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SI Text
Basic Kinetic Equations. We subdivide the 2D space into a regular
lattice of N square cells, the position of each cell center being
labeled by a vector with integer components, n∈Z2. The length
of the cells is R0, such that R2

0 =πR2, where R is the radius
of the circular prey patches used in the simulations. This rela-
tion ensures that the area occupied by a prey patch is the same
in simulations as in this theory. In addition, R0� 1, where the
unit length represents the minimal distance that a predator can
move during a displacement step. Only a subset of cells (patches)
can contain prey, and for simplicity, such cells form a square
sublattice with periodicity l0, with l0 being an integer > 1 (i.e.,
the patches have positions of the form l0n). Hence, the num-
ber of patches is Np =N /l20 . Each prey patch can contain up
to KR2

0 prey, where K is the carrying capacity. In this space,
predators perform independently random walk steps at a rate
λ0. The predator steps are continuous. The movements of the
predators are described at the coarse-grained scale of the cells
by a step probability distribution P(`), where `=(`x , `y) is a
displacement vector with integer components, like n, describing
the jump from one cell to another. We consider displacements
with independent components drawn from the same distribution
p(n): P(`)= p(`x )p(`y), where

p(`) = p0δ`,0 + (1− p0)f (`). [S1]

The distribution f (`) is normalized, such that f (0) = 0:∑
`=±1,±2,...

f (`) = 1. [S2]

From the above expressions, p2
0 = p(` = 0)2 represents the prob-

ability that the predator remains in the same cell after a move
(when its actual step is too small to exit the cell).

We denote as an(t) and bn(t) the densities of predators and
prey in cell n at time t , respectively (the number of individuals in
the cell divided by R2

0). Prey are confined to their patches; thus,
bn is zero everywhere except if n is of the form l0m with m∈ Z2.
Assuming that the number of individuals in each occupied cell is
large, we neglect stochastic fluctuations and write a deterministic
rate equation for an:

dan(t)

dt
= −λ0an(t) + λ0

∑
`

P(`)an−`(t)

+λan(t)bn(t)− µan(t), [S3]

where λ and µ are the reproduction and mortality rates of the
predator, respectively. The rate equation for bn is

dbn

dt
= σbn

(
1− bn + an

K

)
− λ′anbn, [S4]

where σ is the prey reproductive rate and λ′ is the predation
rate. In Eq. S4, prey has a limited effective reproduction due to
spatial constraints. In the corresponding stochastic lattice model
exposed in the text, two individuals cannot occupy the same site.
Prey will reproduce only if a randomly chosen neighboring site is
empty, which occurs with probability 1− (bn + an)/K . To gener-
ate an offspring, a predator must encounter a prey, which occurs
with probability proportional to bn. Therefore, predation is rep-
resented by the term −λ′anbn in Eq. S4, and predator reproduc-
tion is represented by λanbn in Eq. S3.

Steady-State Solution. Because of their deterministic nature, the
above equations are not appropriate to study patch extinction

caused by demographic fluctuations. They are nevertheless use-
ful as a first step to evaluate the average distribution of predators
(and prey) in the system. We study the steady-state solutions of
Eqs. S3 and S4 corresponding to species coexistence denoted as
an and bn. Since prey patches are regularly spaced, we consider
periodic solutions where the densities are the same in all prey
patches, which we denote as al0m = a0 and bl0m = b0. Setting the
time derivatives to zero in Eq. S4 and looking for nonvanishing
solutions, we have, from [S4],

b0 = K − a0(1 +Kλ′/σ), [S5]

with a0 yet to be determined. We introduce the discrete Fourier
transforms

â(k) ≡
∑

n

ane
−ik·n, f̂ (k) ≡

∑
`

f (`)e−ik·`. [S6]

The transform of Eq. S3 leads to the stationary solution in
Fourier space:

â(k) =
λa0[K − a0(1 +Kλ′/σ)]

λ0[1− P̂(k)] + µ

∑
n

cos(l0k · n), [S7]

where [S5] has been used. In [S7], the sum has as many terms
as the number of patches, and P̂(k) is the Fourier transform of
the displacement distribution P(`). The constant a0 is obtained
self-consistently from the inverse Fourier transform of â(k) eval-
uated at n = 0:

a0 =
1

(2π)2

∫ π

−π
dkx

∫ π

−π
dky â(k) ≡ 1

(2π)2

∫
B
dk â(k), [S8]

where B denotes the first Brillouin zone of the square lattice.
From [S7], we obtain, apart from the trivial solution a0 = 0,

a0 =
1

1 + Kλ′
σ

K − 1
λ

(2π)2

∑
n

∫
B
dk cos(l0k·n)

