Supplemental Figure Legend:

Figure S1. Kaplan–Meier plot of breast cancer patient survival when stratified according to LGR5–8 mRNA expression.

A. LGR5: OS, overall Survival ($n_{high} = 557$, $n_{low} = 560$); DMFS, Distant Metastasis Free Survival ($n_{high} = 793$, $n_{low} = 816$); RFS, Relapse Free Survival ($n_{high} = 1741$, $n_{low} = 1813$); PPS, post progression survival ($n_{high} = 172$, $n_{low} = 179$). B. LGR6: OS ($n_{high} = 260$, $n_{low} = 262$); DMFS ($n_{high} = 331$, $n_{low} = 333$); RFS ($n_{high} = 830$, $n_{low} = 830$), PPS ($n_{high} = 70$, $n_{low} = 70$). C. LGR7: OS ($n_{high} = 260$, $n_{low} = 262$); DMFS ($n_{high} = 331$, $n_{low} = 333$); RFS ($n_{high} = 806$, $n_{low} = 854$); PPS($n_{high} = 70$, $n_{low} = 70$).

D. LGR8: OS ($n_{high} = 255$, $n_{low} = 267$); DMFS ($n_{high} = 324$, $n_{low} = 340$); RFS($n_{high} = 815$, $n_{low} = 845$); PPS($n_{high} = 69$, $n_{low} = 71$). OS: Overall Survival; RFS: Relapse Free Survival; DMFS: Distant Metastasis Free Survival, and PPS: Post-Progression Survival.

Figure S2. LGR4 expression was correlated with the invasive ability of different cell lines.

A. Heatmap of LGR family mRNA expression in 45 different immortalized normal breast or breast cancer cell lines. Data (GEO Accession Number GSE10890) values in log2 of expression signal were sorted and analyzed. Scale bar: red indicates high expression and green represents low mRNA expression.

B-C. Invasive abilities of 6 breast cancer cell lines identified by Boyden chamber invasion assay in vitro. The invasive cells were stained followed by photography (B), and quantitation (C). As shown in the blue by red arrow, invasive potential weak and strong were divided by the average of different invasive cell number. Experiment was independently repeated three times and graphs show the means \pm S.D. Scale bars, 100 μ m.

D. *LGR4* expression in 6 human breast cancer cell lines of differing invasiveness, as determined by qPCR. Experiment was repeated three times.

Figure S3. *Lgr4* heterozygosity delays mammary tumor onset and progression in MMTV-*PyMT* transgenic mice.

A. *Lrg4* mRNA levels in mammary tumors from PyMT–*Lgr4*^{+/+}, –*Lgr4*^{+/-} and –*Lgr4*^{-/-} mice at 12 weeks, as identified by qPCR.

B-C. *Lrg4* heterozygosity delayed tumor formation in MMTV-*PyMT* transgenic mice. Representative images of H & E stained sections from mammary glands of indicated mice (C). Classification of mammary gland lesions in 9-, 13- and 15-week-old MMTV-*PyMT* mice with indicated *Lgr4* genotype (B). Scale bars, 500 μm. IDC: Invasive ductal carcinoma; DCIS: Ductal carcinoma in situ; ADH: Atypical ductal hyperplasia; PL: Proliferative lesion without atypia; N: Normal.

D. PCNA staining of tumors from 9-, 13- and 15-week-old MMTV-*PyMT* mice of indicated *Lgr4* genotype. Scale bars, 200 µm.

Figure S4. *Lgr4* regulates the breast tumor onset and metastasis to the lungs in MMTV-*PyMT* mice and transfection efficiency testing in different BrCa cell migration and invasion assay.

A. Whole mount of indicated mice at 3.5 weeks of age.

B. Kaplan–Meier plot showing palpable tumor-free mice until 120 days of age. PyMT– $Lgr4^{+/+}$ (n = 11) and PyMT– $Lgr4^{+/-}$ (n = 13). Log-rank test was used to determine P values.

C. *Lgr4* heterozygosity reduced the number of tumors per mouse in MMTV-*PyMT* mice. Error bars are mean \pm S.D. **P* < 0.05. *n* = 7 per group.

D. The volume of primary tumors until 12 weeks between PyMT–*Lgr4*^{+/+} and PyMT– *Lgr4*^{+/-} mice. Error bars are mean \pm S.D. ***P* < 0.01; ****P* < 0.001. *n* = 7 per group.

E. H & E staining of lung sections from 15-week-old mice of indicated genotype. Scale bars, $500 \,\mu$ m.

F. Graph shows quantitation of metastatic foci in lungs of MMTV-*PyMT Lgr4*^{+/+} and MMTV-*PyMT Lgr4*^{+/-} mice. n = 6 mice per group. Error bars are mean \pm S.D. ****P* < 0.001.

