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ABSTRACT 

Introduction – Mortality and morbidity following surgery are pressing public health concerns in the 

United States.  Traditional prediction models for postoperative adverse outcomes demonstrate good 

discrimination at the population level, but the ability to forecast an individual patient’s trajectory in real 

time remains poor.  We propose to apply machine-learning techniques to perioperative time-series data 

to develop algorithms for predicting adverse perioperative outcomes. 

Methods and Analysis – This study will include all adult patients who had surgery at our tertiary care 

hospital over a four-year period.  Patient history, laboratory values, minute-by-minute intraoperative 

vital signs, and medications administered will be extracted from the electronic medical record.  

Outcomes will include in-hospital mortality, postoperative acute kidney injury, and postoperative 

respiratory failure.  Forecasting algorithms for each of these outcomes will be constructed using density-

based logistic regression after employing a Nadaraya-Watson kernel density estimator.  Time-series 

variables will be analyzed using first- and second-order feature extraction, shapelet methods, and 

convolutional neural networks.  The algorithms will be validated using bootstrap methods. 

Ethics and Dissemination – The successful development of these forecasting algorithms will allow 

perioperative health care clinicians to predict more accurately an individual patient’s risk for specific 

adverse perioperative outcomes in real time.  Knowledge of a patient’s dynamic risk profile may allow 

clinicians to make targeted changes in the care plan that will alter the patient’s outcome trajectory.  This 

hypothesis will be tested in a future randomized controlled trial. 
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STRENGTHS AND LIMITATIONS OF THIS STUDY 

• Will utilize modeling techniques that take advantage of the rich time-series data that are 

available, rather than data from a single time point 

• Will utilize efficient modeling techniques that can process large amounts of data quickly 

• Will utilize group-based learning to increase model accuracy by separating groups of patients 

who likely have different relationship between underlying features and predicted outcomes 

• Dissemination to other health care facilities may be limited by the availability of high-quality 

preoperative and intraoperative input data in a usable format  
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INTRODUCTION 

 An estimated 40 million people undergo surgery every year in the United States.  Postoperative 

mortality rate at one year for surgical inpatients is between 5 and 10 percent,
1 2

 and an estimated 10 

percent of surgical patients suffer major in-hospital morbidity.
3-8

 Perioperative morbidity and mortality 

are therefore pressing public health concerns.  Many patient characteristics, including comorbid medical 

conditions, associate strongly and independently with perioperative mortality and major morbidity.
1 2 9-11

  

While many of these characteristics are not modifiable, some perioperative risk factors, such as 

intraoperative blood pressures and anesthetic concentrations,
1 2 9 10

 can be modified in real time.  

Although the association between perioperative variables and postoperative outcomes has been well 

established at the population level using approaches such as standard logistic regression, 
1 2 9 10 12

 the 

ability to utilize deviations in physiological parameters in real time to dynamically forecast the trajectory 

of each individual patient remains poor.    

 There is a gap in the field with an opportunity to assess the potential utility of machine learning-

based forecasting algorithms to anticipate adverse perioperative outcomes, guide interventions, and 

improve overall quality of care.  Standard forecasting models, such as logistic regression, linear 

regression, and other statistical modeling procedures, have long been used to identify and prioritize risk 

factors for adverse outcomes.  Although most of these statistical techniques have been shown to have 

moderate predictive values, they are limited in their prognostic ability and practical use.
1 2 6 9 10

   In 

contrast to standard forecasting models, we have demonstrated machine learning and data mining 

approaches for patients on intensive care units that generate markedly superior prediction for outcomes 

such as mortality.
13

 Our methods differ from standard statistical techniques in their ability to effectively 

incorporate time-series data.  Most standard modeling techniques for surgical patients are based on a 

snapshot scheme, which only considers the data values at a given moment.  They are not competent in 
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extracting features from time-series data, especially in real-time fashion, such as temporal trends and 

shapes.  Therefore, the objective of this study is to utilize machine-learning techniques to build 

forecasting algorithms that use patient characteristics and high-fidelity intraoperative time-series data 

to predict adverse perioperative outcomes. 
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METHODS AND ANALYSIS 

Study Design 

 Our central hypothesis is that with sufficient knowledge of patient characteristics coupled with 

repeated, high-fidelity time series data from the perioperative electronic medical record, advanced 

models can be constructed for individual patients that will forecast adverse perioperative outcomes.  To 

test this hypothesis, we will conduct an observational cohort study of adult patients who undergo 

surgery at Barnes-Jewish Hospital in St. Louis, Missouri.  First, we plan to develop forecasting algorithms 

for specific adverse perioperative outcomes using historical data.  Next, we plan to validate these 

algorithms by determining whether they can be used to reliably forecast individual adverse 

perioperative outcomes. 

Patient Population and Sample Size 

 This study will include all adult patients who had surgery in the 48 operating rooms at Barnes-

Jewish Hospital in St. Louis, Missouri between June 1, 2012 and August 31, 2016.  Patients who receive 

anesthesia care in areas outside the main operating rooms, such as the obstetric suite or the outpatient 

surgery suite, will not be included. Barnes-Jewish Hospital is a 1,252-bed academic university-affiliated 

adult tertiary care hospital, performing approximately 19,000 surgeries a year. On average, 125 

surgeries take place in these operating rooms every business day. To be conservative, we estimate that 

information on 50 to 100 surgeries per day will be available for analysis.  We therefore anticipate a 

minimum total sample size of 50,000 to 100,000 surgeries for algorithm development and validation. 

 The Human Research Protection Office at Washington University in St. Louis has granted a 

waiver of informed consent for all subjects enrolled in this study.  This study has been determined to 

involve no more than minimal risk to participants, as no additional data will be collected beyond that 
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already contained in the electronic record. For the same reason, the waiver of consent will not adversely 

affect the participants’ rights and welfare. It is impracticable to conduct this research without a waiver 

of consent because 100% participation from the patients is imperative to obtain scientifically sound 

data. 

Data Acquisition 

 For this project, we will use high-dimensional and complex data from a variety of electronic 

medical record sources to cover the entire perioperative period.  Much of the relevant information will 

be imported from MetaVision®(iMDsoft, Wakefield, MA), an anesthesiology information management 

software system that is the perioperative electronic clinical documentation system currently utilized by 

the Department of Anesthesiology.  MetaVision® captures comprehensive clinical data beginning with 

the preoperative assessment and continuing throughout the duration of the perioperative period.  

Information captured preoperatively includes patients’ past medical and surgical histories, chronic 

medical issues, medications used, and functional capacity. Intraoperatively, minute-by-minute vital signs 

are captured, in addition to fluid balances, ventilator parameters, and anesthetic medications 

administered.  All data fields are alphanumeric and are captured in a uniform and granular manner 

allowing for easy coding and data analysis.  Reports from MetaVision® are commonly used to support 

many patient safety and quality improvement initiatives in addition to numerous research studies.   

 Postoperative outcome data will be obtained from Sunrise Clinical Manager (Allscripts, Chicago, 

IL), the electronic medical record currently used for inpatient care at Barnes-Jewish Hospital. Data will 

also be obtained from several registries, including the Systematic Assessment and Targeted 

Improvement of Services Following Yearlong Surgical Outcomes Surveys (SATISFY-SOS) patient-reported 

outcomes registry (NCT02032030), the National Surgical Quality Improvement Program (NSQIP) 

database, the Society of Thoracic Surgeons (STS) database.  Preoperative and postoperative laboratory 
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values will be obtained from the Center for Biomedical Informatics at Washington University, which 

hosts the data repository where these data are stored once they are processed by the laboratory.  A 

data dictionary has been included as an online appendix detailing all the data elements that will be 

captured for this study.  

 The specific outcomes that will be predicted by the forecasting algorithms will include in-

hospital mortality, postoperative acute kidney injury, and postoperative respiratory failure.  In-hospital 

mortality will be ascertained from Sunrise Clinical Manager.  Postoperative acute renal failure will be 

defined according to the KDIGO criteria
14

: an increase in serum creatinine of 0.3 mg/dL, increase in 

serum creatinine to 1.5 times the baseline value, or initiation of renal replacement therapy within 48 

hours of surgery end time.  Patients receiving renal replacement therapy prior to surgery, patients with 

no baseline creatinine available within 30 days prior to surgery, and patients undergoing kidney 

transplant or dialysis access procedures will be excluded from analysis of this outcome.  Postoperative 

respiratory failure will be defined as mechanical ventilation for greater than 48 hours or unplanned 

postoperative intubation within 48 hours.  These events will be extracted from clinical documentation 

recorded by respiratory therapists in Sunrise Clinical Manager. 

Data Analysis, Part 1 – Forecasting Algorithm Development 

 We will develop hybrid learning techniques to combine the strength of nonparametric 

(generative) models such as histogram and kernel density estimation and parametric (discriminative) 

models such as support vector machines, logistic regressions, and kernel machines to improve 

predictions of adverse perioperative outcomes (in-hospital mortality, postoperative acute renal failure, 

postoperative respiratory failure).  The goal is to deliver superior prediction quality with good 

interpretability and high computational efficiency that supports fast processing of big data.  Based on 

our preliminary work using density-based logistic regression (DLR) to develop an early clinical 
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deterioration warning system for patients in the general wards of Barnes-Jewish Hospital,
15 16

 we 

propose to develop novel hybrid data mining/machine learning algorithms that exploit both non-

parametric and parametric techniques.  Also, the resulting algorithms can be viewed as hybrid 

generative/discriminative learning models.  

 DLR is a hybrid algorithm combining the distribution-free nonlinear separation ability of non-

parametric (generative) models and the efficiency and interpretability of parametric (discriminative) 

models.  It first applies a Nadaraya-Watson kernel density estimator, a non-parametric transformation, 

on the input data to extract features that conform best to the true distribution of data, and then applies 

the parametric logistic regression model on the transformed features.  The resulting model exhibits five 

desirable properties: nonlinear separation ability, high efficiency, good interpretability, ability to handle 

mixed data types including numerical and categorical ones, and support for multi-way classification.  Our 

previous results using Barnes-Jewish Hospital clinical data showed that DLR achieves better classification 

accuracy than state-of-the-art nonlinear classifiers such as support vector machines and KLR but is also 

much more efficient than nonlinear models.
17

  In fact, DLR has the same asymptotic complexity as linear 

classifiers and can scale up to very large datasets in practice.
17

 

 To analyze the collected time-series data, we need to extract features that capture temporal 

patterns, such as a rapid temperature increases or abnormal heart rate fluctuations.  We will first 

extract a large pool of time-series features including: first-order features such as variance, skewness, 

and kurtosis, and second-order features such as energy, entropy, correlation, inertia, and local 

homogeneity.
18 19

  The second-order features are known to be robust under noises.
20 21

  Self-similarity is 

widely observed in human physiological signs.  Detrended fluctuation analysis 
22

 measures the degree of 

self-similarity in time series and has been applied to analyze heartbeat and oxygen levels.
23

  

Approximate entropy measures the degree of unpredictability in a time series.
24

  Spectral analysis has 
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also been used to analyze clinical time-series.
22

  We will also consider cross-sign features including 

correlation,
25

 coherence,
25

 lagged regression, nonlinear regression,
19

 and the synchronization index.
26

  

We will also extract features based on the bag-of-patterns approach
27-29

 and autocorrelation.
30-32

  In 

addition, we will also generate features based on shapelets.
33

 A shapelet is a subseries that is used to 

compare against each time-series.  For a shapelet with length l and a time series T, the shapelet gives a 

feature value which is the minimum Euclidean distance between the shapelet and any subseries of T 

with length l. Efficient methods have been developed to find good shapelets, based on length estimation 

and optimized search.
34-36

 

 We will also develop a novel deep learning method to extract more robust features from time-

series. A leading method for feature selection from time series has been the shapelet method. However, 

we have shown that deep learning methods can significantly improve over shapelet. Deep learning 

methods, especially those using convolutional neural networks (CNNs),
37

 have achieved great success in 

learning useful representations (features) from images.
38 39

  However, its uses in time-series 

classification are very limited.  We plan to apply CNNs to time-series data to generate good 

representations.  We note that the convolutional layers in CNNs can be viewed as a collection of local 

filters over the input space; the filters' weights are learnt through back propagation.  The filters in CNNs 

regulate the time series in different frequency bands, and the dot product operations in the CNNs 

measure distances between two subseries.  Thus, CNNs can be viewed as a more general framework 

than shapelet learning which can adaptively find the suitable down-sampling rates and scales of the 

shapelets.   

 Our preliminary work has shown that it is beneficial to use a large feature set: the modeling 

accuracy increases as more features are used and the top features in the final model include features 

from different categories.
23

  With the above features, we will address overfitting.  An overfit model will 
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generally have poor predictive performance and interpretability.  We will investigate three schemes to 

avoid over-fitting including: 1) using feature selection methods, such as forward feature selection based 

on F-score or area-under-curve score,
40

 to find the most discriminative features; 2) adding regularization 

terms (such as L1,
41

 L2,
42

 Akaike information criterion, Bayesian information criterion,
43

 minimum 

description length,
44

 or a probabilistic prior) to the optimization objective; and 3) using meta-techniques 

such as bootstrap aggregation 
45

 and exploratory undersampling 
46

 to further address overfitting and 

class imbalance. 

