## **Electronic Supplementary Information to**

Robust light harvesting by a noisy antenna

Pavel Malý,<sup>\*a,b</sup> Alastair T. Gardiner,<sup>c</sup> Richard J. Cogdell,<sup>c</sup> Rienk van Grondelle,<sup>a</sup> and Tomáš Mančal<sup>b</sup> <sup>a</sup> Department of Biophysics, Faculty of Sciences, Vrije Universiteit, De Boeleaan 1081, 1081HV Amsterdam, The Netherlands, \*E-mail: p.maly@vu.nl

<sup>b</sup> Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic

<sup>c</sup> Institute of Molecular, Cellular and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G128QQ, United Kingdom

## Linear spectra

The expressions for the linear spectra are

$$ABS(\omega) = \omega \sum_{k} |\mu_{kg}|^{2} \mathscr{L}_{g}(\omega, \omega_{k}),$$
  

$$FL(\omega) = \omega^{3} \sum_{k} |\mu_{kg}|^{2} P_{k}^{eq} \mathscr{L}_{e}(\omega, \omega_{k}).$$
(1)

Here,  $\mu_{kg}$  are the one-exciton transition dipole moments,  $\mu_{kg} = \sum_n c_n^k \mu_n$ , and  $P_k^{eq}$  is the excited-state quasi-stationary equilibrium population of the k - th excitonic state (calculated by Boltzmann equilibrium, i.e. no nonsecular effects). The  $\mathcal{L}_{g/e}$  are the lineshapes arising from the propagation of the optical coherences  $\rho_{kg}(t)$  with the bath in the ground/excited state:

$$\mathscr{L}_{g}(\boldsymbol{\omega},\boldsymbol{\omega}_{k}) = \int_{0}^{\infty} dt e^{i(\boldsymbol{\omega}-\boldsymbol{\omega}_{kg})t-g_{kkkk}(t)-\frac{\mathscr{R}_{kkkk}}{2}t},$$
(2)

$$\mathscr{L}_{e}(\omega,\omega_{k}) = \int_{0}^{\infty} dt e^{i(\omega-\omega_{kg}+2i\lambda_{kkk})t-g^{*}_{kkkk}(t)-\frac{\mathscr{R}_{kkkk}}{2}t}.$$
(3)

## Pump-probe spectra

The broadband pump-probe spectra are calculated in the doorway-window picture similar to??:

$$PP_{bb}(\omega,T) = \sum_{k,n} \mathscr{L}_{g}(\omega,\omega_{k}) \left\langle \mu_{kg}, \mu_{kg}, \mu_{ng}\mu_{ng} \right\rangle_{\parallel} + \sum_{k,n} \mathscr{L}_{e}(\omega,\omega_{k}) \mathscr{U}_{kk,nn}(T) \left\langle \mu_{kg}, \mu_{kg}, \mu_{ng}\mu_{ng} \right\rangle_{\parallel} \\ - \sum_{f} \sum_{k,n} \mathscr{L}_{f}(\omega,\omega_{fk}) \mathscr{U}_{kk,nn}(T) \left\langle \mu_{fk}, \mu_{fk}, \mu_{ng}\mu_{ng} \right\rangle_{\parallel}.$$

$$(4)$$

Here, the contributions are GSB, SE and ESA, respectively,  $\langle \bullet \rangle_{\Omega}$  denotes the orientational average, dependent on the polarization sequence employed. For the broadband pump-probe experiment parallel pulse orientation was used,  $\langle a, b, c, d \rangle_{\parallel} = \frac{1}{15} ((a \cdot b) (c \cdot d) + (a \cdot c) (b \cdot d) + (a \cdot d) (b \cdot c))$ . The lineshape for the two-one-exciton coherences is given by

$$\mathscr{L}_{f}(\boldsymbol{\omega},\boldsymbol{\omega}_{fk}) = \int_{0}^{\infty} dt e^{i(\boldsymbol{\omega}-\boldsymbol{\omega}_{fk}+2(\lambda_{ffkk}-\lambda_{kkkk}))t - g_{kkkk}(t) - g_{ffff}(t) + 2g_{ffkk}(t) - \frac{\Delta_{ffkk}}{2}t},$$
(5)

where

$$\Delta_{ffkk} = \sum_{q \neq f} \sum_{n < m} \sum_{k < l} c_{nm}^{f} c_{nm}^{q} c_{kl}^{q} c_{kl}^{f} \left( \delta_{nk} \mathbf{v}_{n} + \delta_{nl} \mathbf{v}_{n} + \delta_{mk} \mathbf{v}_{m} + \delta_{ml} \mathbf{v}_{m} \right) C(\boldsymbol{\omega}_{fq}) + \mathscr{R}_{kkkk}$$
(6)

is the 2-exciton lifetime broadening of the 2-1 exciton coherence, without the pure dephasing which is governed by the cumulant expansion. The lineshape functions transform as

