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S1. Description of the multistate modelling framework and parame-

ter estimation

Within each district we assumed the population was either free from poliovirus circulation (uninfected)

or infected with poliovirus. These assumptions correspond to a two-state Markov process with constant

hazard rates λ and γ of infection and recovery, respectively. A Markov process is one in which the

future state of the system depends only on the present state of the system and not on the total history.

Using the steps outlined in Gentleman et al. [1], the transition probability matrix can be derived for

this and more complex systems, and is essentially a function of the hazards λ and γ. A transition

probability matrix P (t) is used to represent the probability of moving from one state to another, where

p denotes the transition intensity of moving from uninfected to infected and 1 − q refers to moving

from infected to uninfected. For a two-stage Markov model the transition intensities can be easily

calculated by solving the differential equations that describe the system;

P (t) =

[
1− p p

1− q q

]
=

[
1

λ+γ (λ+ e−(λ+γ)t) λ
λ+γ (1− e−(λ+γ)t)

γ
λ+γ (1− e−(λ+γ)t) 1

λ+γ (λ+ γe−(λ+γ)t)

]

The state of the system within district i(i = 1, ...,M) at time t(t = 1, ..., T ) is denoted by zit,

where a value zit = 0 denotes an uninfected district and a value zit = 1 denotes an infected district.

The initial conditions for z (ie. zit=0) are estimated. It is important to note that zit is an augmented

(latent) parameter, as the true infection status is not directly observed but only estimated through

the surveillance data. The AFP data are denoted by xit where if xit = 0 then no poliomyelitis cases

were reported in the district and if xit = 1 then at least 1 poliomyelitis case was reported within the

time period and the sensitivity of one AFP month is denoted by α, in other words the probability

of a positive result in an infected district, p(xit = 1|zit = 1), is equal to α. The environmental data

consist of ysit positive samples from s sites within each district, from a total of nsit samples tested

that month, with sensitivity ω per sample. In the first instance we assume that ω does not vary and

consequently yit =
∑S

s=1 ysit and nit =
∑S

s=1 nsit. In this way the Markov model utilizes data on the

infection status whilst allowing for error in reporting due to suboptimal sensitivity of each surveillance

system.
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Within a Bayesian framework the posterior density of the parameters are a function of the likelihood

of the model and the priors of the parameters and augmented data;

π(λ, γ, α, ω) = p(λ)p(γ)p(α)p(ω)
M∏
i=1

T∏
t=1

p(xit|zit, α)p(yit|zit, nit, ω)p(zit|zit−1, λ, γ)

The model parameters were estimated using Markov chain Monte Carlo (MCMC) methods [2].

Where the surveillance sensitivity parameters (α and ω) take one value they were estimated using a

Gibbs sampler where priors were assumed to be beta distributed with parameters α1 = 2 and β1 = 2

in the case of α and α2 = 2 and β2 = 2 in the case of ω. The augmented data z were updated using a

Gibbs sampler based on the current values of the transition intensities, the data and values of α and

ω. The posterior estimate of zi was used in estimation of the false omission rate. The parameters λ

and γ were estimated using the Metropolis-Hastings step and the priors for λ and γ were log-normally

distributed with mean (λm = −2 and γm = −2) and variance (λv = 0.1 and γv = 0.1).

The model described above was extended the test hypotheses of variation in the sensitivity of each

surveillance system. District variation in sensitivity of AFP surveillance was included by allowing α

to vary by district, first assuming independence of each district and sampling estimates via a Gibbs

sampler. A linear relationship between the sensitivity of αi and the incidence of poliomyelitis ki

(on a log10 scale) was modelled assuming log
(

αi
1−αi

)
= g + hki where g and h were estimated using

the Metropolis-Hastings step. For environmental surveillance a similar approach was taken, first

assuming independence and then exploring additional functional forms. A mixed effects model was

assumed where the sensitivity at each site took the form log
(

ωsi
1−ωsi

)
= β + bi + εsi where β was

the average sensitivity and was modelled assuming β ∼ Normal(µβ, σ
2
β), bi was the district random

effects which were modelled assuming bi ∼ Normal(0, σ2b ), and εsi were the site random effects which

were modelled assuming εsi ∼ Normal(0, σ2ε ). Each parameter (β, σ2b and σ2ε ) was estimated using

a Gibbs sampler where the priors on the variances were inverse gamma distributed. In another

model sensitivity was assumed to be a function of catchment size msi (on a log10scale). A cubic

relationship was assumed between catchment size and sensitivity to allow for a non-linear relationship

(ie. log
(

ωsi
1−ωsi

)
= dm3

si + cm2
si + bmsi + a), where a, b, c and d were estimated, and simpler models

were tested by assuming each parameter was equal to zero (ie. for a quadratic model d = 0). The fit

of these alternative models to the data were compared using Bayes factors.