 We plan to develop novel classification algorithms that best fit our data.  In our preliminary 

work, we proposed DLR, a novel nonlinear hybrid classification algorithm that integrates kernel density 

estimation with logistic regression.  DLR can achieve nonlinear separability by utilizing a nonlinear 

feature transformation, but is much more efficient than other nonlinear models since it fits a linear 

model.  It can naturally handle mixed data types.  It also offers good interpretability.  In this task, we 

plan to develop more powerful algorithms on top of DLR. 

 A key area of improvement is feature transformation.  In DLR, we use the Nadaraya-Watson 

kernel density estimator for each data point in each dimension, which has time complexity of O(mN
2
) 

where m is the number of dimensions and N is the number of data points.  Therefore, it is still slow for 

big datasets with a large N.  We propose to use bin-based kernel density estimation, another non-

parametric technique, to process the input features in each dimension.  The idea is to divide each 

dimension into equal-sized bins and estimate the density for each bin instead of each data point.  This 

will reduce the time into O(mB
2
) where B<<N is the number of bins.  Note that instead of using a simple 

histogram count for each bin, we will use a Gaussian kernel function to smooth the density estimation 

across bins.  The time complexity can be further reduced to O(mB) using techniques such as Gauss 

transformation.
47

  Such dramatic reduction of computing time will enable us to process large datasets 
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and perform quick model-building.  We will also combine the kernel density estimator-based features 

with other parametric models such as Cox regression. 

 We will also develop efficient training algorithms.  We will leverage a hierarchical optimization 

algorithm for training DLR,
17

 which automatically learns free parameters in the model under a maximum 

likelihood framework.  This optimization formulation not only learns the coefficients in the model, but 

also provides a way to automatically select the kernel bandwidth in the Nadaraya-Watson estimator or 

the bin size in the bin-based kernel density estimation, which is absent in previous work.  We will also 

employ techniques including stochastic gradient descent 
48

 and its parallelized implementation 
49

 to 

further enhance the scalability of the training algorithm. 

 We will study another novel approach called group-based modeling.  The idea is to first use a 

few key features to divide the patients into some major categories, and then train a separate classifier 

for each category.  The intuition is that from clinical knowledge, we know that some different groups of 

patients have drastically different behaviors and should correspond to different statistical models.  

Mixing such vastly different groups together to train a single model may not give the best result.  

Therefore, it is instrumental to identify important sub-populations of patients, before we use 

sophisticated hybrid algorithms to accurately model the patients in each group.  For a simple example, 

we can group the patients into a few age ranges, e.g., <45, 45-55, 56-65, etc.  Although age can be used 

as a feature in a single classifier for all patients, such explicit division leads to multiple, more specific 

classifiers.  It can be viewed as a hybrid algorithm combining a decision tree with other classifiers.  We 

may also use metrics defined on multiple attributes to group the patients.  Features that will be used as 

classifiers will include age, sex, and surgery type (cardiac versus non-cardiac).  To systematically 

integrate such clinical knowledge into modeling, we plan to study hybrid models that are mixture of two 

or more classifiers.  For example, we can construct a global decision tree whose nodes denote patient 
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groups, where each group is modeled by a local classifier such as DLR.  Different nodes may use different 

types of classifiers.  Previous work on a similar idea has demonstrated improved performance 
50

 in an 

intensive care prognosis application. 

Data Analysis, Part 2 – Forecasting Algorithm Validation 

 After algorithm development, the forecasting algorithms will be tested for accuracy of their 

predictive performances in two ways.  First, algorithm validity will be tested within the training database 

using the bootstrap method.  Second, the performance of the developed algorithms will be additionally 

validated prospectively (out-of-sample performance), using standard measures of model predictive 

accuracy, including measures of accuracy, precision and robustness. 

 The performance of any predictive modeling process is always evaluated by the accuracy of its 

predictions.  Data mining techniques are used specifically to explain as well as forecast events.  Their 

predictive accuracy needs therefore to be evaluated before they can be deployed and used for clinical 

decision-making.  The proposed hybrid approach will be first tested using the bootstrap method. 

  In the bootstrap method, a large number of independent random samples are drawn with replacement 

from the entire database.  These surrogate data sets are then used iteratively as the training sets for the 

development of the machine-learning algorithm, and the remaining data from the original sample are 

used for testing.  The overall mean-squared prediction error and its variation is then used as an 

evaluation and test tools of stability of the algorithm development process.
51

  We propose to draw 100 

surrogate samples for this evaluation. 

 Additionally, we propose to perform a validation test of the predictive performance of the 

developed algorithms prospectively, using patient records that did not belong to the learning database.  

For this evaluation, we will apply the most commonly used criteria for predictive model performance, 
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including accuracy (defined as the overall percentage of correct forecasts), precision (defined as the 

percentage of correctly forecasted events), and robustness (defined as predictive ability when data 

includes noise and missing values). 

Prespecified Secondary Analyses 

 In addition to the primary algorithms described above (in-hospital mortality, postoperative 

acute kidney injury, and postoperative respiratory failure), we anticipate using the acquired data to 

develop prediction algorithms for additional outcomes.  These outcomes are outlined in Table 1. 

Table 1. Prespecified Secondary Outcomes  

Data Source Outcome 

Sunrise Clinical Manager - Thirty-day hospital readmission 

- Intensive care unit admission 

- Postoperative delirium 

National Surgical Quality 

Improvement Program 

(NSQIP) database 

- Thirty-day mortality 

- Thirty-day hospital readmission 

- Unplanned intubation 

- Postoperative sepsis 

- Postoperative myocardial infarction 

- Postoperative cerebrovascular accident 

- Postoperative pulmonary embolism 

- Postoperative deep vein thrombosis 

- Postoperative cardiac arrest requiring cardiopulmonary 

resuscitation 
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Society of Thoracic 

Surgeons database 

- Thirty-day mortality 

- Thirty-day hospital readmission 

- Postoperative atrial fibrillation 

- Postoperative venous thromboembolism 

- Postoperative acute respiratory distress syndrome 

SATISFY-SOS registry - Patient-reported thirty-day readmission 

- Patient-reported postoperative myocardial infarction 

- Patient-reported postoperative cardiac arrest 

- Patient-reported postoperative heart failure 

- Patient-reported postoperative cerebrovascular accident 

- Patient-reported postoperative venous thromboembolism 

- Patient-reported postoperative respiratory arrest 

- Patient-reported postoperative pneumonia 

- Patient-reported severe postoperative pain lasting greater than 

one day 

- Patient-reported severe postoperative nausea and vomiting 

lasting greater than one day 

- Return to work 30 days after surgery 

- Quality of life 30 days after surgery 

- Ability to perform activities of daily living 30 days after surgery 
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DISCUSSION 

Implications and Future Directions 

 We predict that the successful development of machine learning-based algorithms for predicting 

adverse postoperative outcomes will impact the perioperative care of surgical patients in important 

ways.  Because our algorithms will utilize time-series data, we expect to be able to use them in real time 

to provide perioperative health care clinicians with dynamic predictions of their patients’ risks for 

specific adverse outcomes.  Because the features in our models will include modifiable risk factors such 

as blood pressure and concentrations of anesthetic agents, we believe clinicians will be able to make 

changes that may alter their patients’ risk trajectories.  To be feasible and efficient, we suggest that the 

forecasting algorithms could be incorporated into a telemedicine paradigm, such as an anesthesiology 

control tower for a perioperative suite. Once the forecasting algorithms are developed, we intend to 

conduct a randomized controlled trial to investigate whether implementation of the algorithms in the 

operating rooms leads to a reduction in the incidence of adverse postoperative outcomes. The 

incorporation of machine-learning forecasting algorithms into perioperative care will complement the 

expertise of clinicians, and has the potential to increase both safety and efficiency.  

Strengths and Limitations 

 One of the greatest strengths of this project is the novel use of machine learning techniques to 

harness the abundant data in the perioperative electronic medical record.  Unlike traditional risk 

prediction models, which utilize data from a single time point and therefore incorporate only a small 

fraction of the available information about the patient, our algorithms will take advantage of the rich 

time-series data generated in the operating rooms and, more broadly, in perioperative settings (e.g., 

preoperative assessment clinic, postoperative recovery area).  Another strength is the efficiency of the 

proposed modeling techniques, which will need to quickly process large amounts of data.  The use of 
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group-based learning will increase the accuracy of the derived models by separating groups of patients 

who likely have different relationships between underlying features and the predicted outcomes. 

 This project does have limitations that should be noted.  Because the forecasting algorithms will 

utilize large quantities of data, generalizability of the results and implementation of the algorithms at 

other health care facilities will depend upon the availability of high-quality input data.  In particular, the 

preoperative evaluation and medical history may not be documented in an electronic format with 

discrete analyzable fields at some other institutions.  Even when such data are available, differences in 

formatting will require caution during implementation at other hospitals.  

Ethics and Dissemination 

 This study has been approved by the Human Research Protection Office at Washington 

University in St. Louis.  As noted earlier in this document, a waiver of informed consent has been 

granted for all participants.  This work will be funded largely by a grant from the National Science 

Foundation (award number 1622678) and from a grant from the Agency for Healthcare Research and 

Quality (R21 HS24581-01). 

 Once this investigation has been completed, we intend to publish the results in a peer-reviewed 

publication.  We also intend to present the results of this work at professional conferences for both the 

anesthesiology and computer science communities.  In accordance with the recent proposal from the 

International Committee of Medical Journal Editors, patient-level data will be made available within six 

months after publication of the primary manuscript.
52

  Data will be provided to researchers who submit 

a methodologically sound research proposal including a protocol and statistical analysis plan. 
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ABSTRACT 

Introduction – Mortality and morbidity following surgery are pressing public health concerns in the 

United States.  Traditional prediction models for postoperative adverse outcomes demonstrate good 

discrimination at the population level, but the ability to forecast an individual patient’s trajectory in real 

time remains poor.  We propose to apply machine-learning techniques to perioperative time-series data 

to develop algorithms for predicting adverse perioperative outcomes. 

Methods and Analysis – This study will include all adult patients who had surgery at our tertiary care 

hospital over a four-year period.  Patient history, laboratory values, minute-by-minute intraoperative 

vital signs, and medications administered will be extracted from the electronic medical record.  

Outcomes will include in-hospital mortality, postoperative acute kidney injury, and postoperative 

respiratory failure.  Forecasting algorithms for each of these outcomes will be constructed using density-

based logistic regression after employing a Nadaraya-Watson kernel density estimator.  Time-series 

variables will be analyzed using first- and second-order feature extraction, shapelet methods, and 

convolutional neural networks.  The algorithms will be validated through measurement of precision and 

recall. 

Ethics and Dissemination – This study has been approved by the Human Research Protection Office at 

Washington University in St. Louis.  The successful development of these forecasting algorithms will 

allow perioperative health care clinicians to predict more accurately an individual patient’s risk for 

specific adverse perioperative outcomes in real time.  Knowledge of a patient’s dynamic risk profile may 

allow clinicians to make targeted changes in the care plan that will alter the patient’s outcome 

trajectory.  This hypothesis will be tested in a future randomized controlled trial. 

  

Page 4 of 24

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

4 

 

 

STRENGTHS AND LIMITATIONS OF THIS STUDY 

• Will utilize modeling techniques that take advantage of the rich time-series data that are 

available, rather than data from a single time point 

• Will utilize efficient modeling techniques that can process large amounts of data quickly 

• Will utilize group-based learning to increase model accuracy by separating groups of patients 

who likely have different relationship between underlying features and predicted outcomes 

• Dissemination to other health care facilities may be limited by the availability of high-quality 

preoperative and intraoperative input data in a usable format  
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INTRODUCTION 

 An estimated 40 million people undergo surgery every year in the United States.  Postoperative 

mortality rate at one year for surgical inpatients is between 5 and 10 percent,(1, 2) and an estimated 10 

percent of surgical patients suffer major in-hospital morbidity.(3-8) Perioperative morbidity and 

mortality are therefore pressing public health concerns.  Many patient characteristics, including 

comorbid medical conditions, associate strongly and independently with perioperative mortality and 

major morbidity.(1, 2, 9-11)  While many of these characteristics are not modifiable, some perioperative 

risk factors, such as intraoperative blood pressures and anesthetic concentrations,(1, 2, 9, 10) can be 

modified in real time.  Although the association between perioperative variables and postoperative 

outcomes has been well established at the population level using approaches such as standard logistic 

regression, (1, 2, 9, 10, 12) the ability to utilize deviations in physiological parameters in real time to 

dynamically forecast the trajectory of each individual patient remains poor.    