 $g_{ffkk}(t) = \sum_{n < m} \sum_{l} \left( c_{nm}^{f} \right)^{2} \left( c_{l}^{k} \right)^{2} \left( \delta_{nl} + \delta_{ml} \right) g(t), g_{ffff}(t) = \sum_{n < m} \sum_{k < l} \left( c_{nm}^{f} c_{kl}^{f} \right)^{2} \left( \delta_{nk} \mathbf{v}_{n} + \delta_{ml} \mathbf{v}_{m} + \delta_{ml} \mathbf{v}_{m} \right) g(t).$  The narrowband pump, broadband probe spectrum was calculated as

$$PP_{nb}(\omega, T, \omega_{P}) = \sum_{k,n} \mathscr{L}_{g}(\omega, \omega_{k}) \mathscr{L}_{gp}(\omega_{P}, \omega_{n}) \langle \mu_{kg}, \mu_{kg}, \mu_{ng} \mu_{ng} \rangle_{m.a.} + \sum_{k,n} \mathscr{L}_{e}(\omega, \omega_{k}) \mathscr{U}_{kk,nn}(T) \mathscr{L}_{gp}(\omega_{P}, \omega_{n}) \langle \mu_{kg}, \mu_{kg}, \mu_{ng} \mu_{ng} \rangle_{m.a.} - \sum_{f} \sum_{k,n} \mathscr{L}_{f}(\omega, \omega_{fk}) \mathscr{U}_{kk,nn}(T) \mathscr{L}_{gp}(\omega_{P}, \omega_{n}) \langle \mu_{fk}, \mu_{fk}, \mu_{ng} \mu_{ng} \rangle_{m.a.}$$
(7)

Here, the selection of the doorway by the narrowband pump pulse is given by the lineshape including its apparent broadening by interaction with the finite pulse:

$$\mathscr{L}_{gP}(\omega_{P},\omega_{k}) = \int_{0}^{\infty} dt e^{i(\omega_{P}-\omega_{kg})t-g_{kkkk}(t)-\frac{\mathscr{R}_{kkkk}}{2}t-\alpha t^{2}}.$$
(8)

This expression is valid for Gaussian pump pulses centered around  $\omega_P$  and of the envelope  $\propto e^{-\alpha t^2}$ . This is obtained by integrating the doorway in Eq. A2 of? over t' and holds only in strict factorization of the three propagation intervals in the 3rd-order nonlinear response calculation (e.g. no rise of the signal in the waiting time T due to finite pulse duration). The angle between the pump and probe was set to the magic angle 54.7°, yielding the isotropic contribution  $\langle a, b, c, d \rangle_{m.a.} = \frac{1}{9} (a \cdot b) (c \cdot d)$ . Both the narrow- and broadband calculated pump-probe traces are finally convoluted with a  $\sqrt{2}\tau_{pulse}$  wide Gaussian pulse to account for the initial signal decay during the action of the pulse. As we do not calculate the negative-time pathways, we plot only the T > 0 part.

We note that, including the orientational averaging and averaging over an energetic disorder, the above-described calculation is on the edge of what is achievable on a modern desktop computer.



Fig. S1 Energy relaxation in case of halved (blue) or doubled (green) inter-pigment coupling and doubled B800 ring energy disorder (red). Left: calculated relaxation time distribution excited at 800 nm, right: average relaxation time across the excitonic manifold.