λ0[1−P̂(k)]+µ

. [S9]

Using the identity
∑M

n=−M e inx = sin[(M + 1/2)x ]/ sin(x/2),
one can also rewrite [S9] as

a0 = lim
M→∞

1

1 + Kλ′
σ

×

K − 1
λ

(2π)2

∫
B

dkx dky

λ0[1−P̂(k)]+µ
sin[(M+1/2)l0kx ] sin[(M+1/2)l0ky ]

sin(l0kx/2) sin(l0ky/2)

.
[S10]

Above, (M + 1)2 is identified with the number of patches, and
the limit is practically reached for M ' 50. From [S1],

P̂(k) = [p0 + (1− p0)f̂ (kx )][p0 + (1− p0)f̂ (ky)]. [S11]

Inserting [S9] or [S10] into [S7] gives the full spatial distribu-
tion of predators in Fourier space. Of particular interest here is
the total number of predators Na in the system, which is directly
deduced from the identity

Na = R2
0

∑
n

an = R2
0 â(k = 0). [S12]

The spatially averaged predator density a∗≡ (
∑

n an)/N =

Na/(NR2
0) is also given by Na/(Np l

2
0R

2
0). Using [S7], where the

sum runs over the number of patches, and using the fact that
P̂(k = 0) = 1 by normalization, one obtains

a∗ =
λ

µl20
a0[K − a0(1 +Kλ′/σ)]. [S13]
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Hence, the combination of Eqs. S9 and S13 gives the predator
abundance. Similarly, the prey density in the patches, b0, is read-
ily obtained by combining Eq. S5 with Eq. S9. In simulations, we
computed the number of prey per unit area b∗ (averaging over
all sites, including empty ones). In the present theory, b∗ is thus
given by

b∗ =
b0
l20

=

(
λl20

(2π)2

∑
n

∫
B

dk
cos(l0k · n)

λ0[1− P̂(k)] + µ

)−1

. [S14]

Predator Movements [p0 and f(`)]. Before proceeding to an analy-
sis of the above solution, we need to evaluate p0. Consider preda-
tors that take random continuous displacement steps (lx , ly) with
density distribution ps(lx , ly), such that the components lx and ly
are independent and identically distributed:

ps(lx , ly) = g(lx )g(ly). [S15]

We also impose that |lx | and |ly | are larger than one (the minimal
displacement length mentioned earlier), namely that g(x ) = 0
for |x | < 1. Since there are no preferred directions, we take
g(x ) as symmetric, g(−x ) = g(x ), and given by the power law
expression

g(x ) =
β − 1

2
|x |−β for |x | > 1 [S16]

= 0 for |x | < 1, [S17]

where β is the exponent of the model. The above distribution is
normalized to unity:

∫∞
−∞ dx g(x ) = 1. In this description, the

long steps do not carry an additional time cost compared with
short steps. We discuss in the last section the biological compat-
ibility as well as the limitations of such an assumption.

To calculate p0, we consider the 1D case, where cells are seg-
ments of length R0, and assume that a walker that occupies a
given segment can be anywhere inside it with uniform probabil-
ity. The probability that a step does not bring the walker out of
the segment is given by

p0 = 2

∫ R0

0

dr

R0

∫ r

0

dx g(x ) =
2

R0

∫ R0

1

dr

∫ r

1

dx g(x ), [S18]

where the walker position has been averaged and the factor 2
takes into account left and right moves. We thus obtain

p0 = 1− 1

R0
+

1− R2−β
0

(2− β)R0
. [S19]

Therefore, the effect of the patch size is incorporated via p0.
When β is large (a random walk with jumps of unit length),
p0 ' 1 − 2/R0 → 1 at large R0: only the predators that are
close to the edges of the segment can exit in one step. Conversely,
p0 → 0 as β → 1, which is expected if the walkers nearly always
take steps larger than R0. We may extend the above arguments
to calculate p(`) for any integer `. Instead, for simplicity, we will
use from now on a power law form with integer argument for the
normalized distribution function f (`) appearing in Eq. S1:

f (`) =
|`|−β

2
∑∞

m=1 m
−β , ` = ±1,±2, ... [S20]