 There is a gap in the field with an opportunity to assess the potential utility of machine learning-

based forecasting algorithms to anticipate adverse perioperative outcomes, guide interventions, and 

improve overall quality of care.  Standard forecasting models, such as logistic regression, linear 

regression, and other statistical modeling procedures, have long been used to identify and prioritize risk 

factors for adverse outcomes.  Although most of these statistical techniques have been shown to have 

moderate predictive values, they are limited in their prognostic ability and practical use.(1, 2, 6, 9, 10)   

In contrast to standard forecasting models, we have demonstrated machine learning and data mining 

approaches for patients on intensive care units that generate markedly superior prediction for outcomes 

such as mortality.(13) Our methods differ from standard statistical techniques in their ability to 

effectively incorporate time-series data.  Most standard modeling techniques for surgical patients are 

based on a snapshot scheme, which only considers the data values at a given moment.  They are not 
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competent in extracting features from time-series data, especially in real-time fashion, such as temporal 

trends and shapes.  Therefore, the objective of this study is to utilize machine-learning techniques to 

build forecasting algorithms that use patient characteristics and high-fidelity intraoperative time-series 

data to predict adverse perioperative outcomes. 
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METHODS AND ANALYSIS 

Study Design 

 Our central hypothesis is that with sufficient knowledge of patient characteristics coupled with 

repeated, high-fidelity time series data from the perioperative electronic medical record, advanced 

models can be constructed for individual patients that will forecast adverse perioperative outcomes.  To 

test this hypothesis, we will conduct an observational cohort study of adult patients who undergo 

surgery at Barnes-Jewish Hospital in St. Louis, Missouri.  First, we plan to develop forecasting algorithms 

for specific adverse perioperative outcomes using historical data.  Next, we plan to validate these 

algorithms by determining whether they can be used to reliably forecast individual adverse 

perioperative outcomes. 

Patient Population and Sample Size 

 This study will include all adult patients who had surgery in the 48 operating rooms at Barnes-

Jewish Hospital in St. Louis, Missouri between June 1, 2012 and August 31, 2016.  Patients who receive 

anesthesia care in areas outside the main operating rooms, such as the obstetric suite or the outpatient 

surgery suite, will not be included. Barnes-Jewish Hospital is a 1,252-bed academic university-affiliated 

adult tertiary care hospital, performing approximately 19,000 surgeries a year. We therefore anticipate 

that gathering data from a 4.25-year period will lead to a total sample size of approximately 80,000-

90,000 surgeries for algorithm development and validation. 

 The Human Research Protection Office at Washington University in St. Louis has granted a 

waiver of informed consent for all subjects enrolled in this study.  This study has been determined to 

involve no more than minimal risk to participants, as no additional data will be collected beyond that 

already contained in the electronic record. For the same reason, the waiver of consent will not adversely 
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affect the participants’ rights and welfare. It is impracticable to conduct this research without a waiver 

of consent because 100% participation from the patients is imperative to obtain scientifically sound 

data. 

Data Acquisition 

 For this project, we will use a variety of electronic medical record sources to cover the entire 

perioperative period.  Much of the relevant information will be imported from MetaVision®(iMDsoft, 

Wakefield, MA), an anesthesiology information management software system that is the perioperative 

electronic clinical documentation system currently utilized by the Department of Anesthesiology.  

MetaVision® captures comprehensive clinical data beginning with the preoperative assessment and 

continuing throughout the duration of the perioperative period.  Information captured preoperatively 

includes patients’ past medical and surgical histories, chronic medical issues, medications used, and 

functional capacity. Intraoperatively, minute-by-minute vital signs are captured, in addition to fluid 

balances, ventilator parameters, and anesthetic medications administered.  Blood pressure 

measurements are available at intervals ranging from once per minute to once every five minutes, while 

other vital signs are captured once per minute.  Thus, a three-hour procedure would have about 180 

measurements for each vital sign.  All data fields are alphanumeric and are captured in a uniform and 

granular manner allowing for easy coding and data analysis.  Reports from MetaVision® are commonly 

used to support many patient safety and quality improvement initiatives in addition to numerous 

research studies.   

 Postoperative outcome data will be obtained from Sunrise Clinical Manager (Allscripts, Chicago, 

IL), the electronic medical record currently used for inpatient care at Barnes-Jewish Hospital. Data will 

also be obtained from several registries, including the Systematic Assessment and Targeted 

Improvement of Services Following Yearlong Surgical Outcomes Surveys (SATISFY-SOS) patient-reported 
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outcomes registry (NCT02032030), the National Surgical Quality Improvement Program (NSQIP) 

database, the Society of Thoracic Surgeons (STS) database.  Preoperative and postoperative laboratory 

values will be obtained from the Center for Biomedical Informatics at Washington University, which 

hosts the data repository where these data are stored once they are processed by the laboratory.  In 

general, a preoperative complete blood count is available if the patient is undergoing major surgery with 

potential significant blood loss or if other clinical reasons are present.  Electrolytes and renal function 

are available if there is clinical reason to suspect an abnormality (including, but not limited to, patients 

with hypertension, diabetes mellitus, or chronic kidney disease).  Additional tests, such as hepatic 

function and coagulation studies, are available on smaller sets of patients in whom the tests are 

clinically indicated.  A data dictionary has been included as supplementary files (Data Dictionary v4 Tab1, 

Tab2, Tab3, and Tab4) detailing all the data elements that will be captured for this study.  

 The specific outcomes that will be predicted by the forecasting algorithms will include in-

hospital mortality, postoperative acute kidney injury, and postoperative respiratory failure.  In-hospital 

mortality will be ascertained from Sunrise Clinical Manager.  Postoperative acute renal failure will be 

defined according to the KDIGO criteria(14): an increase in serum creatinine of 0.3 mg/dL, increase in 

serum creatinine to 1.5 times the baseline value, or initiation of renal replacement therapy within 48 

hours of surgery end time.  Patients receiving renal replacement therapy prior to surgery, patients with 

no baseline creatinine available within 30 days prior to surgery, and patients undergoing kidney 

transplant or dialysis access procedures will be excluded from analysis of this outcome.  Postoperative 

respiratory failure will be defined as mechanical ventilation for greater than 48 hours or unplanned 

postoperative intubation within 48 hours.  These events will be extracted from clinical documentation 

recorded by respiratory therapists in Sunrise Clinical Manager.  Patients receiving mechanical ventilation 

prior to surgery will be excluded from analysis of this outcome. 
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Data Analysis, Part 1 – Forecasting Algorithm Development 

 We will develop hybrid learning techniques to combine the strength of generative models such 

as histogram and kernel density estimation and discriminative models such as support vector machines, 

logistic regressions, and kernel machines to improve predictions of adverse perioperative outcomes (in-

hospital mortality, postoperative acute renal failure, postoperative respiratory failure).  The goal is to 

deliver superior prediction quality with good interpretability and high computational efficiency that 

supports fast processing of big data.  Based on our preliminary work using density-based logistic 

regression (DLR) to develop an early clinical deterioration warning system for patients in the general 

wards of Barnes-Jewish Hospital,(15, 16) we propose to develop novel hybrid data mining/machine 

learning algorithms that exploit both non-parametric and parametric techniques.  For each target 

outcome, we plan to develop a model that will predict the likelihood of the postoperative outcome in 

real time using preoperative features and time-series data from the preceding 60 minutes. 

 DLR first applies a Nadaraya-Watson kernel density estimator, a non-parametric transformation, 

on the input data to extract features that conform best to the true distribution of data, and then applies 

the parametric logistic regression model on the transformed features.  The resulting model exhibits five 

desirable properties: nonlinear separation ability, high efficiency, good interpretability, ability to handle 

mixed data types including numerical and categorical ones, and support for multi-way classification.  Our 

previous results using Barnes-Jewish Hospital clinical data showed that DLR achieves better classification 

accuracy than state-of-the-art nonlinear classifiers such as support vector machines and KLR but is also 

much more efficient than nonlinear models.(17)  In fact, DLR has the same asymptotic complexity as 

linear classifiers and can scale up to very large datasets in practice.(17) 

 To analyze the collected time-series data, we need to extract features that capture temporal 

patterns, such as a rapid temperature increases or abnormal heart rate fluctuations.  To make 
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predictions at a given point in time, time-series values from the preceding 60 minutes will be used.  

Missing values will be handled using linear interpolation.  We will first extract a large pool of time-series 

features including: first-order features such as variance, skewness, and kurtosis, and second-order 

features such as energy, entropy, correlation, inertia, and local homogeneity.(18, 19)  The second-order 

features are known to be robust under noises.(20, 21)  Self-similarity is widely observed in human 

physiological signs.  Detrended fluctuation analysis (22) measures the degree of self-similarity in time 

series and has been applied to analyze heartbeat and oxygen levels.(23)  Approximate entropy measures 

the degree of unpredictability in a time series.(24)  Spectral analysis has also been used to analyze 

clinical time-series.(22)  We will also consider cross-sign features including correlation,(25) 

coherence,(25) lagged regression, nonlinear regression,(19) and the synchronization index.(26)  We will 

also extract features based on the bag-of-patterns approach(27-29) and autocorrelation.(30-32)  In 

addition, we will also generate features based on shapelets.(33) A shapelet is a subseries that is used to 

compare against each time-series.  For a shapelet with length l and a time series T, the shapelet gives a 

feature value which is the minimum Euclidean distance between the shapelet and any subseries of T 

with length l. Efficient methods have been developed to find good shapelets, based on length estimation 

and optimized search.(34-36) 

 We will also develop a novel deep learning method to extract more robust features from time-

series. A leading method for feature selection from time series has been the shapelet method. However, 

we have shown that deep learning methods can significantly improve over shapelet. Deep learning 

methods, especially those using convolutional neural networks (CNNs),(37) have achieved great success 

in learning useful representations (features) from images.(38, 39)  However, its uses in time-series 

classification are very limited.  We plan to apply CNNs to time-series data to generate good 

representations.  We note that the convolutional layers in CNNs can be viewed as a collection of local 

filters over the input space; the filters' weights are learnt through back propagation.  The filters in CNNs 
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regulate the time series in different frequency bands, and the dot product operations in the CNNs 

measure distances between two subseries.  Thus, CNNs can be viewed as a more general framework 

than shapelet learning which can adaptively find the suitable down-sampling rates and scales of the 

shapelets.   

 Our preliminary work has shown that it is beneficial to use a large feature set: the modeling 

accuracy increases as more features are used and the top features in the final model include features 

from different categories.(23)  With the above features, we will address overfitting.  An overfit model 

will generally have poor predictive performance and interpretability.  We will investigate three schemes 

to avoid over-fitting including: 1) using feature selection methods, such as forward feature selection 

based on F-score or area-under-curve score,(40) to find the most discriminative features; 2) adding 

regularization terms (such as L1,(41) L2,(42) Akaike information criterion, Bayesian information 

criterion,(43) minimum description length,(44) or a probabilistic prior) to the optimization objective; and 

3) using meta-techniques such as bootstrap aggregation (45) and exploratory undersampling (46) to 

further address overfitting and class imbalance. 

 We plan to use bin-based kernel density estimation, another non-parametric technique, to 

process the input features in each dimension.  In previously described DLR, we use the Nadaraya-

Watson kernel density estimator for each data point in each dimension, which has time complexity of 

O(mN
2
) where m is the number of dimensions and N is the number of data points.  Therefore, it is still 

slow for big datasets with a large N.  Bin-based kernel density estimation differs from the Nadaraya-

Watson kernel density estimator in that we divide each dimension into equal-sized bins and estimate 

the density for each bin instead of each data point.  This will reduce the time into O(mB
2
) where B<<N is 

the number of bins.  Note that instead of using a simple histogram count for each bin, we will use a 

Gaussian kernel function to smooth the density estimation across bins.  The time complexity can be 
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further reduced to O(mB) using techniques such as Gauss transformation.(47)  Such dramatic reduction 

of computing time will enable us to process large datasets and perform quick model-building.  We will 

also combine the kernel density estimator-based features with other parametric models such as Cox 

regression. 

 We will leverage a hierarchical optimization algorithm for training DLR,(17) which automatically 

learns free parameters in the model under a maximum likelihood framework.  This optimization 

formulation not only learns the coefficients in the model, but also provides a way to automatically select 

the kernel bandwidth in the Nadaraya-Watson estimator or the bin size in the bin-based kernel density 

estimation, which is absent in previous work.  We will also employ techniques including stochastic 

gradient descent (48) and its parallelized implementation (49) to further enhance the scalability of the 

training algorithm. 

 Our algorithm will utilize group-based modeling.  The idea is to first use a few key features to 

divide the patients into some major categories, and then train a separate classifier for each category.  

The intuition is that from clinical knowledge, we know that some different groups of patients have 

drastically different behaviors and should correspond to different statistical models.  Mixing such vastly 

different groups together to train a single model may not give the best result.  Therefore, it is 

instrumental to identify important sub-populations of patients, before we use sophisticated hybrid 

algorithms to accurately model the patients in each group.  For a simple example, we can group the 

patients into a few age ranges, e.g., <45, 45-55, 56-65, etc.  Although age can be used as a feature in a 

single classifier for all patients, such explicit division leads to multiple, more specific classifiers.  It can be 

viewed as a hybrid algorithm combining a decision tree with other classifiers.  We may also use metrics 

defined on multiple attributes to group the patients.  Features that will be used as classifiers will include 

age, sex, and surgery type (cardiac versus non-cardiac).  To systematically integrate such clinical 
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knowledge into modeling, we plan to study hybrid models that are mixture of two or more classifiers.  

For example, we can construct a global decision tree whose nodes denote patient groups, where each 

group is modeled by a local classifier such as DLR.  Different nodes may use different types of classifiers.  

Previous work on a similar idea has demonstrated improved performance (50) in an intensive care 

prognosis application. 