S2. Estimation of catchment area size from digital elevation mod-

elling

During wastewater sample collection, GPS coordinates are taken of the sampling location, where

in subsequent visits the same location is sampled. The catchment area of sampling locations has

been estimated using a digital elevation modelling approach, where the resolution of the topography

is 30x30m [3]. The topography of the landscape and river flows are used to identify land areas

where wastewater is likely to flow towards the environmental sampling site. The estimated polygon

is overlaid onto resolute population size estimates of Pakistan, available at a 100x100m resolution

[4]. The estimates of catchment areas do not include any information regarding sewer networks in

Pakistan, largely because the information is unavailable. A summary of the estimated catchment sizes

(as of March 2016) are shown in S1 Table.
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S3. Estimation of Bayes factors using thermodynamic integration

Bayes factors were estimated using thermodynamic integration (TI) methods, which enabled compar-

ison of the different multistate models [5]. These methods lend themselves well to estimation of model

fit in a framework with augmented data such as multistate models, because they are not reliant upon

knowing the number of parameters within a model (unlike the better-known deviance information cri-

teria). Given a model M , with parameter vector θ and applied on dataset D, the posterior probability

distribution is given by Bayes Theorem;

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)

where p(θ|M) is the prior distribution, p(D|θ,M) is the likelihood function, and

p(D|M) =

∫
θ

p(D|θ,M)p(θ|M)dθ

is the normalization constant, sometimes referred to as the model evidence, that may be interpreted

as the marginal likelihood of model M given the data D only. There are many different methods

available to numerically sample p(D|M), and owing to its general applicability and more robust

statistical framework TI is used. The TI methods exploit the power posterior defined as follows:

pβ(θ|D,M) =
p(D|θ,M)βp(θ|M)

p(D|β,M)

where p(D|β,M) is a normalizing constant;

p(D|β,M) =

∫
θ

p(D|θ,M)βp(θ|M)dθ

the gradient of the log of the power-posterior, log(p(D|M)) is equivalent to the expected log-

likelihood of θ, where the expectation is taken over the power posterior. This can be approximated by

selecting r values of β ranging from 0 to 1, estimating the power posterior and using Simpson’s Rule

to estimate the model evidence (equivalent to the area under the curve). Note that this estimate can

become computationally intensive as each value of β requires an MCMC output of sufficient length

to limit estimation error, and r needs to be sufficiently large to reduce discretization error from the

values of β. In this application r = 50 and 100,000 iterations of the MCMC chain were used. Methods

to improve the efficiency of TI approximations are an important area of research.

When two models M0 and M1 are being compared, the Bayes Factor refers to

B01 =
p(D|M1)

p(D|M0)

which on a log-scale is log(p(D|M1))− log(p(D|M0)). Values greater than 1 favor M1, while values

less than 1 favor M2, although the cut-off chosen may vary between applications. Here simulations

(described below) indicated that a cut-off of 1.00 may limit type II errors.
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S4. Simulations to test the model framework

Simulated data were used to test whether the model framework was able to accurately estimate

parameter values and identify the correct model. Values of ω and α were varied and 100 simulations

were generated for each parameter set. The model parameters were re-estimated and the median

and 95% CI were compared to the simulated values; simulations correctly re-estimating parameters

included the values within the 95% CI. Variation in ω was tested using Bayes Factors between the

simple model and a model that included variation in ω, if the Bayes Factors were >1.00 then there was

evidence for the more complex model being a better fit to the data. These simulations were repeated

10 times for each parameter set.

Figure S1 illustrates that estimates of surveillance sensitivity were both accurate and precise for

outputs from the model without covariates. A difference in environmental sensitivity (ω) between

districts could be detected if the difference was >10% and if AFP sensitivity was near 50% (Table

S2). For example when AFP sensitivity (α) was 50% and the difference in environmental sensitivity

was greater than 20% all simulations selected the model with variation in sensitivity of environmental

sampling, when the simulated difference in environmental sensitivity was less pronounced model selec-

tion was less accurate. When α = 0.1 model selection was still able to detect a difference in sensitivity

when the true difference in ES sensitivity was more than 20% but at values less than 20% there was

insufficient discriminatory power to correctly identify variation in ω.