G-J. LGR4 knockdown or overexpression efficiency related to Fig. 4A-4D, respectively,

tested by qPCR analysis. Experiment was independently repeated three times and representative graphs show the means \pm S.D. **P* < 0.05; ***P* < 0.01; ****P* < 0.001.

Figure S5. LGR4 did not regulate cAMP-CREB signaling in breast cancer

A. The adenosine 3',5'-cyclic monophosphate (cAMP) level was examined by ELISA in PyMT–*Lgr4* CKO and PyMT–*Lgr4*^{fl/fl} tumors cells (n=3 mice for each group, experiments conducted in triplicate).

B. Active phosphoSer133-CREB in PyMT–*Lgr4* CKO mice tumors was examined using a specific anti-phospho-CREB antibody by Western blot analysis.

C. Treated with 50 μ M forskolin activated cAMP in MDA-MB-231 knockdown LGR4 cells. p-FAK was examined by Western blot analysis. Experiment was independently repeated three times.

Target Gene for qRT-PCR	Forward primer 5' -> 3'	Reverse primer 5' -> 3'			
Human / CB4	5'ACCTGGAGACCTTAGACTT	5'CCACGAATGACTAGGGAAT			
Human LGR4	G3'	G3'			
Human Oatd	5'CTGCAGAAGGAGCTAGAA	5'CTCGAAGCGACAGATGGTG			
Ruman Oct4	CAGT3'	3'			
Human Sox2	5'TACAGCATGTCCTACTCGC	5'GAGGAAGAGGTAACCACAG			
	AG3'	GG3'			
Human <i>Axin</i> 2	5'TAGGTTCTGGCTATGTCTT	5'CTATCCTCTCCCCCTCTT2'			
	TG3'	SGIAICGICIGCGGGICIIS			
Human <i>Snail1</i>	5'ATCGGAAGCCTAACTACAG	5'TTTCCCACTGTCCTCATCTG			
	C3'	3'			
Human <i>Slug</i>	5'CGAACTGGACACACATAC	5'CTGAGGATCTCTGGTTGTG			
	AGTG3'	GT3'			
Human <i>Twist</i>	5' GCAAGATTCAGACCCTCA	5'AGTTATCCAGCTCCAGAGT			
	AG3'	C3'			
Human <i>N-cadherin</i>	5'GTGCCATTAGCCAAGGGA	5'TGGCACGTCTTGACCTTGA			
	ATTCAGC3'	A3'			
	5'TCCATTTCTTGGTCTACGC	5'CACCTTCAGCCAACCTGTTT			
Human E-caonerin	C3'	3'			
Managaland	5'AAGATAACAGCCCCCAAG	5'AGGCAGTGATGAACAAGAC			
wouse Lgr4	AC3'	G3'			

Supplemental Table 1: Primer sequences used in this study.

Antibody Target	Supplier	Catalog	Application	Dilution
		Number		
Cofilin		3312	immunoblot	1.1000
	(CST)	0012		1.1000
phosphoCofilin	CST	3313	immunoblot	1:1000
Cyclin D1	Abcam	ab134175	immunoblot	1:1000
E-cadherin	CST	3195	immunoblot	1:1000
Vimentin	CST	5741	immunoblot	1:1000
ZEB1	CST	3399	immunoblot	1:1000
phosphoERK	CST	4377	immunoblot	1:1000
ERK	CST	9102	immunoblot	1:1000
phosphoFAK	CST	3283	immunoblot	1:1000
FAK	Santa Cruz	sc-557	immunoblot	1:200
P-CREB	CST	9198	immunoblot	1:1000
CREB	CST	9197	immunoblot	1:1000
GAPDH	CST	5174	immunoblot	1:1000
β-actin	Sigma	A5441	immunoblot	1:1000
phosphoSrc	CST	2101	immunoblot	1:1000
Src	CST	2108	immunoblot	1:1000
IRDye® 800CW Goat anti-Mouse IgG	LI-COR	925-32210	immunoblot	1:10000
IRDye® 800CW Goat anti-Rabbit IgG	LI-COR	925-32211	immunoblot	1:10000
Rhodamine Phalloidin	Thermo-Molecular Probes™	R415	immunofluorescence	1:20
Vinculin	Santa curz	sc-55465	immunofluorescence	1:200
PCNA	Santa curz	sc-7907	immunohistochemical	1:200
β-catenin	CST	9562	immunohistochemical	1:200
Cyclin D1	Abcam	ab134175	immunohistochemical	1:200
Human LGR4 antibody	Dr. Qingyun (Jim) Liu		immunohistochemical	1:200
Goat anti-Rat IgG Secondary Antibody	Thermo Fisher	62-9520	immunohistochemical	1:1000

Sn	nnlemental	Table 2	2: A	ntihodv	informatio	n in	this	study.
Du	ppicincinal	I abit 4	4. I NI	muouy	morman	/11 111		stuuy.