Data Analysis, Part 2 – Forecasting Algorithm Validation 

 After algorithm development, the forecasting algorithms will be tested for accuracy of their 

predictive performances in two ways.  First, algorithm validity will be tested within the historical 

database by dividing the database into training, validation, and testing datasets.  Second, the 

performance of the developed algorithms will be additionally validated prospectively (out-of-sample 

performance), using precision and recall. 

 For initial model training and validation, the historical database will be divided into a training 

dataset (60% of the database), a validation dataset (20% of the database), and a testing dataset (20% of 

the database).  Because we expect that our target outcomes will be relatively rare events, overall 

classification accuracy is not likely to be a useful measure of model performance.  Instead, we will use 

precision (true positives/[true positives + false positives]) and recall (true positives/[true positives + false 

negatives]).  We will optimize model parameters using the training dataset.  Then we will pre-specify our 

desired recall and use the validation dataset to select the decision threshold that leads to the highest 

precision without sacrificing our desired recall.  Then we will apply our model to the testing dataset and 

report the observed precision and recall. 

 Additionally, we propose to perform a validation test of the predictive performance of the 

developed algorithms prospectively, using patient records that did not belong to the learning database.  
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For this evaluation, we will apply our model to the prospectively-collected data.  We will report the 

observed precision and recall as measures of model performance. 

Prespecified Secondary Analyses 

 In addition to the primary algorithms described above (in-hospital mortality, postoperative 

acute kidney injury, and postoperative respiratory failure), we anticipate using the acquired data to 

develop prediction algorithms for additional outcomes.  These outcomes are outlined in Table 1. 

Table 1. Prespecified Secondary Outcomes  

Data Source Outcome 

Sunrise Clinical Manager - Thirty-day hospital readmission 

- Intensive care unit admission 

- Postoperative delirium 

National Surgical Quality 

Improvement Program 

(NSQIP) database 

- Thirty-day mortality 

- Thirty-day hospital readmission 

- Unplanned intubation 

- Postoperative sepsis 

- Postoperative myocardial infarction 

- Postoperative cerebrovascular accident 

- Postoperative pulmonary embolism 

- Postoperative deep vein thrombosis 

- Postoperative cardiac arrest requiring cardiopulmonary 

resuscitation 

Society of Thoracic - Thirty-day mortality 
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Surgeons database - Thirty-day hospital readmission 

- Postoperative atrial fibrillation 

- Postoperative venous thromboembolism 

- Postoperative acute respiratory distress syndrome 

SATISFY-SOS registry - Patient-reported thirty-day readmission 

- Patient-reported postoperative myocardial infarction 

- Patient-reported postoperative cardiac arrest 

- Patient-reported postoperative heart failure 

- Patient-reported postoperative cerebrovascular accident 

- Patient-reported postoperative venous thromboembolism 

- Patient-reported postoperative respiratory arrest 

- Patient-reported postoperative pneumonia 

- Patient-reported severe postoperative pain lasting greater than 

one day 

- Patient-reported severe postoperative nausea and vomiting 

lasting greater than one day 

- Return to work 30 days after surgery 

- Quality of life 30 days after surgery 

- Ability to perform activities of daily living 30 days after surgery 
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DISCUSSION 

Implications and Future Directions 

 We anticipate that the successful development of machine learning-based algorithms for 

predicting adverse postoperative outcomes will impact the perioperative care of surgical patients in 

important ways.  Because our algorithms will utilize time-series data, we expect to be able to use them 

in real time to provide perioperative health care clinicians with dynamic predictions of their patients’ 

risks for specific adverse outcomes.  Because the features in our models will include modifiable risk 

factors such as blood pressure and concentrations of anesthetic agents, we believe clinicians will be able 

to make changes that may alter their patients’ risk trajectories.  The models may also help clinicians 

make decisions regarding their patients’ postoperative disposition (intensive care unit versus hospital 

ward; inpatient admission versus discharge).  To be feasible and efficient, we suggest that the 

forecasting algorithms could be incorporated into a telemedicine paradigm, such as an anesthesiology 

control tower for a perioperative suite. Once the forecasting algorithms are developed, we intend to 

conduct a randomized controlled trial to investigate whether implementation of the algorithms in the 

operating rooms leads to a reduction in the incidence of adverse postoperative outcomes. The 

incorporation of machine-learning forecasting algorithms into perioperative care will complement the 

expertise of clinicians, and has the potential to increase both safety and efficiency.  

Strengths and Limitations 

 One of the greatest strengths of this project is the novel use of machine learning techniques to 

harness the abundant data in the perioperative electronic medical record.  Unlike traditional risk 

prediction models, which utilize data from a single time point and therefore incorporate only a small 

fraction of the available information about the patient, our algorithms will take advantage of the rich 

time-series data generated in the operating rooms and, more broadly, in perioperative settings (e.g., 
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preoperative assessment clinic, postoperative recovery area).  Another strength is the efficiency of the 

proposed modeling techniques, which will need to quickly process large amounts of data.  The use of 

group-based learning will increase the accuracy of the derived models by separating groups of patients 

who likely have different relationships between underlying features and the predicted outcomes. 

 This project does have limitations that should be noted.  Because the forecasting algorithms will 

utilize large quantities of data, generalizability of the results and implementation of the algorithms at 

other health care facilities will depend upon the availability of high-quality input data.  In particular, the 

preoperative evaluation and medical history may not be documented in an electronic format with 

discrete analyzable fields at some other institutions.  Even when such data are available, differences in 

formatting will require caution during implementation at other hospitals.  

Ethics and Dissemination 

 This study has been approved by the Human Research Protection Office at Washington 

University in St. Louis.  As noted earlier in this document, a waiver of informed consent has been 

granted for all participants.  This work will be funded largely by a grant from the National Science 

Foundation (award number 1622678) and from a grant from the Agency for Healthcare Research and 

Quality (R21 HS24581-01). 

 Once this investigation has been completed, we intend to publish the results in a peer-reviewed 

publication.  We also intend to present the results of this work at professional conferences for both the 

anesthesiology and computer science communities.  In accordance with the recent proposal from the 

International Committee of Medical Journal Editors, patient-level data will be made available within six 

months after publication of the primary manuscript.(51)  Data will be provided to researchers who 

submit a methodologically sound research proposal including a protocol and statistical analysis plan.  No 

patient-identifying fields (including dates) will be included in the shared dataset.  Age will be provided in 
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years, unless the patient is older than 89 years.  In this case, age will be reported as “>89 years.”  Any 

dates will be presented as “number of days since index surgery.” 
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ABSTRACT 

Introduction – Mortality and morbidity following surgery are pressing public health concerns in the 

United States.  Traditional prediction models for postoperative adverse outcomes demonstrate good 

discrimination at the population level, but the ability to forecast an individual patient’s trajectory in real 

time remains poor.  We propose to apply machine-learning techniques to perioperative time-series data 

to develop algorithms for predicting adverse perioperative outcomes. 

Methods and Analysis – This study will include all adult patients who had surgery at our tertiary care 

hospital over a four-year period.  Patient history, laboratory values, minute-by-minute intraoperative 

vital signs, and medications administered will be extracted from the electronic medical record.  

Outcomes will include in-hospital mortality, postoperative acute kidney injury, and postoperative 

respiratory failure.  Forecasting algorithms for each of these outcomes will be constructed using density-

based logistic regression after employing a Nadaraya-Watson kernel density estimator.  Time-series 

variables will be analyzed using first- and second-order feature extraction, shapelet methods, and 

convolutional neural networks.  The algorithms will be validated through measurement of precision and 

recall. 

Ethics and Dissemination – This study has been approved by the Human Research Protection Office at 

Washington University in St. Louis.  The successful development of these forecasting algorithms will 

allow perioperative health care clinicians to predict more accurately an individual patient’s risk for 

specific adverse perioperative outcomes in real time.  Knowledge of a patient’s dynamic risk profile may 

allow clinicians to make targeted changes in the care plan that will alter the patient’s outcome 

trajectory.  This hypothesis will be tested in a future randomized controlled trial. 
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STRENGTHS AND LIMITATIONS OF THIS STUDY 

• Will utilize modeling techniques that take advantage of the rich time-series data that are 

available, rather than data from a single time point 

• Will utilize efficient modeling techniques that can process large amounts of data quickly 

• Will utilize group-based learning to increase model accuracy by separating groups of patients 

who likely have different relationship between underlying features and predicted outcomes 

• Dissemination to other health care facilities may be limited by the availability of high-quality 

preoperative and intraoperative input data in a usable format  
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INTRODUCTION 

 An estimated 40 million people undergo surgery every year in the United States.  Postoperative 

mortality rate at one year for surgical inpatients is between 5 and 10 percent,(1, 2) and an estimated 10 

percent of surgical patients suffer major in-hospital morbidity.(3-8) Perioperative morbidity and 

mortality are therefore pressing public health concerns.  Many patient characteristics, including 

comorbid medical conditions, associate strongly and independently with perioperative mortality and 

major morbidity.(1, 2, 9-11)  While many of these characteristics are not modifiable, some perioperative 

risk factors, such as intraoperative blood pressures and anesthetic concentrations,(1, 2, 9, 10) can be 

modified in real time.  Although the association between perioperative variables and postoperative 

outcomes has been well established at the population level using approaches such as standard logistic 

regression, (1, 2, 9, 10, 12) the ability to utilize deviations in physiological parameters in real time to 

dynamically forecast the trajectory of each individual patient remains poor.    

 There is a gap in the field with an opportunity to assess the potential utility of machine learning-

based forecasting algorithms to anticipate adverse perioperative outcomes, guide interventions, and 

improve overall quality of care.  Standard forecasting models, such as logistic regression, linear 

regression, and other statistical modeling procedures, have long been used to identify and prioritize risk 

factors for adverse outcomes.  Although most of these statistical techniques have been shown to have 

moderate predictive values, they are limited in their prognostic ability and practical use.(1, 2, 6, 9, 10)   

In contrast to standard forecasting models, we have demonstrated machine learning and data mining 

approaches for patients on intensive care units that generate markedly superior prediction for outcomes 

such as mortality.(13) Our methods differ from standard statistical techniques in their ability to 

effectively incorporate time-series data.  Most standard modeling techniques for surgical patients are 

based on a snapshot scheme, which only considers the data values at a given moment.  They are not 
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competent in extracting features from time-series data, especially in real-time fashion, such as temporal 

trends and shapes.  Therefore, the objective of this study is to utilize machine-learning techniques to 

build forecasting algorithms that use patient characteristics and high-fidelity intraoperative time-series 

data to predict adverse perioperative outcomes. 
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METHODS AND ANALYSIS 

Study Design 

 Our central hypothesis is that with sufficient knowledge of patient characteristics coupled with 

repeated, high-fidelity time series data from the perioperative electronic medical record, advanced 

models can be constructed for individual patients that will forecast adverse perioperative outcomes.  To 

test this hypothesis, we will conduct an observational cohort study of adult patients who undergo 

surgery at Barnes-Jewish Hospital in St. Louis, Missouri.  First, we plan to develop forecasting algorithms 

for specific adverse perioperative outcomes using historical data.  Next, we plan to validate these 

algorithms by determining whether they can be used to reliably forecast individual adverse 

perioperative outcomes. 

Patient Population and Sample Size 

 This study will include all adult patients who had surgery in the 48 operating rooms at Barnes-

Jewish Hospital in St. Louis, Missouri between June 1, 2012 and August 31, 2016.  Patients who receive 

anesthesia care in areas outside the main operating rooms, such as the obstetric suite or the outpatient 

surgery suite, will not be included. Barnes-Jewish Hospital is a 1,252-bed academic university-affiliated 

adult tertiary care hospital, performing approximately 19,000 surgeries a year. We therefore anticipate 

that gathering data from a 4.25-year period will lead to a total sample size of approximately 80,000-

81,000 surgeries for algorithm development and validation. 

 The Human Research Protection Office at Washington University in St. Louis has granted a 

waiver of informed consent for all subjects enrolled in this study.  This study has been determined to 

involve no more than minimal risk to participants, as no additional data will be collected beyond that 

already contained in the electronic record. For the same reason, the waiver of consent will not adversely 
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affect the participants’ rights and welfare. It is impracticable to conduct this research without a waiver 

of consent because 100% participation from the patients is imperative to obtain scientifically sound 

data. 

Data Acquisition 

 For this project, we will use a variety of electronic medical record sources to cover the entire 

perioperative period.  Much of the relevant information will be imported from MetaVision®(iMDsoft, 

Wakefield, MA), an anesthesiology information management software system that is the perioperative 

electronic clinical documentation system currently utilized by the Department of Anesthesiology.  

MetaVision® captures comprehensive clinical data beginning with the preoperative assessment and 

continuing throughout the duration of the perioperative period.  Information captured preoperatively 

includes patients’ past medical and surgical histories, chronic medical issues, medications used, and 

functional capacity. Intraoperatively, minute-by-minute vital signs are captured, in addition to fluid 

balances, ventilator parameters, and anesthetic medications administered.  Blood pressure 

measurements are available at intervals ranging from once per minute to once every five minutes, while 

other vital signs are captured once per minute.  Thus, a three-hour procedure would have about 180 

measurements for each vital sign.  All data fields are alphanumeric and are captured in a uniform and 

granular manner allowing for easy coding and data analysis.  Reports from MetaVision® are commonly 

used to support many patient safety and quality improvement initiatives in addition to numerous 

research studies.   