Numerical Implementation.
Parameter values. In the numerical examples, we set K =1. In
the above analytic theory, the patches have a square shape,
whereas they are circular in the stochastic simulations. To com-
pare the two approaches, as mentioned in the first section above,
we choose R0, such that the patch areas are equal in both cases;
that is,

R0 = R
√
π, [S21]

where R is the patch radius used in simulations. Substituting R
by Eq. 8 (in scenario 1), one obtains

R0 =

√
µ

2n
L, [S22]

where n is the number of patches contained in the square simu-
lation domain, which has L×L sites. In addition, we require that
the distance between two neighboring patch centers in the ana-
lytic theory (R0l0) is equal to the mean distance between neigh-
boring patches in simulations (L/

√
n). In other words, the patch

density is the same in both systems, which implies that

l0 =

√
2

µ
. [S23]

Recalling that l0 is an integer, we round off this value. Therefore,
for the results displayed in Fig. 5, the parameters are

µ = 0.05, R0 = 7.07, l0 = 7

µ = 0.11, R0 = 10.48, l0 = 4

µ = 0.20, R0 = 14.14, l0 = 3, [S24]

with L = 500 and n = 125 in all cases. For the theoretical results
reported in Fig. 6B, one has used L = 200, µ = 0.05 and R0 =
7.07, and the other parameters are

n = 5, l0 = 13

n = 40, l0 = 5

n = 80, l0 = 3. [S25]

Theoretical prey curves (Fig. 5, Lower). The theoretical prey den-
sity (averaged over space) is obtained by using Eq. S14. The
fraction of area covered by the prey patches is chosen such that
predators go extinct in scenario 1 when β ∼ 1 (in the text and the
section below on the MF approximation). Therefore, by decreas-
ing β, the predator density decreases and vanishes at some point.
At this same point, the prey density reaches its maximum carry-
ing capacity value, b0 = K , or

b∗ = Atheor × b0 =
K

l20
, [S26]

where Atheor is the fraction of area covered by the patches in
the analytic model (that is to say, the fraction of cells that are
patches). In simulations, patches are not regularly spaced but
randomly distributed in space. Therefore, some overlap can exist
between them, resulting in Asimul < Atheor , despite of the fact
that the area of a patch and the number of patches per unit area
are set equal in both models. Consequently, the resulting max-
imal prey abundance (b∗) will be overestimated in theory com-
pared with simulations. For easier comparison, we have rescaled
the theoretical curves of b∗ as a function of β by the factor
Asimul/Atheor , so that the spatially averaged carrying capacities
of both systems are equal in the absence of predators. Hence, the
theoretical and simulation curves of b∗ start at the same point at
small β in scenario 1 (Fig. 5, Lower).
Discretization and number of patches. To calculate the Fourier
integrals, we resort to the approximation

1

(2π)2

∫
B
dkxdky →

1

N 2

N ′∑
nx=−N ′

N ′∑
ny=−N ′

, [S27]

with N =2N ′ + 1 and where the wave numbers have been dis-
cretized as kx = 2π

N
i and ky =

2π
N
j with i and j integers, respec-

tively, comprised in [−N ′,N ′]. We consider a square regular
domain of 2M × 2M patches [with M =400; that is to say, of
(2Ml0)

2 sites]. This value of M is used in Eq. S9 or S10. This
domain is itself embedded in a larger empty square lattice con-
taining N × N sites. We choose N =2Ml0 + 8000l0. This geom-
etry is aimed at reducing errors due to the difficulty of evaluating
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the Fourier integrals at small k when very large steps are frequent
(limit β close to one; in the MF approximation section below).

Movement Strategy Maximizing a∗. We see that the spatially aver-
aged density of predators a∗ in Eq. S13 obeys a logistic relation
with respect to a0, the density of predator in one prey patch.
Thus, a∗ is maximal when a0 = a

(max)
0 ≡K/[2(1 + Kλ′/σ)],

whereas it vanishes at a0 =0 and at a0 =K/(1 + Kλ′/σ)=

2a
(max)
0 . In the low-density regime, 0< a0< a

(max)
0 , the preda-

tors underexploit the patches (any increase in a0 produces an
increase of a∗), whereas for a

(max)
0 < a < 2a

(max)
0 , the high-

density regime, the predators overexploit the patches (any
increase in a0 decreases the total abundance). Keeping all of
the parameters of the model fixed except β, the density a0 given
by [S9] can be varied and tuned to a

(max)
0 ; thus, there should

be a movement strategy that maximizes the whole-population
abundance.