## References

V. I. Novoderezhkin, T. a. Cohen Stuart and R. van Grondelle, J. Phys. Chem. A, 2011, 115, 3834-3844.

W. M. Zhang, T. Meier, V. Chernyak and S. Mukamel, J. Chem. Phys., 1998, 108, 7763.



**Fig. S2** Correlation of thermally averaged B800->B850 intra-ring energy transfer with the quantities presented in Fig. 5 of the main text. The ellipses are 95% confidence ellipses, the numbers are Pearson's correlation coefficients, red values are p = 0.05 significant correlations. The intra-ring transfer is calculated as  $\langle k_{800\rightarrow850} \rangle = \sum_{i \in B800, \ i \in B850} \frac{1}{2}e^{-\frac{E_i - \lambda_i}{k_B T}} \mathscr{R}_{jj,ii}, Z = \sum_{i \in B800} e^{-\frac{E_i - \lambda_i}{k_B T}} \mathscr{R}_{jj,ii}$ 



Fig. S3 Measured broad- and narrowband transient absorption spectra



Fig. S4 An exemplary intensity trace of a single LH2 exhibiting blinking behavior and stepwise photobleaching. The dark states are only briefly visited, the LH2 spends most time in the bright state.

| 1 | 12320 | 355   | -48   | 13    | -6    | 3     | -2    | 1     | -1    | 1     | -1    | 1     | -2    | 2     | -6    | 11    | -51   | 299   | -4    | -1    | -1    | -1    | -1    | -2    | -4    | 25    | -11     |
|---|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|
|   | 355   | 12520 | 290   | -32   | 11    | -4    | 2     | -1    | 1     | 0     | 1     | 0     | 1     | -1    | 3     | -4    | 14    | -33   | 6     | 2     | 1     | 1     | 1     | 2     | 5     | 3     | -2      |
|   | -48   | 290   | 12320 | 372   | -51   | 14    | -6    | 3     | -2    | 1     | -1    | 1     | -1    | 1     | -2    | 2     | -6    | 11    | -11   | -4    | -1    | -1    | -1    | -1    | -3    | -4    | 26      |
|   | 13    | -32   | 372   | 12520 | 277   | -32   | 11    | -4    | 2     | -1    | 1     | 0     | 1     | 0     | 1     | -1    | 3     | -3    | 0     | 6     | 2     | 1     | 1     | 1     | 2     | 5     | 4       |
|   | -6    | 11    | -51   | 277   | 12320 | 360   | -50   | 13    | -6    | 3     | -2    | 1     | -1    | 1     | -1    | 1     | -2    | 2     | 25    | -12   | -4    | -1    | -1    | -1    | -1    | -3    | -4      |
|   | 3     | -4    | 14    | -32   | 360   | 12520 | 311   | -34   | 11    | -4    | 2     | -1    | 1     | 0     | 1     | 0     | 1     | -1    | 3     | 0     | 6     | 2     | 1     | 1     | 1     | 2     | 5       |
|   | -2    | 2     | -6    | 11    | -50   | 311   | 12320 | 381   | -52   | 14    | -6    | 3     | -2    | 1     | -1    | 1     | -1    | 1     | -4    | 27    | -11   | -4    | -1    | -1    | -1    | -1    | -3      |
|   | 1     | -1    | 3     | -4    | 13    | -34   | 381   | 12520 | 323   | -36   | 12    | -4    | 2     | -1    | 1     | 0     | 1     | 0     | 5     | 3     | -4    | 6     | 2     | 1     | 1     | 1     | 2       |
|   | -1    | 1     | -2    | 2     | -6    | 11    | -52   | 323   | 12320 | 374   | -51   | 14    | -6    | 3     | -2    | 1     | -1    | 1     | -3    | -4    | 27    | -10   | -4    | -1    | -1    | -1    | -1      |
|   | 1     | 0     | 1     | -1    | 3     | -4    | 14    | -36   | 374   | 12520 | 275   | -31   | 11    | -4    | 2     | -1    | 1     | 0     | 2     | 5     | 3     | -2    | 6     | 2     | 1     | 1     | 1       |
|   | -1    | 1     | -1    | 1     | -2    | 2     | -6    | 12    | -51   | 275   | 12320 | 371   | -51   | 14    | -6    | 3     | -2    | 1     | -1    | -3    | -4    | 26    | -10   | -4    | -1    | -1    | -1      |
|   | 1     | 0     | 1     | 0     | 1     | -1    | 3     | -4    | 14    | -31   | 371   | 12520 | 285   | -33   | 11    | -4    | 2     | -1    | 1     | 2     | 5     | 4     | -1    | 6     | 2     | 1     | 1       |