 Postoperative outcome data will be obtained from Sunrise Clinical Manager (Allscripts, Chicago, 

IL), the electronic medical record currently used for inpatient care at Barnes-Jewish Hospital. Data will 

also be obtained from several registries, including the Systematic Assessment and Targeted 

Improvement of Services Following Yearlong Surgical Outcomes Surveys (SATISFY-SOS) patient-reported 
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outcomes registry (NCT02032030), the National Surgical Quality Improvement Program (NSQIP) 

database, the Society of Thoracic Surgeons (STS) database.  Preoperative and postoperative laboratory 

values will be obtained from the Center for Biomedical Informatics at Washington University, which 

hosts the data repository where these data are stored once they are processed by the laboratory.  In 

general, a preoperative complete blood count is available if the patient is undergoing major surgery with 

potential significant blood loss or if other clinical reasons are present.  Electrolytes and renal function 

are available if there is clinical reason to suspect an abnormality (including, but not limited to, patients 

with hypertension, diabetes mellitus, or chronic kidney disease).  Additional tests, such as hepatic 

function and coagulation studies, are available on smaller sets of patients in whom the tests are 

clinically indicated.  A data dictionary has been included as supplementary files (Data Dictionary v4 Tab1, 

Tab2, Tab3, and Tab4) detailing all the data elements that will be captured for this study.  

 The specific outcomes that will be predicted by the forecasting algorithms will include in-

hospital mortality, postoperative acute kidney injury, and postoperative respiratory failure.  In-hospital 

mortality will be ascertained from Sunrise Clinical Manager.  Postoperative acute renal failure will be 

defined according to the KDIGO criteria(14): an increase in serum creatinine of 0.3 mg/dL, increase in 

serum creatinine to 1.5 times the baseline value, or initiation of renal replacement therapy within 48 

hours of surgery end time.  Patients receiving renal replacement therapy prior to surgery, patients with 

no baseline creatinine available within 30 days prior to surgery, and patients undergoing kidney 

transplant or dialysis access procedures will be excluded from analysis of this outcome.  Postoperative 

respiratory failure will be defined as mechanical ventilation for greater than 48 hours or unplanned 

postoperative intubation within 48 hours.  These events will be extracted from clinical documentation 

recorded by respiratory therapists in Sunrise Clinical Manager.  Patients receiving mechanical ventilation 

prior to surgery will be excluded from analysis of this outcome. 
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Data Analysis, Part 1 – Forecasting Algorithm Development 

 We will develop hybrid learning techniques to combine the strength of generative models such 

as histogram and kernel density estimation and discriminative models such as support vector machines, 

logistic regressions, and kernel machines to improve predictions of adverse perioperative outcomes (in-

hospital mortality, postoperative acute renal failure, postoperative respiratory failure).  The goal is to 

deliver superior prediction quality with good interpretability and high computational efficiency that 

supports fast processing of big data.  Based on our preliminary work using density-based logistic 

regression (DLR) to develop an early clinical deterioration warning system for patients in the general 

wards of Barnes-Jewish Hospital,(15, 16) we propose to develop novel hybrid data mining/machine 

learning algorithms that exploit both non-parametric and parametric techniques.  For each target 

outcome, we plan to develop a model that will predict the likelihood of the postoperative outcome in 

real time using preoperative features and time-series data from the preceding 60 minutes. 

 DLR first applies a Nadaraya-Watson kernel density estimator, a non-parametric transformation, 

on the input data to extract features that conform best to the true distribution of data, and then applies 

the parametric logistic regression model on the transformed features.  The resulting model exhibits five 

desirable properties: nonlinear separation ability, high efficiency, good interpretability, ability to handle 

mixed data types including numerical and categorical ones, and support for multi-way classification.  Our 

previous results using Barnes-Jewish Hospital clinical data showed that DLR achieves better classification 

accuracy than state-of-the-art nonlinear classifiers such as support vector machines and kernel logistic 

regression but is also much more efficient than nonlinear models.(17)  In fact, DLR has the same 

asymptotic complexity as linear classifiers and can scale up to very large datasets in practice.(17) 

 To analyze the collected time-series data, we need to extract features that capture temporal 

patterns, such as a rapid temperature increases or abnormal heart rate fluctuations.  To make 
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predictions at a given point in time, time-series values from the preceding 60 minutes will be used.  

Missing values will be handled using linear interpolation.  We will first extract a large pool of time-series 

features including: first-order features such as variance, skewness, and kurtosis, and second-order 

features such as energy, entropy, correlation, inertia, and local homogeneity.(18, 19)  The second-order 

features are known to be robust under noises.(20, 21)  Self-similarity is widely observed in human 

physiological signs.  Detrended fluctuation analysis (22) measures the degree of self-similarity in time 

series and has been applied to analyze heartbeat and oxygen levels.(23)  Approximate entropy measures 

the degree of unpredictability in a time series.(24)  Spectral analysis has also been used to analyze 

clinical time-series.(22)  We will also consider cross-sign features including correlation,(25) 

coherence,(25) lagged regression, nonlinear regression,(19) and the synchronization index.(26)  We will 

also extract features based on the bag-of-patterns approach(27-29) and autocorrelation.(30-32)  In 

addition, we will also generate features based on shapelets.(33) A shapelet is a subseries that is used to 

compare against each time-series.  For a shapelet with length l and a time series T, the shapelet gives a 

feature value which is the minimum Euclidean distance between the shapelet and any subseries of T 

with length l. Efficient methods have been developed to find good shapelets, based on length estimation 

and optimized search.(34-36) 

 We will also develop a novel deep learning method to extract more robust features from time-

series. A leading method for feature selection from time series has been the shapelet method. However, 

we have shown that deep learning methods can significantly improve over shapelet. Deep learning 

methods, especially those using convolutional neural networks (CNNs),(37) have achieved great success 

in learning useful representations (features) from images.(38, 39)  However, its uses in time-series 

classification are very limited.  We plan to apply CNNs to time-series data to generate good 

representations.  We note that the convolutional layers in CNNs can be viewed as a collection of local 

filters over the input space; the filters' weights are learnt through back propagation.  The filters in CNNs 
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regulate the time series in different frequency bands, and the dot product operations in the CNNs 

measure distances between two subseries.  Thus, CNNs can be viewed as a more general framework 

than shapelet learning which can adaptively find the suitable down-sampling rates and scales of the 

shapelets.   

 Our preliminary work has shown that it is beneficial to use a large feature set: the modeling 

accuracy increases as more features are used and the top features in the final model include features 

from different categories.(23)  With the above features, we will address overfitting.  An overfit model 

will generally have poor predictive performance and interpretability.  We will investigate three schemes 

to avoid over-fitting including: 1) using feature selection methods, such as forward feature selection 

based on F-score or area-under-curve score,(40) to find the most discriminative features; 2) adding 

regularization terms (such as L1,(41) L2,(42) Akaike information criterion, Bayesian information 

criterion,(43) minimum description length,(44) or a probabilistic prior) to the optimization objective; and 

3) using meta-techniques such as bootstrap aggregation (45) and exploratory undersampling (46) to 

further address overfitting and class imbalance. 

 We plan to use bin-based kernel density estimation, another non-parametric technique, to 

process the input features in each dimension.  In previously described DLR, we use the Nadaraya-

Watson kernel density estimator for each data point in each dimension, which has time complexity of 

O(mN
2
) where m is the number of dimensions and N is the number of data points.  Therefore, it is still 

slow for big datasets with a large N.  Bin-based kernel density estimation differs from the Nadaraya-

Watson kernel density estimator in that we divide each dimension into equal-sized bins and estimate 

the density for each bin instead of each data point.  This will reduce the time into O(mB
2
) where B<<N is 

the number of bins.  Note that instead of using a simple histogram count for each bin, we will use a 

Gaussian kernel function to smooth the density estimation across bins.  The time complexity can be 
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further reduced to O(mB) using techniques such as Gauss transformation.(47)  Such dramatic reduction 

of computing time will enable us to process large datasets and perform quick model-building.  We will 

also combine the kernel density estimator-based features with other parametric models such as Cox 

regression. 

 We will leverage a hierarchical optimization algorithm for training DLR,(17) which automatically 

learns free parameters in the model under a maximum likelihood framework.  This optimization 

formulation not only learns the coefficients in the model, but also provides a way to automatically select 

the kernel bandwidth in the Nadaraya-Watson estimator or the bin size in the bin-based kernel density 

estimation, which is absent in previous work.  We will also employ techniques including stochastic 

gradient descent (48) and its parallelized implementation (49) to further enhance the scalability of the 

training algorithm. 

 Our algorithm will utilize group-based modeling.  The idea is to first use a few key features to 

divide the patients into some major categories, and then train a separate classifier for each category.  

The intuition is that from clinical knowledge, we know that some different groups of patients have 

drastically different behaviors and should correspond to different statistical models.  Mixing such vastly 

different groups together to train a single model may not give the best result.  Therefore, it is 

instrumental to identify important sub-populations of patients, before we use sophisticated hybrid 

algorithms to accurately model the patients in each group.  For a simple example, we can group the 

patients into a few age ranges, e.g., <45, 45-55, 56-65, etc.  Although age can be used as a feature in a 

single classifier for all patients, such explicit division leads to multiple, more specific classifiers.  It can be 

viewed as a hybrid algorithm combining a decision tree with other classifiers.  We may also use metrics 

defined on multiple attributes to group the patients.  Features that will be used as classifiers will include 

age, sex, and surgery type (cardiac versus non-cardiac).  To systematically integrate such clinical 
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knowledge into modeling, we plan to study hybrid models that are mixture of two or more classifiers.  

For example, we can construct a global decision tree whose nodes denote patient groups, where each 

group is modeled by a local classifier such as DLR.  Different nodes may use different types of classifiers.  

Previous work on a similar idea has demonstrated improved performance (50) in an intensive care 

prognosis application. 

Data Analysis, Part 2 – Forecasting Algorithm Validation 

 After algorithm development, the forecasting algorithms will be tested for accuracy of their 

predictive performances in two ways.  First, algorithm validity will be tested within the historical 

database by dividing the database into training, validation, and testing datasets.  Second, the 

performance of the developed algorithms will be additionally validated prospectively (out-of-sample 

performance), using precision and recall. 

 For initial model training and validation, the historical database will be divided into a training 

dataset (60% of the database), a validation dataset (20% of the database), and a testing dataset (20% of 

the database).  Each training, validation, or testing example will be a 60-minute epoch randomly 

selected from a single surgery.  More than one epoch from the same surgery may be included if the 

surgery lasted long enough to generate more than one distinct 60-minute epoch.  However, all epochs 

from the same surgery will be included either all in the training dataset, all in the validation dataset, or 

all in the testing dataset.  Because we expect that our target outcomes will be relatively rare events, 

overall classification accuracy is not likely to be a useful measure of model performance.  Instead, we 

will use precision (true positives/[true positives + false positives]) and recall (true positives/[true 

positives + false negatives]).  We will optimize model parameters using the training dataset.  Then we 

will pre-specify our desired recall and use the validation dataset to select the decision threshold that 

leads to the highest precision without sacrificing our desired recall.  Then we will apply our model to the 
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testing dataset and report the observed precision and recall.  The overall flow of algorithm training and 

validation is outlined in Figure 1. 

 Additionally, we propose to perform a validation test of the predictive performance of the 

developed algorithms prospectively, using patient records that did not belong to the learning database.  

For this evaluation, we will apply our model to the prospectively-collected data.  We will report the 

observed precision and recall as measures of model performance. 

Prespecified Secondary Analyses 

 In addition to the primary algorithms described above (in-hospital mortality, postoperative 

acute kidney injury, and postoperative respiratory failure), we anticipate using the acquired data to 

develop prediction algorithms for additional outcomes.  These outcomes are outlined in Table 1. 

