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GluA1 Linker TARP

segment of linker sequence (black). The PDZ-binding motif is highlighted by a filled circle.
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Fig. S1. The diagram of construction of the GIuA1-TARP tethered receptor. The C-tail of GIuA1 (blue) was fused to the N terminus of TARP (red) with a short

Fig. S2. NMDAR-mediated synaptic transmission is intact in experiments where AMPARs are knocked out or replaced with GIuA1-TARP tethered receptors.
Simultaneous dual whole-cell recordings from a transfected CA1 pyramidal neuron and a neighboring wild-type one from P17-P21 acute slices as in Fig. 1 A-C.
Open and filled circles represent amplitudes of NMDAR-EPSCs (the current amplitudes were measured 100 ms after stimulation) for single pairs and mean +
SEM, respectively. (Insets) Sample current traces from control (black) and experimental (green) cells. (Scale bars: 100 pA and 25 ms for representative traces.)
Bar graphs show normalized EPSC amplitudes (mean + SEM) (Cre: A, n = 14, 87.31 + 13.21% control, P> 0.05; Cre+GluA1-y-8: B, n = 15, 78.46 + 9.91% control,
P > 0.05; Cre+GluA1-y-8A4: C, n = 16, 98.49 + 9.13% control, P > 0.05) presented in scatter plots. All of the statistical analyses are compared with respective

control neurons by the two-tailed Wilcoxon signed-rank sum test.
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Fig. $3. Phosphorylation of y-8 is involved in synaptic trafficking of the tethered GIuA1 receptor but not required for LTP. The endogenous AMPARs were
replaced with GluA1-y-8(5277&281A) as in Fig. 1B. (A) Open and filled circles represent amplitudes of AMPAR-EPSCs for single pairs and mean + SEM, re-
spectively. (Insets) Sample current traces from control (black) and experimental (green) cells. (Scale bars: 100 pA and 25 ms for representative traces.) Bar graphs
show normalized EPSC amplitudes (mean + SEM) (n = 12, 41.84 + 8.50% control, **P < 0.005) presented in scatter plots. (B) LTP of GIuA1-y-8(S277&281A)
replacement neurons (n = 10) is similar to neighboring wild-type cells. The data are shown as the percentage of the respective baseline before LTP induction
(mean + SEM). Sample traces show EPSCs before and 30 min after LTP induction in paired control (black) and replacement neurons (green). (Scale bars: 100 pA
and 25 ms.) All of the statistical analyses are compared with respective control neurons by the two-tailed Wilcoxon signed-rank sum test.
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Fig. S4. PDZ-binding motif-mediated interaction is required for synaptic targeting of GluK1/Neto receptors. Rat hippocampal slice cultures were biolistically
transfected with indicated constructs, and dual whole-cell recordings were applied to examine evoked EPSCs. (A-D) Open and filled circles represent ampli-
tudes of EPSCs for single pairs and mean + SEM, respectively. (/nsets) Sample current traces from control (black) and experimental (green) cells. [Scale bars:
100 pA and 25 ms (A and B) and 50 pA and 25 ms (C and D) for representative traces.] Bar graphs show normalized EPSC amplitudes (mean + SEM) (GluK1/
Neto1: A, n = 19, 470.65 + 85.60% control, ***P < 0.0005; GluK1/Neto2: B, n = 17, 689.52 + 195.16% control, ***P < 0.0005; GluK1A4/Neto1A4: C, n = 15,
114.09 + 20.36% control, P > 0.05; GluK1A4/Neto2A4: D, n = 14, 236.51 + 41.54% control, **P < 0.005) presented in scatter plots. All of the statistical analyses
are compared with respective control neurons by the two-tailed Wilcoxon signed-rank sum test. (£) Logarithm summary of the EPSC amplitudes ratio between
the experimental and respective control neurons (mean + SEM) for the above four experimental groups [GluK1/Neto1 (0.61 + 0.06) vs. GluK1A4/Neto1A4 (0.09 +
0.11), ***P < 0.001; GluK1/Neto2 (0.70 + 0.10) vs. GluK1A4/Neto2A4 (0.42 + 0.09), *P < 0.05]. All statistical analyses of the different groups are tested using
the Mann-Whitney U test. It should be noted that the raw data of GluK1/Neto1 and GluK1/Neto2 are reused from our previous study (26). (F) Logarithm summary
of the EPSC amplitudes ratio between the experimental and respective control neurons (mean + SEM) for the four replacement experimental groups in Fig. 3
[GluK1/Neto1 (—0.17 + 0.06) vs. GluK1A4/Neto1A4 (—0.72 + 0.11), ***P < 0.001; GluK1/Neto2 (—0.41 + 0.09) vs. GluK1A4/Neto2A4 (—0.70 + 0.06), *P < 0.05]. All
statistical analyses of the different groups are tested using the Mann-Whitney U test.
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Fig. S5. NMDAR-mediated synaptic transmission is intact in experiments where AMPARs were replaced with KARs. The same experimental procedure was
followed as in Fig. 3 A7-D1 except that open and filled circles represent amplitudes of NMDAR-EPSCs (the current amplitudes were measured 100 ms after
stimulation) for single pairs and mean + SEM, respectively. Insets show sample current traces from control (black) and experimental (green) cells. (Scale bars are
50 pA and 25 ms for representative traces.) Bar graphs show normalized EPSC amplitudes (mean + SEM) (GluK1/Neto1: A, n = 11, 92.39 + 14.28% control, P >
0.05; GluK1A4/Neto1A4: B, n = 7, 89.96 + 21.60% control, P > 0.05; GluK1/Neto2: C, n = 8, 91.55 + 13.09% control, P > 0.005; GluK1A4/Neto1A4: D, n = 8,
110.02 + 21.19% control, P > 0.05) presented in scatter plots. All of the statistical analyses are compared with respective control neurons by the two-tailed
Wilcoxon signed-rank sum test.
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