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SUPPLEMENTAL METHODS 

Modified 5-fold cross-validation 

Traditional 5-fold cross-validation involves partitioning a sample of data into five complementary 

subsets, performing analysis on the four subsets (called the training set), and validating the 

analysis on the other subset (called the test set). Considering the class-imbalance data in this 

study, the test set is likely to contain only negative samples and no positive samples, which 

thus affects the assessment of model performance. Therefore, we used modified 5-fold cross-

validation to evaluate performance. First, we randomly divided the positive and negative sets 

into five complementary and equally sized subsets. Then, we selected four positive and four 

negative subsets as the training set. In addition, the remaining one positive subset and one 

negative subset comprised an independent test set. The process was then repeated 5 times 

with each of the 5 positive subsets and negative subsets used exactly once as a test set. 

Bagging-style method solved the class-imbalanced problem 



We introduced three popular parallel ensemble methods that were based on deep learning, 

including classic bagging, modified bagging, and bagging-style bootstrapped resampling 

methods 1, to develop a flexible single-cell module of DeepRed that could dynamically solve 

the class-imbalanced problem and be easily expanded to various cells/tissues and even other 

species. Although partition of the majority class method is a typical approach for class-

imbalanced data, it is a static method and does not satisfy our demand that the imbalance 

degree can dynamically change. Thus, we excluded this method to solve the class-imbalanced 

problem. To select the most suitable method from the three bagging-style methods for 

DeepRed, we tested and evaluated them independently using class-imbalanced data of various 

imbalance degrees (ratio of negative samples/positive samples) in two cell types (Fig. S4). For 

a fair comparison, the number and structure of individual DNN classifiers were kept the same 

(10 individual DNNs with the same structure). Three performance indicators, namely, sensitivity, 

specificity and GM, were reported as suitable for assessing imbalanced data sets and were 

measured using modified 5-fold cross-validation. We observed that for both the classic 

bagging and modified bagging methods, sensitivity and GM decreased rapidly and specificity 

increased slightly with an increasing imbalance degree of class-imbalanced data (Fig. S4A-D). 

The result suggested that these two methods tend to be biased towards the majority class and 

cannot alleviate the class-imbalanced problem. In contrast, for the bagging-style bootstrapped 

resampling method, the three performance indicators were all unbiased for different imbalance 

degrees of class-imbalanced data (Fig. S4E-F), suggesting that the bagging-style bootstrapped 

resampling method can sufficiently eliminate the class-imbalanced influence. Thus, we used 

the bagging-style bootstrapped resampling method in the single-cell module of DeepRed to 

process dynamic imbalance-class data. 

Simple average as combination method of ensemble learning 

As for the combination methods of ensemble learning, we tried and evaluated three different 

methods, including simple averaging, weighted averaging, and stacking. In the simple 

averaging method, the predicted probabilities from each individual DNNs were averaged to 

produce a single estimation. We set the weight of the weighted average according to the AUC 

or accuracy of the single-cell module and found that the difference between the weighted 



average and simple average was negligible. Although the stacking method improved model 

performance to some extent, the boost in performance was extremely limited (less than 1% for 

AUC). The weighted averaging and stacking methods achieved 0.0045% and 0.7482% higher 

AUC than the simple averaging method, respectively. In addition, stacking integration doubled 

the computing time and computing resources and had the limited scalability. Importantly, simple 

averaging can be extended to additional classifiers based on the original training; however, 

stacking must be re-trained for the integration of an additional classifier. Considering computing 

time, computing resources, and more importantly, expandability, we chose simple averaging 

as the final combination method for ensemble learning. 

SNV calling method 

The reference genome, dbSNP and gene model used in this study are listed in Table S18. We 

used STAR 2 (Version: 2.5.2b) to align RNA-seq reads to a reference genome and used the 

MarkDuplicates tool from Picard (https://broadinstitute.github.io/picard/) to remove identical 

reads (PCR duplicates) that mapped to the same location. Reads with a mapping quality < 20 

were removed by SAMtools (Version: 1.3.1) 3. For human and mouse, SNVs were called using 

the GATK 4 (Version: 3.5.0) HaplotypeCaller tool with options stand_call_conf set at 20 and 

stand_emit_conf set at 0. For Drosophila, SNVs were called using the SAMtools pileup program 

with option “-Q 15” due to the insufficiency of SNP information in Drosophila species. 

Identifying RNA editing sites with existing methods 

In the separate samples method, SNVs are called with separate RNA-seq alignments of each 

sample, and reoccurring variants are retrieved 5. In the pooled samples method, SNVs are 

called with pooled RNA-seq alignments from all samples 5. The SNVs were filtered by five steps: 

1) all known SNPs present in dbSNP (except SNPs of molecular type “cDNA”) were removed;

2) mismatches in the first six bases of each read were discarded to avoid artificial mismatches

derived from random-hexamer priming; 3) intronic sites were removed in non-Alu regions if they 

were located within 4 base pairs of a known splice junction, and sites in homopolymer runs of 

5 base pairs and simple repeats were removed; 4) sites in regions that were highly similar to 



other parts of the genome using the BLAST-like alignment tool (BLAT) were removed; (5) We 

inferred the editing type of each site based on the strand of overlapping annotated genes. 