Table 1. Prespecified Secondary Outcomes  

Data Source Outcome 

Sunrise Clinical Manager - Thirty-day hospital readmission 

- Intensive care unit admission 

- Postoperative delirium 

National Surgical Quality 

Improvement Program 

(NSQIP) database 

- Thirty-day mortality 

- Thirty-day hospital readmission 

- Unplanned intubation 

- Postoperative sepsis 

- Postoperative myocardial infarction 

- Postoperative cerebrovascular accident 
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- Postoperative pulmonary embolism 

- Postoperative deep vein thrombosis 

- Postoperative cardiac arrest requiring cardiopulmonary 

resuscitation 

Society of Thoracic 

Surgeons database 

- Thirty-day mortality 

- Thirty-day hospital readmission 

- Postoperative atrial fibrillation 

- Postoperative venous thromboembolism 

- Postoperative acute respiratory distress syndrome 

SATISFY-SOS registry - Patient-reported thirty-day readmission 

- Patient-reported postoperative myocardial infarction 

- Patient-reported postoperative cardiac arrest 

- Patient-reported postoperative heart failure 

- Patient-reported postoperative cerebrovascular accident 

- Patient-reported postoperative venous thromboembolism 

- Patient-reported postoperative respiratory arrest 

- Patient-reported postoperative pneumonia 

- Patient-reported severe postoperative pain lasting greater than 

one day 

- Patient-reported severe postoperative nausea and vomiting 

lasting greater than one day 

- Return to work 30 days after surgery 

- Quality of life 30 days after surgery 

- Ability to perform activities of daily living 30 days after surgery 
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DISCUSSION 

Implications and Future Directions 

 We anticipate that the successful development of machine learning-based algorithms for 

predicting adverse postoperative outcomes will impact the perioperative care of surgical patients in 

important ways.  Because our algorithms will utilize time-series data, we expect to be able to use them 

in real time to provide perioperative health care clinicians with dynamic predictions of their patients’ 

risks for specific adverse outcomes.  Because the features in our models will include modifiable risk 

factors such as blood pressure and concentrations of anesthetic agents, we believe clinicians will be able 

to make changes that may alter their patients’ risk trajectories.  The models may also help clinicians 

make decisions regarding their patients’ postoperative disposition (intensive care unit versus hospital 

ward; inpatient admission versus discharge).  To be feasible and efficient, we suggest that the 

forecasting algorithms could be incorporated into a telemedicine paradigm, such as an anesthesiology 

control tower for a perioperative suite. Once the forecasting algorithms are developed, we intend to 

conduct a randomized controlled trial to investigate whether implementation of the algorithms in the 

operating rooms leads to a reduction in the incidence of adverse postoperative outcomes. The 

incorporation of machine-learning forecasting algorithms into perioperative care will complement the 

expertise of clinicians, and has the potential to increase both safety and efficiency.  

Strengths and Limitations 

 One of the greatest strengths of this project is the novel use of machine learning techniques to 

harness the abundant data in the perioperative electronic medical record.  Unlike traditional risk 

prediction models, which utilize data from a single time point and therefore incorporate only a small 

fraction of the available information about the patient, our algorithms will take advantage of the rich 

time-series data generated in the operating rooms and, more broadly, in perioperative settings (e.g., 
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preoperative assessment clinic, postoperative recovery area).  Another strength is the efficiency of the 

proposed modeling techniques, which will need to quickly process large amounts of data.  The use of 

group-based learning will increase the accuracy of the derived models by separating groups of patients 

who likely have different relationships between underlying features and the predicted outcomes. 

 This project does have limitations that should be noted.  Because the forecasting algorithms will 

utilize large quantities of data, generalizability of the results and implementation of the algorithms at 

other health care facilities will depend upon the availability of high-quality input data.  In particular, the 

preoperative evaluation and medical history may not be documented in an electronic format with 

discrete analyzable fields at some other institutions.  Even when such data are available, differences in 

formatting will require caution during implementation at other hospitals.  

Ethics and Dissemination 

 This study has been approved by the Human Research Protection Office at Washington 

University in St. Louis.  As noted earlier in this document, a waiver of informed consent has been 

granted for all participants.  This work will be funded largely by a grant from the National Science 

Foundation (award number 1622678) and from a grant from the Agency for Healthcare Research and 

Quality (R21 HS24581-01). 

 Once this investigation has been completed, we intend to publish the results in a peer-reviewed 

publication.  We also intend to present the results of this work at professional conferences for both the 

anesthesiology and computer science communities.  In accordance with the recent proposal from the 

International Committee of Medical Journal Editors, patient-level data will be made available within six 

months after publication of the primary manuscript.(51)  Data will be provided to researchers who 

submit a methodologically sound research proposal including a protocol and statistical analysis plan.  No 

patient-identifying fields (including dates) will be included in the shared dataset.  Age will be provided in 
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years, unless the patient is older than 89 years.  In this case, age will be reported as “>89 years.”  Any 

dates will be presented as “number of days since index surgery.” 

  

Page 20 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

21 

 

 

REFERENCES 

1. Kertai MD, Pal N, Palanca BJ, Lin N, Searleman SA, Zhang L, et al. Association of perioperative 

risk factors and cumulative duration of low bispectral index with intermediate-term mortality after 

cardiac surgery in the B-Unaware Trial. Anesthesiology. 2010;112(5):1116-27. 

2. Kertai MD, Palanca BJ, Pal N, Burnside BA, Zhang L, Sadiq F, et al. Bispectral index monitoring, 

duration of bispectral index below 45, patient risk factors, and intermediate-term mortality after 

noncardiac surgery in the B-Unaware Trial. Anesthesiology. 2011;114(3):545-56. 

3. Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, et al. Relationship between 

intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an 

empirical definition of hypotension. Anesthesiology. 2013;119(3):507-15. 

4. Walsh M, Garg AX, Devereaux PJ, Argalious M, Honar H, Sessler DI. The association between 

perioperative hemoglobin and acute kidney injury in patients having noncardiac surgery. Anesthesia and 

analgesia. 2013;117(4):924-31. 

5. Devereaux PJ, Yang H, Yusuf S, Guyatt G, Leslie K, Villar JC, et al. Effects of extended-release 

metoprolol succinate in patients undergoing non-cardiac surgery (POISE trial): a randomised controlled 

trial. Lancet. 2008;371(9627):1839-47. 

6. Kheterpal S, Tremper KK, Englesbe MJ, O'Reilly M, Shanks AM, Fetterman DM, et al. Predictors 

of postoperative acute renal failure after noncardiac surgery in patients with previously normal renal 

function. Anesthesiology. 2007;107(6):892-902. 

7. Sharifpour M, Moore LE, Shanks AM, Didier TJ, Kheterpal S, Mashour GA. Incidence, predictors, 

and outcomes of perioperative stroke in noncarotid major vascular surgery. Anesthesia and analgesia. 

2013;116(2):424-34. 

8. Bhave PD, Goldman LE, Vittinghoff E, Maselli J, Auerbach A. Incidence, predictors, and outcomes 

associated with postoperative atrial fibrillation after major noncardiac surgery. American heart journal. 

2012;164(6):918-24. 

9. Willingham MD, Karren E, Shanks AM, O'Connor MF, Jacobsohn E, Kheterpal S, et al. 

Concurrence of Intraoperative Hypotension, Low Minimum Alveolar Concentration, and Low Bispectral 

Index Is Associated with Postoperative Death. Anesthesiology. 2015;123(4):775-85. 

10. Willingham M, Ben Abdallah A, Gradwohl S, Helsten D, Lin N, Villafranca A, et al. Association 

between intraoperative electroencephalographic suppression and postoperative mortality. British 

journal of anaesthesia. 2014;113(6):1001-8. 

11. Aranake A, Gradwohl S, Ben-Abdallah A, Lin N, Shanks A, Helsten DL, et al. Increased risk of 

intraoperative awareness in patients with a history of awareness. Anesthesiology. 2013;119(6):1275-83. 

12. Sessler DI, Sigl JC, Kelley SD, Chamoun NG, Manberg PJ, Saager L, et al. Hospital stay and 

mortality are increased in patients having a "triple low" of low blood pressure, low bispectral index, and 

low minimum alveolar concentration of volatile anesthesia. Anesthesiology. 2012;116(6):1195-203. 

13. Wang Y, Chen W, Heard K, Kollef MH, Bailey TC, Cui Z, et al. Mortality Prediction in ICUs Using A 

Novel Time-Slicing Cox Regression Method. AMIA  Annual Symposium proceedings / AMIA Symposium 

AMIA Symposium. 2015;2015:1289-95. 

14. Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO 

summary (Part 1). Critical care. 2013;17(1):1. 

15. Hackmann G, Chen M, Chipara O, Lu C, Chen Y, Kollef M, et al. Toward a two-tier clinical warning 

system for hospitalized patients. AMIA  Annual Symposium proceedings / AMIA Symposium AMIA 

Symposium. 2011;2011:511-9. 

Page 21 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

22 

 

 

16. Bailey TC, Chen Y, Mao Y, Lu C, Hackmann G, Micek ST, et al. A trial of a real-time alert for 

clinical deterioration in patients hospitalized on general medical wards. Journal of hospital medicine : an 

official publication of the Society of Hospital Medicine. 2013;8(5):236-42. 

17. Chen W, Chen Y, Mao Y, Guo B, editors. Density-based logistic regression. Proceedings of the 

19th ACM SIGKDD international conference on Knowledge discovery and data mining; 2013: ACM. 

18. Dowdy S, Weardon S. Statistics for Research. Hoboken, NJ: Wiley; 1983. 

19. George A, Wild C. Nonlinear Regression. Hoboken, NJ: Wiley; 2003. 

20. Haralick RM, Shanmugam K. Textural features for image classification. IEEE Transactions on 

systems, man, and cybernetics. 1973(6):610-21. 

21. Arthanari T, Dodge Y. Mathematical Programming in Statistics. Hoboken, NJ: Wiley; 1993. 

22. Penzel T, Kantelhardt JW, Grote L, Peter JH, Bunde A. Comparison of detrended fluctuation 

analysis and spectral analysis for heart rate variability in sleep and sleep apnea. IEEE transactions on bio-

medical engineering. 2003;50(10):1143-51. 

23. Mao Y, Chen W, Chen Y, Lu C, Kollef M, Bailey T, editors. An integrated data mining approach to 

real-time clinical monitoring and deterioration warning. Proceedings of the 18th ACM SIGKDD 

international conference on Knowledge discovery and data mining; 2012: ACM. 

24. Pincus SM. Approximate entropy as a measure of system complexity. Proceedings of the 

National Academy of Sciences of the United States of America. 1991;88(6):2297-301. 

25. Loforte R, Carrault G, Mainardi L, Beuche A, editors. Heart rate and respiration relationships as a 

diagnostic tool for late onset sepsis in sick preterm infants. 2006 Computers in Cardiology; 2006: IEEE. 

26. Nollo G, Faes L, Pellegrini B, Porta A, Antolini R, editors. Synchronization index for quantifying 

nonlinear causal coupling between RR interval and systolic arterial pressure after myocardial infarction. 

Computers in Cardiology 2000; 2000: IEEE. 

27. Lin J, Khade R, Li Y. Rotation-invariant similarity in time series using bag-of-patterns 

representation. Journal of Intelligent Information Systems. 2012;39(2):287-315. 

28. Baydogan MG, Runger G, Tuv E. A bag-of-features framework to classify time series. IEEE 

transactions on pattern analysis and machine intelligence. 2013;35(11):2796-802. 

29. Deng H, Runger G, Tuv E, Vladimir M. A time series forest for classification and feature 

extraction. Information Sciences. 2013;239:142-53. 

30. Bagnall A, Davis LM, Hills J, Lines J, editors. Transformation Based Ensembles for Time Series 

Classification. SDM; 2012: SIAM. 

31. Caiado J, Crato N, Peña D. A periodogram-based metric for time series classification. 

Computational Statistics & Data Analysis. 2006;50(10):2668-84. 

32. Bagnall A, Janacek G. A run length transformation for discriminating between auto regressive 

time series. Journal of classification. 2014;31(2):154-78. 

33. Ye L, Keogh E, editors. Time series shapelets: a new primitive for data mining. Proceedings of the 

15th ACM SIGKDD international conference on Knowledge discovery and data mining; 2009: ACM. 

34. Lines J, Davis LM, Hills J, Bagnall A, editors. A shapelet transform for time series classification. 

Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data 

mining; 2012: ACM. 

35. Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L, editors. Learning time-series shapelets. 

Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data 

mining; 2014: ACM. 

36. Rakthanmanon T, Keogh E, editors. Fast shapelets: A scalable algorithm for discovering time 

series shapelets. Proceedings of the 13th SIAM international conference on data mining; 2013: SIAM. 

37. Fukushima K. Neocognitron: A self-organizing neural network model for a mechanism of pattern 

recognition unaffected by shift in position. Biological cybernetics. 1980;36(4):193-202. 

Page 22 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

23 

 

 

38. Schroff F, Kalenichenko D, Philbin J, editors. Facenet: A unified embedding for face recognition 

and clustering. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 2015. 

39. He K, Zhang X, Ren S, Sun J, editors. Delving deep into rectifiers: Surpassing human-level 

performance on imagenet classification. Proceedings of the IEEE International Conference on Computer 

Vision; 2015. 

40. Khosla A, Cao Y, Lin CC-Y, Chiu H-K, Hu J, Lee H, editors. An integrated machine learning 

approach to stroke prediction. Proceedings of the 16th ACM SIGKDD international conference on 

Knowledge discovery and data mining; 2010: ACM. 

41. Shi J, Yin W, Osher S, Sajda P. A fast hybrid algorithm for large-scale l1-regularized logistic 

regression. Journal of Machine Learning Research. 2010;11(Feb):713-41. 

42. Moore RC, DeNero J. L1 and L2 regularization for multiclass hinge loss models. 2011. 

43. Schwarz G. Estimating the dimension of a model. The annals of statistics. 1978;6(2):461-4. 

44. Grünwald PD. The minimum description length principle: MIT press; 2007. 

45. Breiman L. Bagging predictors. Machine learning. 1996;24(2):123-40. 

46. Liu X-Y, Wu J, Zhou Z-H. Exploratory undersampling for class-imbalance learning. IEEE 

Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics). 2009;39(2):539-50. 

47. Elgammal A, Duraiswami R, Davis LS. Efficient kernel density estimation using the fast gauss 

transform with applications to color modeling and tracking. IEEE transactions on pattern analysis and 

machine intelligence. 2003;25(11):1499-504. 