S1 Figure. Comparison of simulated (x-axis) and estimated (y-axis) values to compare the accuracy

and precision of (A) AFP and (B) environmental surveillance sensitivity. For clarity the simulated

values are jittered across the x-axis. The grey lines indicate the 95% credible intervals of the posterior

distribution for the sensitivity parameters.
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1 Tables

S1 Table. Environmental sampling sites in Pakistan. Catchment size estimates were obtained
from the Novel-t website. Estimates of sensitivity are from the model assuming a mixed effects
structure.

District Site Ref Site Ref Numbers of
people within
catchment area
(March 2016)

Sensitivity estimate
(95 % CrI)

DIKhan MODC 1 PAK/KP/DIK/MD-1 2,750 33.6 (14.3 ,56)
Sher Pao Basti
Drain

2 PAK/KP/DIK/SP-1 14 35.2 (16.2 ,57.9)

Zafar Abad Drain 3 PAK/KP/DIK/ZA-1 6,660 33.3 (14.5 ,57.2)
Peshawar LRM, Lara Ma 1 PAK/KP/PWR/LM-1 29,159 63.3 (51.3 ,74.1)

Shaheen town 2 PAK/KP/PWR/ST-1 39,105 79.2 (69 ,87.6)
Islamabad Sabzi Mandi 1 PAK/IB/CDA/SM-1 457,953 58.7 (29.5 ,81.5)
Rawalpindi Dhok Dalal 1 PAK/PB/RWP/DD-1 60,339 64.6 (43.3 ,82.7)

Safdar abad (Haz-
ara Colony)

2 PAK/PB/RWP/SA-1 85,757 72.3 (58 ,83.8)

Lahore Gulshan-e-Ravi PS 1 PAK/PB/LHR/GR-1 458 47.7 (33.4 ,62)
Multan road Dis-
posal Station

2 PAK/PB/LHR/MR-1 14,470 54.2 (39.4 ,67.5)

Main Outfall PS 3 PAK/PB/LHR/OF-1 117,615 57 (45.3 ,68.1)
Faisalabad PS-3 1 PAK/PB/FSD/GM-1 241,924 43.2 (21.8 ,68.6)

PS-27 2 PAK/PB/FSD/GM-2 204,014 36.9 (15.8 ,61.3)
Ismail City Road 3 PAK/PB/FSD/IR-1 4,638 35.2 (14.7 ,60.2)

Multan Ali Town 1 PAK/PB/MUL/AT-1 47,379 52.4 (35.1 ,68.5)
Kotla Abdul Fatah 2 PAK/PB/MUL/KF-1 703,134 49.8 (31.8 ,66.2)
Suraj Miani 3 PAK/PB/MUL/SM-1 564,875 54.6 (37.8 ,71.1)

Sukkur Makka PS 1 PAK/SD/SUK/NS-1 300,865 52.3 (34.4 ,69.4)
Miani PS Taluka 2 PAK/SD/SUK/SC-1 165,083 52.9 (35.1 ,71.9)

Hyderabad Tulsidas PS 1 PAK/SD/HYD/HC-1 96 76.1 (61.3 ,88.7)
Karachi: Sajjan Goth 1 PAK/SD/KHI/BD-1 316,094 50.2 (35.6 ,66.4)
Baldia Composite Site 2 PAK/SD/KHI/BD-3 47,537 57.5 (41.9 ,71.5)
Karachi: Machhar Colony 1 PAK/SD/KHI/GP-1 236,028 63.3 (50.8 ,75.5)
Gadap Sohrab Goth 2 PAK/SD/KHI/GP-2 58,922 71.5 (58.3 ,82)

Khamiso Goth 3 PAK/SD/KHI/GP-3 236,028 44.4 (28.1 ,60.7)
Karachi: Chakora Nulla 1 PAK/SD/KHI/GI-1 119,878 46.3 (32.6 ,60.2)
Gulshan-e-
Iqbal

Rashid Minhas
road

2 PAK/SD/KHI/GI-2 467,832 63.2 (48.3 ,75.7)

Quetta Jam-e-Salfia 1 PAK/BN/QTA/JS/1 51,080 44.9 (30.6 ,58.5)
Killi Jatak and
Takhthani By-Pass

2 PAK/BN/QTA/JT/1 17,019 64.2 (50.7 ,77)

Surpul 3 PAK/BN/QTA/SP-1 744,173 50.8 (34.2 ,67.2)
Killa Abdul-
lah

Army Kaziba 1 PAK/BN/KAB/AK-1 6,169 54.7 (31.4 ,74.1)

Hadi Packet 2 PAK/BN/KAB/HP-1 241 45.6 (25 ,67.6)
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S2 Table. Simulations to test detection of a difference in environmental sampling sen-
sitivity between districts. Different values of AFP and ES sensitivity were assumed and used
to simulate data (10 datasets per scenario), parameters were estimated using a model with one ES
parameter and a model where ES sensitivity varied between districts, and Bayes Factors were used to
compare model fits. In all simulations the rate of infection (λ) was 0.1 and the rate of recovery (γ)
was 1/6 months. Correct identification of the extended model was when the Bayes factor was ≥1.00.