Through the parameter p0 or λ0, Eq. S9 predicts that faster
diffusion always results in a decrease of a0. All of the other
parameters being fixed, the largest possible value of a0 is
obtained in the absence of movement (p0 =1 or λ0 =0) and
reads a

(no move)
0 =(K − µ/λ)/(1 + Kλ′/σ). Therefore, some

amount of movement will increase the entire population if
the latter value is located in the overexploitation regime or if
a
(no move)
0 > a

(max)
0 , which implies that

µ <
Kλ

2
. [S28]

This condition is fulfilled in the simulations (K =1, λ=1, µ� 1)
and in the other cases considered here.

The optimal strategy is obtained by solving the equation a0 =

a
(max)
0 , which gives, using Eq. S9,

1

(2π)2

∑
n

∫
B
dk

cos(l0k · n)
1− P̂(k) + µ∗

=
2

Kλ∗
, [S29]

where

µ∗ =
µ

λ0
and λ∗ =

λ

λ0
[S30]

are the dimensionless mortality and reproductive rates (with
respect to the movement rate), respectively. Mobile organisms
typically have µ∗ < Kλ∗ � 1. To summarize, Eq. S29 combined
with Eqs. S11, S19, and S20 gives the optimal βc . Therefore, this
exponent is a function of four variables and is not universal a
priori: βc = βc(µ

∗,Kλ∗,R0, l0).

MF Approximation of the SLLVM. In the SLLVM studied in the
paper, n patches of radius R are randomly distributed on a
square lattice of length L. The carrying capacity is K = 1 for the
sites belonging to the patches and K = 0 elsewhere. The fraction
of area covered by the patches is given by Asimul ' nπR2/L2 in
simulations at small patch density (few overlap between patches)
and by Atheor = 1/l20 in the analytic model. A simple MF solu-
tion of our SLLVM can be obtained when the predators are well-
mixed across the system (i.e., in the random relocations regime
or β close to one). Neglecting spatiotemporal fluctuations, we
start from Eqs. S3 and S4. In the MF approximation, an is uni-
form, independent of the cell position n, and set to a(MF). A con-
sequence of uniformity is the cancellation of the first two terms
of the right-hand side of Eq. S3 that describe movement fluxes.
Denoting the prey density in a patch as b

(MF)
0 , one obtains the

following equations of evolution:

db
(MF)
0

dt
= σb

(MF)
0

[
1− b

(MF)
0 + a(MF)

K

]
− λ′a(MF)b

(MF)
0

[S31]

da(MF)

dt
= λb

(MF)
0 a(MF)A− µa(MF). [S32]

The first equation is unchanged compared with Eq. S4 for the
prey density on a single patch. The second equation is like that
of predators on a single prey patch in the absence of movement
(λ0 = 0), except that the reproduction term has been multiplied
byA. This is due to the fact that only the predators that occupy a
patch (a fractionA of them) can reproduce and contribute to the
growth of a(MF) in the whole system. The ordinary differential
equations [S31] and [S32] yield an average predator abundance
in the steady state given by

a(MF) =
K − µ/(Aλ)
1 + λ′K/σ

. [S33]

This expression is the same as Eq. 4 for a(no move)
0 , with λ substi-

tuted by Aλ. In scenario 1 of simulations, one chooses A, such
that predators go extinct in the well-mixed limit or K−µ/(Aλ) <
0. In this case, only the trivial solution a(MF) = 0 of Eq. S32 is
acceptable.

To show the consistency of our analytical results, the expres-
sion [S33] can be obtained in a different way by directly analyz-
ing the full solution given by Eqs. S9 and S13 when β is close to
unity. In this limit, the predator jump distribution is nearly uni-
form; therefore, its Fourier transform P̂(k) is very close to zero,
except at small wave numbers, or |k| < 2π/L, where P̂(k) ' 1.
Therefore,

1

(2π)2

∑
n

∫
B

dk
cos(l0k · n)

λ0[1− P̂(k)] + µ
' 1

L2

∑
n

1

µ
=

1

l20µ
=
A
µ
,

[S34]

since the sum over n runs over patch cells. By substituting the
above expression in Eq. S9 and then in [S13], one recovers
Eq. S33.