48. Ferguson TS. An inconsistent maximum likelihood estimate. Journal of the American Statistical 

Association. 1982;77(380):831-4. 

49. Zinkevich M, Weimer M, Li L, Smola AJ, editors. Parallelized stochastic gradient descent. 

Advances in neural information processing systems; 2010. 

50. Abu-Hanna A, de Keizer N. Integrating classification trees with local logistic regression in 

Intensive Care prognosis. Artificial Intelligence in Medicine. 2003;29(1):5-23. 

51. Taichman DB, Backus J, Baethge C, Bauchner H, de Leeuw PW, Drazen JM, et al. Sharing Clinical 

Trial Data--A Proposal from the International Committee of Medical Journal Editors. The New England 

journal of medicine. 2016;374(4):384-6. 

 

  

Page 23 of 45

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

BMJ Open

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For peer review only

24 

 

 

FIGURE LEGEND 

Figure 1. Data flow for algorithm training and validation using the historical database. 
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Field Output Description

PatientID Indentifier

Surg_Type Text field

Anesthesia_Type 1 General

2 Block

3 MAC

4 Spinal

5 Epidural

6 CSE

8 Cancelled Procedure

9 Cancelled Procedure after selected anesthesia type(s)

10 converted to General

SEX 1 Male

2 Female

3 Unknown

RACE 5 Unknown

6 Hispanic

7 Black American

8 Other

9 White

10 American Indian

11 Asian

12 American Indian or Alaska Native

13 Black or African American

14 Native Hawaiian or other Pacific Islander 

15 Some other Race

HEIGHT Continuous CM

WEIGHT Continuous KG

Ideal_Body_Weight Continuous Ideal weight at designated height, sex, etc.

BMI Continuous Body Mass Index

CCI Integer sore 0-41 Charlson Comorbidity Index

FUNCTIONAL_CAPACITY 5 -

6 >10 METs

7 6-10 METS
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8 4-6 METS

9 <4 METS

10 Ambulates with assistance only

11 Cannot assess

ASA 1 1

2 2

3 3

4 4

5 5

6 1E

7 2E

8 3E

9 4E

10 5E

11 6

HTN 1 Patient has hypertension 

CAD 1 Patient has coronary artery disease

CAD_PRIORMI 1 Patient has previous Myocardial Infarction

CHF 1 Patient has congestive heart failure

CHF_Diastolic_Function 20 normal

21 stage I - Impaired relaxation

22 stage II - Pseudonormal

23 stage III - Restrictive

24 unknown/unspecified

25 --

26 unspecified dysfunction

LVEF 30 unknown

31 >70%

32 60-70%

33 50-60%

34 40-50%

35 30-40%

36 20-30%

37 10-20%
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38 <10%

39 unspecified normal

40 unspecified mildly reduced

41 unspecified moderately reduced

42 unspecified severely reduced

43 --

VALVULAR_DISEASE 61 Mild

62 Mild-moderate

63 Moderate

64 Moderate-Severe

65 Severe

66 Unknown/unspecified

67 --

AFIB 4 permanent (AF episode greater than 1 year)

5 first/one detected episode (less than 7 day duration)

6 paroxysmal (multiple episodes <7 days)

7 persistent (one or more episodes >7 days)

8 unknown

9 --

PPM_ICD 1 Patient has pacemaker

CV_TIA_STROKE 1 Patient has had a stroke

PAD 1 Patient has peripheral artery disease

DVT 1 Patient has had deep vein thrombosis

PE 1 Patient has had a pulmonary embolism

DM 1 Patient has Diabetes

Outpatient_Insulin 103 none

104 previous

105 current

106 insulin pump

107 --

CKD 1 Patient has chronic kidney disease

Dialysis_History 90 ongoing peritoneal dialysis

95 never

96 ongoing hemodialysis
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97 past dialysis

98 --

PHTN 1 Patient has pulmonary hypertension

COPD 1 Patient has chronic obstructive pulmonary disease

ASTHMA 1 Patient has asthma

OSA 1 Patient has sleep apnea

StopBang_Total continuous Higher score is worse

StopBang_Observed 1 Yes

2 No

3 Don't know

StopBang_Pressure 1 Yes

2 No

3 Don't know

StopBang_Snore 1 Yes

2 No

3 Don't know

StopBang_Tired 1 Yes

2 No

3 Don't know

CIRRHOSIS 1 Patient has cirrhosis

CANCER_HX 1 patient has history of cancer

GERD 1 Patient has Gastroesophageal Reflux Disease 

ANEMIA 1 Patinet has history of anemia

COOMBS_POS 1 Patient has has a positive Coombs test

DEMENTIA 1 Patient has history of dementia

SMOKING_EVER 1 Patient reports having smoked 

ULCER 1 Patient has history of Ulcer

CREATININE continuous Most recent serum creatinine value, manually entered during preoperative examination

PLATELET continuous Most recent platelet count, manually entered during preoperative examination

PreOp_Diastolic continuous Diastolic blood pressure during preoperative examination

PreOp_Systolic Continuous Systolic blood pressure during preoperative examination
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Field Output Description

PatientID Identifier

ANESTHESIA START Time

TIME Time

DESIN Continuous Inhaled desflurane concentration (volume percent)

DESOUT Continuous Exhaled desflurane concentration (volume percent)

ISOIN Continuous Inhaled isoflurane concentration (volume percent)

ISOOUT Continuous Exhaled isoflurane concentration (volume percent)

N2OIN Continuous Inhaled nitrous oxide concentration (volume percent)

N2OOUT Continuous Exhaled nitrous oxide concentration (volume percent)

SEVOIN Continuous Inhaled sevoflurane concentration (volume percent)

SEVOOUT Continuous Exhaled sevoflurane concentration (volume percent)

TOTALMAC Continuous End-tidal anesthetic concentration (MAC [minimum alveolar concentration] units)

TOTALMACAGEADJ Continuous End-tidal anesthetic concentration (Age-adjusted MAC units)

BIS_INDEX Continuous Bispectral index

BIS_SR Continuous Suppression ratio (output from bispectral index monitor)

DIASTOLIC Continuous Diastolic blood pressure

SYSTOLIC Continuous Systolic blood pressure

BP_MEAN Continuous Mean arterial blood pressure

HR Continuous Heart rate

PULSE Continuous Pulse

TEMP Continuous Temperature

TEMP_CORE Continuous Temperature

SPO2 Continuous Pulse Oximeter

CO2 Continuous End-tidal carbon dioxide

RR Continuous Respiratory Rate

PEEP Continuous Positive End-Expiratory Pressure

PIP Continuous Positive Inspiratory Pressure

MV Continuous Minvute Ventilation

CVP Continuous Central Venous Pressure

URINE_OUTPUT Continuous Urine Output

Est_Blood_Loss Continuous Estimated Blood Loss

TIDAL_VOLUME Continuous Tidal Volume

GLU_ART Continuous Glucose value
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GLU_VEN Continuous Glucose value

HCT Continuous Hematocrit

INR Continuous International normalized ratio

Plateau pressure Continuous Plateau Pressure (airway)

PLATELET Continuous Platelet Count

POTASSIUM Continuous Potassium level

SECSURPPRESSED Continuous Seconds of electroencephalogram suppression

DRUG_TYPE DRUGS Types of medication

DRUGS IMPORT

DRUGS IMPORT Allergies

DRUGS REMOVED FROM SERVICE

DRUGS-ANTIBIOTICS

DRUGS-ANTIEMETICS

DRUGS-Beta blockers

DRUGS-CARDIACS

DRUGS-HYPNOTICS

DRUGS-LOCAL ANESTHESIA

DRUGS-NARCOTICS

DRUGS-OTHER

DRUGS-OTHER A-E

DRUGS-OTHER F-J

DRUGS-OTHER K-O

DRUGS-OTHER P-T

DRUGS-OTHER U-Z

DRUGS-OXYTOCICS

DRUGS-RELAXANTS

DRUGS-REVERSALS

DRUGS-TIMERS

FLUIDS

DRUGS See below

DRUG_AMT Continuous

DRUG_MINUTES Continuous
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Parameter Drug Drug Type

68 Morphine DRUGS-NARCOTICS

69 FentaNYL DRUGS-NARCOTICS

74 Midazolam DRUGS-HYPNOTICS

76 Propofol DRUGS-HYPNOTICS

81 Succinylcholine DRUGS-RELAXANTS

83 Pancuronium DRUGS-RELAXANTS

84 Vecuronium DRUGS-RELAXANTS

85 Rocuronium DRUGS-RELAXANTS

86 Atropine DRUGS-CARDIACS

87 Neostigmine DRUGS-REVERSALS

88 Naloxone DRUGS-REVERSALS

89 Flumazenil DRUGS-REVERSALS

100 DOPamine DRUGS-CARDIACS

101 EPHEDrine DRUGS-CARDIACS

102 Esmolol DRUGS-Beta blockers

103 HydrALAZINE DRUGS-CARDIACS

105 Labetalol DRUGS-Beta blockers

108 Nitroglycerin DRUGS-CARDIACS

110 Norepinephrine DRUGS-CARDIACS

112 Phenylephrine DRUGS-CARDIACS

195 Vasopressin DRUGS-CARDIACS

200 Dexamethasone DRUGS-OTHER

203 Hydrocortisone DRUGS-OTHER

207 MethylPREDNISolone DRUGS-OTHER

218 Lactated Ringers FLUIDS

220 Normal Saline FLUIDS

226 Mannitol 20% FLUIDS

232 Packed RBC BLOOD PRODUCTS

234 Platelets BLOOD PRODUCTS

235 Fresh frozen plasma BLOOD PRODUCTS

236 Cryoprecipitate BLOOD PRODUCTS

237 Albumin 5% BLOOD PRODUCTS

238 Albumin 25% BLOOD PRODUCTS
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573 Other fluid FLUIDS

766 Cisatracurium DRUGS-RELAXANTS

780 Ondansetron DRUGS-ANTIEMETICS

968 Glycopyrrolate DRUGS-CARDIACS

1023 Chloroprocaine 3% DRUGS-LOCAL ANESTHESIA

1121 Ketamine DRUGS-HYPNOTICS

1198 Metoprolol DRUGS-Beta blockers

1204 HYDROmorphone DRUGS-NARCOTICS

1205 Meperidine hydrochloride DRUGS-NARCOTICS

1444 1/2 Normal saline FLUIDS

1446 D10-W FLUIDS

1450 D5 Ringers Lactate FLUIDS

1451 D5-1/2 Normal Saline FLUIDS

1452 D5-1/4 Normal Saline FLUIDS

1455 D5-Normal Saline FLUIDS

1456 NaHCO3 150mEq in D5W FLUIDS

1457 D5-W FLUIDS

1458 D50 FLUIDS

1461 Hextend FLUIDS

1670 Albuterol MDI DRUGS-OTHER

1671 Albuterol Neb 0.5% DRUGS-OTHER

1794 DiphenhydrAMINE DRUGS-OTHER

1846 Glucagon DRUGS-OTHER

1950 EPINEPHrine DRUGS-CARDIACS

1951 Mannitol 25% FLUIDS

1961 Dexmedetomidine DRUGS-OTHER

1968 Hyperal FLUIDS

2071 Packed RBC (ml) BLOOD PRODUCTS

2073 Platelets (ml) BLOOD PRODUCTS

2074 FFP (ml) BLOOD PRODUCTS

2989 Atracurium DRUGS-RELAXANTS

3057 Hespan FLUIDS

3387 NaHCO3 150mEq in Water FLUIDS

3460 Phenylephrine SA DRUGS-LOCAL ANESTHESIA
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3489 FentaNYL SA DRUGS-LOCAL ANESTHESIA

9097 D5-1/2 Normal Saline 20K FLUIDS

10291 OxyCODONE/Acetaminophen 5/325 (for Percocet)DRUGS-NARCOTICS

10297 OxyCODONE CR (for OxyCONTIN) DRUGS-NARCOTICS

10298 EPINEPHrine inh 2.25% DRUGS-CARDIACS

10585 Albuterol Neb 2.5mg DRUGS-OTHER

10647 Racepinephrine Neb 2.25% DRUGS-OTHER P-T

10648 D5-Normal Saline 20 KCL FLUIDS

10652 Ketorolac Tromethamine (for Toradol)DRUGS-OTHER K-O

10665 OxyCODONE IR DRUGS-NARCOTICS

10667 Morphine Sulfate 1mg/ml PCA DRUGS-NARCOTICS

10672 HYDROmorphone 0.5mg/ml PCA DRUGS-NARCOTICS

10689 Propofol (ml) DRUGS-HYPNOTICS

10821 1/2 Normal Saline 20 KCL FLUIDS

10910 Voluven FLUIDS

11292 Normal Saline 20 KCL FLUIDS

11951 Racepinephrine Neb 2.25% (ml) DRUGS-OTHER P-T

14162 Ropivacaine 0.2% w/HYDROmorphone 5mcg/mlDRUGS-LOCAL ANESTHESIA

14163 Ropivacaine 0.2% w/HYDROmorphone 2.5mcg/mlDRUGS-LOCAL ANESTHESIA

14166 Ropivacaine 0.125% w/HYDROmorphone 2.5mcg/mlDRUGS-LOCAL ANESTHESIA

14325 Recomb Factor VII (ml) BLOOD PRODUCTS

14796 Albuterol Neb DRUGS-OTHER
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SurveyHeartAttack 0 Reported No Heart Attack on Survey