Sensitivity of
AFP (α)

Sensitivty ES1
(ω1)

Sensitivty ES2
(ω2)

% simulations correctly
identifying ES variation

Average
Bayes
factor

0.1 0.5 0.1 70 7.03
0.1 0.5 0.2 100 7.56
0.1 0.5 0.3 20 -2.42
0.1 0.5 0.4 0 -12.79

0.5 0.5 0.1 100 57.65
0.5 0.5 0.2 100 30.04
0.5 0.5 0.3 50 0.12
0.5 0.5 0.4 0 -12.43

S3 Table. Bayes factors for each model applied to AFP and environmental surveillance
data of poliovirus in Pakistan, January 2011 to August 2015. A Bayes factor greater than
1.00 indicates an improved model fit when compared to the baseline model. The starred models have
an improved fit to the data in comparison to the simplest model and the overall best-fitting model is
highlighted in bold.

Model Assumption
for AFP surveillance

Assumption for en-
vironmental surveil-
lance

Number
of param-
eters

Model ev-
idence

Bayes
Factor

One value One value 4 -481.5 NA
Independent values per
district

One value 17 -508.2 -26.7

Linear increase with
log10(incidence)

One value 5 -426.8 54.6*

One value Independent values per
district

17 -575.0 -93.5

Independent values per
district

Independent values per
district

30 -591.9 -110.4

Linear increase with
log10(incidence)

Independent values per
district

18 -514.7 -33.2

One value Linear increase with
catchment size

5 -485.2 -3.7

Independent values per
district

Linear increase with
catchment size

18 -508.8 -27.3

Linear increase with
log10(incidence)

Linear increase with
catchment size

6 -432.0 49.5*

One value Mixed effects structure 5 -575.9 -94.5
Independent values per
district

Mixed effects structure 18 -592.6 -111.2

Linear increase with
log10(incidence)

Mixed effects structure 6 -516.7 -35.3
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S2 Figure. Prior and posterior distributions for each of the parameters in the best-fitting model A)

The infection rate (λ) B) the recovery rate (γ) C) Sensitivity of environmental surveillance (ω) for

each sampled site D) Sensitivity of AFP surveillance (α) for each district.

7



References

[1] Gentleman, R. C., Lawless, J. F., Lindsey, J. C. & Yan, P. Multi-state Markov models for analysing

incomplete disease history data with illustrations for HIV disease. Statistics in medicine 13, 805–21

(1994). URL http://www.ncbi.nlm.nih.gov/pubmed/7914028.

[2] Robert, C. & Casella, G. Introducing Monte Carlo Methods with R, vol. 83 (Springer New

York, New York, NY, 2010), 1st editio edn. URL http://link.springer.com/10.1007/

978-1-4419-1576-4.

[3] Novel-t. Catalogue of Environmental Sites Supporting Polio Eradication (2016). URL http:

//maps.novel-t.ch/#/catalog/all.

[4] Gaughan, A. E., Stevens, F. R., Linard, C., Jia, P. & Tatem, A. J. High reso-

lution population distribution maps for Southeast Asia in 2010 and 2015. PloS one

8, e55882 (2013). URL http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=

3572178{&}tool=pmcentrez{&}rendertype=abstract.

[5] Lartillot, N. & Philippe, H. Computing Bayes factors using thermodynamic integration. Systematic

biology 55, 195–207 (2006). URL http://www.ncbi.nlm.nih.gov/pubmed/16522570.

8

http://www.ncbi.nlm.nih.gov/pubmed/7914028
http://link.springer.com/10.1007/978-1-4419-1576-4
http://link.springer.com/10.1007/978-1-4419-1576-4
http://maps.novel-t.ch/#/catalog/all
http://maps.novel-t.ch/#/catalog/all
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3572178{&}tool=pmcentrez{&}rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3572178{&}tool=pmcentrez{&}rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/16522570

	Tables