Time Costs and Velocity Assumptions in the Lévy Flight Model. Opti-
mal foraging theory (OFT) assumes that an organism searching
for resources makes behavioral choices in response to internal
states and environmental factors and seeks to maximize the input
gain while reducing energy expenditure. In fragmented environ-
ments, searching for patches that may be far apart is necessary.
When facing predation risk and uncertainties regarding patch
richness and local food availability (1, 2), a strategy that many
organisms adopt is to increase travel velocity (3). This may incur
an additional energetic cost, but it is part of the foraging trade-
offs the organism faces while searching.

Consider the following examples. Bees tend to fly between
patches with a certain speed, but when they need to travel to
a distant spot, they increase their flying altitude to gain visual
cues for orientation and then increase their flying velocity well
above their normal one (4). Sharks, because of their anatomi-
cal design, must keep swimming continuously. A typical shark
lower velocity is around 2 km/h, which is increased when a dis-
tant prey is detected, peaking at up to 40 km/h at the moment of
the final chase and strike (5). Some birds may forage by jumping
from gall to gall or from tree to tree (local searching) but travel
at full velocity to distant areas (6). Finally, in the model stud-
ied in ref. 7 and inspired by herbivory mammals, foragers adopt
a low velocity between local and nearby patches but increase
their velocity with constant acceleration to reach distant patches.
The velocity is bounded by a maximum value, which can be
10 times larger than the velocity used to explore nearby patches.
Notice that, in such case, the notion of average velocity is not
representative.

In all of the above examples, increasing velocity represents an
effort to reduce traveling time, implying an energetic cost. Still,
as said, this is a common foraging strategy that can be profitable.
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This strategy may help to reduce the probability that a mobile
prey—after it is spotted—may run away, or it may help to give
a time advantage if another forager in the vicinity also spots the
same target at the same time. When traveling to distant areas,
this strategy also helps to increase dispersion and to reduce the
time interval between feeding events (3) as well as the forager
exposure time when not under vegetation covering (8).

When using a model where the forager moves following Lévy
flights in a finite space (as is the case here), the time inter-
vals are constant no matter the size of the jumps, which in
turn, implies that the instant velocity is proportional to the jump
length. Large jumps imply large velocities; hence, the Lévy flight
model is in qualitative agreement with the observations men-
tioned above. Recall that, in Lévy flights, the scaling exponent
is 1<β < 3. β ∼ 1 corresponds to the regime where the forager
travels with abundant large jumps. This will be the most energet-
ically consuming strategy to follow (if the organism is not helped
by air, water currents, or gravitational gradients). Additionally,
our results point out that, with this strategy, the probability

that the predator dies without descendency is high, because it
misses many patches in the fragmented environment. However,
a predator with β ∼ 3 would move as a typical random walker
with short steps having almost the same length. In this case, the
predator velocity is low as is the energetic cost of moving. How-
ever, a population may go extinct if not finding a patch locally
or by depleting the resources of a patch. Our results also suggest
that a forager traveling with step lengths given by an intermediate
β (close to two) will help maintain the stability of the ecosystem.
In this scenario, high velocities are rare, while low velocities are
the most frequent. Energetically speaking, this should be a good
strategy for the predator to follow.

From the point of view of the OFT, which is concerned
with energy balance and where time costs are important dur-
ing foraging, the Lévy model is realistic up to a certain veloc-
ity scale. However, models such as Lévy walks with constant
speed or Lévy walks with constant accelerations and a bounded
velocity should be implemented in population models in the
future.
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Movie S1. A simulation of the SLLVM. Predators (red dots) performing random relocations in the system (β = 1.1) go extinct over time due to underex-
ploitation of the patchy prey (white dots).

Movie S1
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Movie S2. A simulation of the SLLVM. Both prey and predators (the latter performing Brownian random walks) go extinct due to patch overexploitation.
The other parameters are the same as in Movie S1.

Movie S2

Movie S3. A simulation of the SLLVM with predators performing Lévy flights with β = 2. Prey and predators coexist, with the latter reaching high
abundances. The other parameters are the same as in Movie S1.

Movie S3
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