In GIREMI method 6, SNVs were filtered by five steps: 1) mismatches in the first six bases 

of each read were discarded to avoid artificial mismatches derived from random-hexamer 

priming; 2) sites located in simple repeat regions or homopolymer runs of 5 nt were discarded; 

3) variant sites with total read coverage < 5 and supporting reads < 3 were discarded; 4) sites

with extreme variant allele frequencies (>95% or <10%) were discarded; and 5) sites located 

within 4 nt of a known spliced junction were removed. The remaining SNVs were annotated in 

the required format for GIREMI using GENCODE (V25 lift37). Then, we ran GIREMI to calculate 

mutual information (MI) associated with SNPs or RNA editing sites and identify RNA editing 

sites in RNA-seq reads. GIREMI was downloaded from https://github.com/zhqingit/giremi.  

In Prediction method 7, SNVs were retained as RNA editing to meet these five criterias: 1) 

mismatch sites with Hits Per Billionmapped-bases (HPB) > 5; 2) mismatch sites with 

mismatch ratio between 5% ~ 40% or between 60% ~ 95%; 3) mismatch sites with effective 

signal > 95%; 4) require at least two individual reads with the same type of nucleotide conversion; 

5) mismatch sites do not exist in gSNPs from the common SNP database (build 137).

RANEditor is an easy-to-use tool 8. We used the script CallingEditingSites.py

from RNAEditor package to call RNA editing sites. 

Assessing multiple factors on identifying RNA editing sites 

We examined a series of factors, including library preparation methods, RNA degradation 

methods, laboratory, sequence depth, read mapping and variant calling methods, and their 

impact on the identification of RNA editing by applying DeepRed to RNA-seq data from the 

ABRF 9 and SEQC project 10. 

We assessed the impact of library preparation methods and RNA degradation methods by 

analysing 34 samples from the ABRF project 9 (Table S10), 8 of which were intact RNA 

prepared by the poly-A enrichment method, 8 that were intact RNA prepared by the ribo-

depleted method, and 18 that were degraded RNA prepared by the ribo-depleted method. The 

https://github.com/zhqingit/giremi


degraded samples were degraded using one of three methods, namely, heat, sonication or 

RNase-A.  

Widespread adoption of RNA-seq has led to plentiful data from multiple sites; however, there 

has been no systematic examination of the impact of lab-specific bias in detecting RNA editing 

sites. We explored the effect of laboratory by analysing 94 samples collected from 7 

laboratories, including AGR (Australian Genome Research Facility), BGI (Beijing Genomics 

Institute), CNL (Weill Cornell Medical College), COH (City of Hope), MAY (Mayo Clinic), NVS 

(Novartis), and NYG (the New York Genome Center) (Table S11).  

We pooled together human brain RNA-seq samples of 16 individuals from the SEQC project 

10 (Table S9) and down sampled the pooled alignment file to explore the relationship between 

the detection of RNA editing sites and sequence depth to examine the impact of the sequence 

depth. For each sequence depth, we sampled the corresponding RNA-seq reads and 

calculated the A-to-I ratio and number of A-to-I editing sites. We repeated this down sampled 

analysis 10 times for each sequence depth, then calculated the average values. 

RNA-seq read mapping and variant calling is an important step in the detection of RNA 

editing sites. Various read mapping and variant calling strategies can be adopted, such as BWA 

11, STAR 2, Tophat 12, GATK 4 and SAMtools 3, but the best practice for detecting RNA editing 

sites has not been fully defined. To this end, we used the same pooled human brain RNA-seq 

alignment (Table S9) to perform read mapping and variant calling method comparisons. 

Different combinations of read mapping methods (BWA, STAR, and Tophat) and variant calling 

methods (GATK and SAMtools) were used to call SNV candidates. Then, DeepRed was 

employed to identify RNA editing sites in the SNV candidates. We compared the identified 

number of RNA editing sites, recognition accuracy and reproducibility to assess the impact of 

different conditions on RNA editing identification. Recognition accuracy refers to the percentage 

of A-to-I editing sites. Reproducibility is the overlap ratio of RNA editing sites identified in two 

different conditions.  

REFERENCES 

1 He, H. & Ma, Y. Imbalanced learning. Wiley & Sons (2013). 



2 Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21, 

doi:10.1093/bioinformatics/bts635 (2013). 

3 Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 

2078-2079, doi:10.1093/bioinformatics/btp352 (2009). 

