ~ 16 %. HPLC conditions: 45 - 70 % eluent B in 30 min, detection was at 220 nm at a flow rate of 1 mL/min, C4 column (**b**) ESI-MS of isolated reaction products t_R =13.38 min: # - BM2(1-51) where sulfur group of cysteine is present as sulfone and corresponding experimental and calculated isotopic patterns. (**c**) ESI-MS of deconvoluted product t_R =19.83 min: BM2(1-51) (**12c**) and corresponding experimental and calculated isotopic patterns.

References

- 1. D. R. Englebretsen and P. F. Alewood, *Tetrahedron Lett.*, 1996, **37**, 8431-8434.
- 2. C. T. Choma, G. T. Robillard and D. R. Englebretsen, *Tetrahedron Lett.*, 1998, **39**, 2417-2420.
- 3. E. C. Johnson, E. Malito, Y. Shen, D. Rich, W.-J. Tang and S. B. Kent, *J. Am. Chem. Soc.*, 2007, **129**, 11480-11490.
- 4. D. J. Boerema, V. A. Tereshko and S. B. Kent, *Pept. Sci.*, 2008, **90**, 278-286.
- 5. M. A. Hossain, A. Belgi, F. Lin, S. Zhang, F. Shabanpoor, L. Chan, C. Belyea, H.-T. Truong, A. R. Blair and S. Andrikopoulos, *Bioconjugate Chem*, 2009, **20**, 1390-1396.
- 6. P. W. Harris and M. A. Brimble, *Pept. Sci.*, 2010, **94**, 542-550.
- 7. S. Lahiri, M. Brehs, D. Olschewski and C. F. Becker, *Angew. Chem. Int. Ed.*, 2011, **50**, 3988-3992.
- 8. C. Zhan, L. Zhao, X. Chen, W.-Y. Lu and W. Lu, *Bioorg. Med. Chem.*, 2013, **21**, 3443-3449.
- 9. S. Peigneur, M. Paolini-Bertrand, H. Gaertner, D. Biass, A. Violette, R. Stocklin, P. Favreau, J. Tytgat and O. Hartley, *The Journal of biological chemistry*, 2014, **289**, 35341-35350.
- 10. S. Chemuru, R. Kodali and R. Wetzel, *Pept. Sci.*, 2014, **102**, 206-221.
- 11. M. Paradis-Bas, J. Tulla-Puche and F. Albericio, *Org. Lett.*, 2015, **17**, 294-297.