|   | -2    | 1     | -1    | 1     | -1    | 1     | -2    | 2     | -6    | 11    | -51   | 285   | 12320 | 388   | -51   | 14    | -6    | 3     | -1    | -1    | -3    | -4    | 25    | -12   | -4    | -1    | -1      |
|   | 2     | -1    | 1     | 0     | 1     | 0     | 1     | -1    | 3     | -4    | 14    | -33   | 388   | 12520 | 276   | -33   | 11    | -4    | 1     | 1     | 2     | 5     | 3     | 2     | 6     | 2     | 1       |
|   | -6    | 3     | -2    | 1     | -1    | 1     | -1    | 1     | -2    | 2     | -6    | 11    | -51   | 276   | 12320 | 383   | -53   | 14    | -1    | -1    | -1    | -3    | -4    | 25    | -10   | -4    | -1      |
|   | 11    | -4    | 2     | -1    | 1     | 0     | 1     | 0     | 1     | -1    | 3     | -4    | 14    | -33   | 383   | 12520 | 322   | -34   | 1     | 1     | 1     | 2     | 5     | 1     | -1    | 6     | 2       |
|   | -51   | 14    | -6    | 3     | -2    | 1     | -1    | 1     | -1    | 1     | -2    | 2     | -6    | 11    | -53   | 322   | 12320 | 360   | -1    | -1    | -1    | -1    | -3    | -3    | 25    | -11   | -4      |
|   | 299   | -33   | 11    | -3    | 2     | -1    | 1     | 0     | 1     | 0     | 1     | -1    | 3     | -4    | 14    | -34   | 360   | 12520 | 2     | 1     | 1     | 1     | 2     | 5     | 4     | -1    | 6       |
|   | -4    | 6     | -11   | 0     | 25    | 3     | -4    | 5     | -3    | 2     | -1    | 1     | -1    | 1     | -1    | 1     | -1    | 2     | 12520 | -23   | -3    | -1    | 0     | 0     | -1    | -2    | -23     |
|   | -1    | 2     | -4    | 6     | -12   | 0     | 27    | 3     | -4    | 5     | -3    | 2     | -1    | 1     | -1    | 1     | -1    | 1     | -23   | 12520 | -23   | -3    | -1    | 0     | 0     | -1    | -3      |
|   | -1    | 1     | -1    | 2     | -4    | 6     | -11   | -4    | 27    | 3     | -4    | 5     | -3    | 2     | -1    | 1     | -1    | 1     | -3    | -23   | 12520 | -24   | -3    | -1    | 0     | 0     | -1      |
|   | -1    | 1     | -1    | 1     | -1    | 2     | -4    | 6     | -10   | -2    | 26    | 4     | -4    | 5     | -3    | 2     | -1    | 1     | -1    | -3    | -24   | 12520 | -22   | -2    | -1    | 0     | 0       |
|   | -1    | 1     | -1    | 1     | -1    | 1     | -1    | 2     | -4    | 6     | -10   | -1    | 25    | 3     | -4    | 5     | -3    | 2     | 0     | -1    | -3    | -22   | 12520 | -22   | -2    | -1    | 0       |
|   | -2    | 2     | -1    | 1     | -1    | 1     | -1    | 1     | -1    | 2     | -4    | 6     | -12   | 2     | 25    | 1     | -3    | 5     | 0     | 0     | -1    | -2    | -22   | 12520 | -21   | -2    | -1      |
|   | -4    | 5     | -3    | 2     | -1    | 1     | -1    | 1     | -1    | 1     | -1    | 2     | -4    | 6     | -10   | -1    | 25    | 4     | -1    | 0     | 0     | -1    | -2    | -21   | 12520 | -22   | -3      |
|   | 25    | 3     | -4    | 5     | -3    | 2     | -1    | 1     | -1    | 1     | -1    | 1     | -1    | 2     | -4    | 6     | -11   | -1    | -2    | -1    | 0     | 0     | -1    | -2    | -22   | 12520 | -22     |
|   | - 1 1 | _ /   | /h    |       | -/1   |       |       |       | -     |       |       |       | -     |       | - 1   |       | -/1   | n     | -/3   | - 4   |       |       |       |       |       | -//   | 1/20/11 |

Fig. S5 Site Hamiltonian used for the modelling. The B850 ring block is in purple, the B800 block is in red.



Fig. S6 Pulse spectrum used for the broadband P-P experiment



Fig. S7 Pulse spectra used for the narrowband P-P experiment