1 Reported Heart Attack on Survey

3 Prefer not to answer

SurveyCardiacArrest 0 Reported No Cardiac Arrest on Survey

1 Reported Cardiac Arrest on Survey

3 Prefer not to answer

SurveyHeartFailure 0 Reported No Heart Failure on Survey

1 Reported Heart Failure on Survey

3 Prefer not to answer

SurveyStroke 0 Reported No Stroke on Survey

1 Reported Stroke on Survey

3 Prefer not to answer

SurveyBloodClotLeg 0 Reported No Leg Blood Clot on Survey

1 Reported Leg Blood Clot on Survey

3 Prefer not to answer

SurveyBloodClotLung0 Reported No Lung Blood Clot on Survey

1 Reported Lung Blood Clot on Survey

3 Prefer not to answer

SurveyWoundInfection0 Reported No Wound Infection on Survey

1 Reported Wound Infection on Survey

3 Prefer not to answer

SurveyRespiratoryFailure0 Reported No Respiratory Failure on Survey

1 Reported Respiratory Failure on Survey

3 Prefer not to answer

SurveyPneumonia 0 Reported No Pneumonia on Survey

1 Reported Pneumonia on Survey

3 Prefer not to answer

SurveyNerveInjury 0 Reported No Nerve Injury on Survey

1 Reported Nerve Injury on Survey

3 Prefer not to answer

SurveyGIBleed 0 Reported No GI Bleed on Survey

1 Reported GI Bleed on Survey

3 Prefer not to answer

SurveyUlcer 0 Reported No Ulcer on Survey

1 Reported Ulcer on Survey

3 Prefer not to answer

SurveyDelirium 0 Reported No Delerium on Survey

1 Reported Delerium on Survey

3 Prefer not to answer

30d_Survey_Readdmision0 Reported No Readdmission within 30 days on Survey

1 Reported Readdmission within 30 days on Survey

3 Prefer not to answer

1y_Survey_Readdmission0 Reported No Readdmission within 1 year on Survey

1 Reported Readdmission within 1 year on Survey

3 Prefer not to answer
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Info_Type SubField Output Description

ADT AdmitDtm [DateTime] Hospital Admit DateTime

DischargeDtm [DateTime] Hospital Discharge DateTime

ICU_Unit 10400 ICU ICU Name - Neurosurgery ICU

4400 ICU ICU Name - Surgical/Burn/Trauma ICU

5600 ICU ICU Name - Cardiothoracic ICU

8200 ICU ICU Name - Cardiac ICU

83 CTICU ICU Name - Cardiothoracic ICU

ICU_InDtm [DateTime] ICU Admit DateTime

ICU_OutDtm [DateTime] ICU Discharge DateTime

Diagnoses Value [Text]

Diagnoses related to 

delirium/encephalopathy

Readmissions DischargeDX [Text] Discharge Diagnosis

Re_Adm_IDCode [Continuous] Medical record number for readmission

Re_adm_VisitIDCode [Continuous]

Patient account number (registration) for 

readmission

Re_Adm_Location [Text] Bed assignment for readmission

Re_Adm_AdmitDtm [DateTime] DateTime of Readmission

Re_Adm_AdmitDx [Text] Diagnosis for readmission

DurationBetweenVisits_Days [Continuous]

Duration (days) between initial discharge 

and readmission

Labs SignificantDtm [DateTime] DateTime of Lab Test

Label A-a Gradient Alveolar-Arterial Oxygen Gradient (mmHg)

Albumin Level Plasma albumin level (g/dL)

Alkaline Phosphatase Total Plasma alkaline phosphatase level (units/L)

ALT Plasma alanine transaminase level (units/L)

Anion Gap Plasma anion gap (mmol/L)

AST

Plasma aspartate transaminase level 

(units/L)
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Basophil Absolute Automated

Concentration of basophils in blood 

(K/mm
3
)

Basophil Percent Automated Percent of basophils in blood (%)

Bilirubin Direct Plasma direct bilirubin level (mg/dL)

Bilirubin Total Plasma total bilirubin level (mg/dL)

Calcium Total Plasma calcium level (mg/dL)

Chloride Level Plasma chloride level (mmol/L)

CO2 Total

Plasma bicarbonate level, measured 

(mmol/L)

CO2, Total Calculated, Arterial

Plasma bicarbonate level, calculated from 

arterial blood gas (mmol/L)

Creatinine Level Plasma creatinine level (mg/dL)

Eosinophil Absolute Automated

Concentration of eosinophils in blood 

(K/mm
3
)

Eosinophil Percent Automated Percent of eosinophils in blood (%)

Glucose Level Fasting Plasma glucose level, fasting (mg/dL)

Glucose Level Random Plasma glucose level (mg/dL)

Glucose Ur Qual

Urine glucose, qualitative (negative, 1+, 2+, 

3+)

Glucose WB f POC Plasma glucose level, point of care (mg/dL)

HCT Hematocrit (%)

Hemoglobin A1c Hemoglobin A1c (%)

HGB Hemoglobin level (g/dL)

INR ePOC International normalized ratio (no units)

Lymphocyte Absolute Automated

Concentration of lymphocytes in blood 

(K/mm
3
)

Lymphocyte Percent Automated Percent of lymphocytes in blood (%)

MCH Mean corpuscular hemoglobin (pg)

MCHC

Mean corpuscular hemoglobin 

concentration (g/dL)

MCV Mean corpuscular volume (fL)
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Monocyte Absolute Automated

Concentration of monocytes in blood 

(K/mm
3
)

Monocyte Percent Automated Percent of monocytes in blood (%)

MPV Mean platelet volume (fL)

Neutrophil Absolute Automated

Concentration of neutrophils in blood 

(K/mm
3
)

Neutrophil Percent Automated Percent of neutrophils in blood (%)

NRBC Abs Auto

Concentration of nucleated red blood cells 

in blood (K/mm
3
)

NRBC Pct Auto

Percent of nucleated red blood cells in 

blood (%)

pCO2 Art gPOC

Arterial Partial Pressure of Carbon Dioxide 

(mmHg)

pCO2 Ven gPOC

Venous Partial Pressure of Carbon Dioxide 

(mmHg)

pCO2, Arterial

Arterial Partial Pressure of Carbon Dioxide 

(mmHg)

Percent Inspired Oxygen, Arterial Percent Inspired Oxygen (%)

pH Art gPOC Arterial pH (no units)

pH Arterial Arterial pH (no units)

platelet cPOC Concentration of platelets in blood (K/mm3)

Plt Concentration of platelets in blood (K/mm
3
)

pO2 Art gPOC Arterial Partial Pressure of Oxygen (mmHg)

pO2 Ven gPOC Venous Partial Pressure of Oxygen (mmHg)

pO2, Arterial Arterial Partial Pressure of Oxygen (mmHg)

Potassium Level Plasma Plasma potassium level (mmol/L)

Protein Level Plasma Plasma protein level (g/dL)

PT (Seconds) Prothrombin time (sec)

PT ePOC Prothrombin time (sec)
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PTT Activated Partial thomboplastin time, activated (sec)

PTT Activated. Partial thomboplastin time, activated (sec)

RBC

Concentration of red blood cells in blood 

(M/mm
3
)

RDW CV Red cell distribution width (%)

RDW SD Red cell distribution width (fL)

Sodium gPOC Plasma sodium level (mmol/L)

Sodium iPOC Plasma sodium level (mmol/L)

Sodium Level Plasma sodium level (mmol/L)

Urea Nitrogen Plasma urea nitrogen (BUN) level (mg/dL)

Volume Inspired Oxygen Arterial --

WBC

Concentration of white blood cells in blood 

(K/mm
3
)

Value [Continuous] Value of lab test

Medications SignificantDtm [DateTime]

DateTime medication order is placed in 

electronic medical record

Label ALPRAZolam Tablet

Ampicillin/Sulbactam - CRITICAL 

SHORTAGE

CeFAZolin IVPB

Cefepime IVPB - CRITICAL SHORTAGE

CefOXitin IVPB

CefTRIAXone IVPB

Clotrimazole Troche

Darunavir

Dexmedetomidine Infusion

DiazePAM Injection

DiphenhydrAMINE Oral

Eszopiclone

FentaNYL Bolus from CADD

FentaNYL Infusion
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FentaNYL Injection

Fluconazole Tablet

Haloperidol (immediate-acting) Lactate 

Injection

HYDROmorphone Bolus from CADD

HYDROmorphone Injection

HYDROmorphone PCA

Insulin Glargine for LANTUS

Insulin Lispro for HumaLOG

Insulin Lispro-Sliding Scale for HumaLOG

Insulin NPH for HumuLIN-N

Insulin Regular for HumuLIN-R

Insulin Regular Infusion

LORazepam Injection

LORazepam Tablet

Maraviroc

Metoclopramide Injection

Micafungin IVPB

Midazolam Infusion

Midazolam Injection

Morphine Injection

Nystatin Liquid

Ondansetron Injection

Oxacillin IVPB

OxyCODONE Liquid

OxyCODONE Tablet Immediate-Release

OxyCODONE/Acetaminophen 5/325 mg

Piperacillin/Tazobactam

QUEtiapine Tablet

Raltegravir

Ramelteon
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Ritonavir Tablet

Trimethobenzamide Injection

DosageLow [Continuous]

Medication dose (low end of range, if 

applicable)

DosageHigh [Continuous] Medication dose (high end of range)

UOM [Categorical] Unit of measure for dosage

FrequencyCode [Categorical] Frequency of medication order

Duration_Days [Continuous]

Number of days during which medication 

order was active

Clinical Documentation 

- 01. Vital Signs SignificantDtm [DateTime] DateTime of vital sign record

Intensity [Continuous] Numeric rating scale (0-10) pain score

Behaviors Calm

Agitated

Tool Used 0-10 Scale

Faces

Non Communicative

Patient Goal [Continuous] Patient's target pain score

Location [Categorical] Location of pain

Pain Management [Categorical] Nurse response to current pain score

Effectiveness of Pain Interventions Obtaining relief

Partial relief

No relief

Clinical Documentation 

- 03. Assessment/IPOC SignificantDtm [DateTime] DateTime of CAM-ICU Assessment

CAM-ICU Overall Score [Negative/Positive] CAM-ICU Result (delirium assessment)

Feature 1:  Acute Onset or 

Fluctuating Course [Negative/Positive] Feature 1 of CAM-ICU

Feature 2:  Inattention [Negative/Positive] Feature 2 of CAM-ICU

Feature 3:  Altered Level of 

Consciousness [Negative/Positive] Feature 3 of CAM-ICU
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Feature 4:  Disorganized Thinking [Negative/Positive] Feature 4 of CAM-ICU

RASS: If -4 or -5, STOP Reassess later [Categorical]

Indicates whether CAM-ICU is 

contraindicated (e.g., because patient is too 

sedated)

Clinical Documentation 

- Fall Event Note SignificantDtm [DateTime]

Fall Date/Time [DateTime] DateTime of Fall

Injury [Yes/No]

Indicates whether fall resulted in patient 

injury

Injury Details [Text] Description of injury

Clinical Documentation 

- Neuro Flowsheet SignificantDtm [DateTime] DateTime of RASS Assessment

Behaviors Calm

Agitated

Restless

RASS Score Numeric [Continuous]

Richmond Agitation Sedation Scale score (-4 

to 4)

RASS Sedation Scale [Categorical] Verbal description of RASS numeric score

Clinical Documentation 

- Intubation Procedure 

Note SignificantDtm [DateTime] DateTime of Intubation Note

Intubation Type [Emergent/Elective]

Paralytics Given [Yes/No]

Procedure Date/Time [DateTime] DateTime of Intubation

Sedation Given [Yes/No]

Clinical Documentation 

- Patient Profile SignificantDtm [DateTime] DateTime of assessment

Does patient currently have a 

tracheostomy tube? [Yes/No]
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Does patient have a history of 

laryngectomy? [Yes/No]

Clinical Documentation 

- Ventilator Flowsheet SignificantDtm [DateTime] DateTime of ventilator event

Modes/Bagged A/C - VC Assist control - volume control (AC-VC)

A/C - VC+ Assist control - volume control + (AC-VC+)

A/C - PC Assist control - pressure control (AC-PC)

BiPAP Bilevel positive airway pressure (BiPAP)

Continuous Positive Airway Pressure Continuous positive airway pressure (CPAP)

SIMV - VC

Synchronized intermittent mandatory 

ventilation (SIMV)

SIMV-PC

Synchronized intermittent mandatory 

ventilation (SIMV)

SIMV-VC

Synchronized intermittent mandatory 

ventilation (SIMV)

SPONT-VC Pressure support (PSV)

Synchronized intermittent mandatory 

ventilation

Synchronized intermittent mandatory 

ventilation (SIMV)

Ventilator Pulmonary Event Extubation

Re-intubation

Ventilator start Start of mechanical ventilation

Ventilator stop End of mechanical ventilation

Weaning end

Weaning start
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