4 DePristo, M. A. et al. A framework for variation discovery and genotyping using next-

generation DNA sequencing data. Nat Genet 43, 491-498, doi:10.1038/ng.806 (2011). 

5 Ramaswami, G. et al. Identifying RNA editing sites using RNA sequencing data alone. 

Nat Methods 10, 128-132, doi:10.1038/nmeth.2330 (2013). 

6 Zhang, Q. & Xiao, X. Genome sequence–independent identification of RNA editing 

sites. Nat Methods 12, 347-350, doi:10.1038/nmeth.3314 (2015). 

7 Zhu, S., Xiang, J. F., Chen, T., Chen, L. L. & Yang, L. Prediction of constitutive A-to-I 

editing sites from human transcriptomes in the absence of genomic sequences. BMC 

Genomics 14, 206, doi:10.1186/1471-2164-14-206 (2013). 

8 John, D., Weirick, T., Dimmeler, S. & Uchida, S. RNAEditor: easy detection of RNA 

editing events and the introduction of editing islands. Brief Bioinform 18, 993-1001, 

doi:10.1093/bib/bbw087 (2017). 

9 Li, S. et al. Multi-platform assessment of transcriptome profiling using RNA-seq in the 

ABRF next-generation sequencing study. Nat Biotechnol 32, 915-925, 

doi:10.1038/nbt.2972 (2014). 

10 Consortium, S. M.-I. A comprehensive assessment of RNA-seq accuracy, 

reproducibility and information content by the Sequencing Quality Control 

Consortium. Nat Biotechnol 32, 903-914, doi:10.1038/nbt.2957 (2014). 

11 Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler 

transform. Bioinformatics 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009). 

12 Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-

Seq. Bioinformatics 25, 1105-1111, doi:10.1093/bioinformatics/btp120 (2009). 

SUPPLEMENTARY TABLE LEGENDS 

Supplementary Table S1. The information of 11 training and 21 test cells cell 

lines/tissues/conditions from Encode. 

Supplementary Table S2. Performance of each-level DNNs in DeepRed on training set and test 

set. 

Supplementary Table S3. The information of wild type, ADAR knock down and independent 

test data for validation of DeepRed. 

Supplementary Table S4. Relative ranking of DeepRed, separate samples method, 

GIREMI, RNAEditor and Prediction methods on U87 data. 



Supplementary Table S5. Comparison of performance for DeepRed with separate 

samples method, GIREMI, RNAEditor and Prediction methods in K562 cell line. 

Supplementary Table S6. Comparison of performance for DeepRed with separate 

samples method, GIREMI, RNAEditor and Prediction methods in HepG2 cell line. 

Supplementary Table S7. Information of 462 individuals from the Geuvadis Project. 

Supplementary Table S8. Performance of DeepRed in comparison with Jin Billy methods and 

GIREMI on RNA-seq data in Geuvadis project (didn’t filter reads). 

Supplementary Table S9. RNA-seq data of human brain reference from SEQC project. 

Supplementary Table S10. RNA-seq data prepared by different library methods and degraded 

by different methods from ABRF project. 

Supplementary Table S11. RNA-seq data sequenced by different laboratories in SEQC project. 

Supplementary Table S12. RNA-seq data from human embryos spanning from oocyte to late 

blastocyst stages. 

Supplementary Table S13. RNA-seq data from adult whole bodies of D. melanogaster, D. 

simulans, D. ananassae, D. pseudoobscura, D. mojavensis, and D. virilis. 

Supplementary Table S14. RNA-seq data of human, chimpanzee, rhesus macaque and mouse 

brain. 

Supplementary Table S15. The information of samples from ENCODE project. 

Supplementary Table S16. The information of samples from Roadmap Epigenomics project. 

Supplementary Table S17. The information of samples from CCLE project. 

Supplementary Table S18. Information of reference, dbsnp, gene model used in this study. 

SUPPLEMENTARY FIGURES LEGENDS 

Supplementary Figure S1. The construction of training and test sets. (A) The construction of 

training set. (B) The construction of test set. 



Supplementary Figure S2. Performance of ensemble DNN under different numbers of individual 

DNNs in Sknshra cell.  

Supplementary Figure S3. The two-level ensemble architecture of single-cell module. (A) The 

single-cell module is a two-level ensemble classifier, which combined two ensemble Deep 

Neural Networks (DNNs) (light blue and light purple) with input scale of 101 bp and 41bp 

primitive sequence centered at the candidate SNVs. Each ensemble DNN consisted of 20 

individual DNNs, and was combined together using simple averaging method. For each 

individual DNN, the sigmoid function is used as the active function. (B) In one ensemble DNNs 

(light blue), each individual DNN consisted of one input layer with 404 input units, two hidden 

layers with the first hidden layer containing 1000 hidden units and the second hidden layer 

containing 100 hidden units, and a Softmax output layer with 3 output units. (C) In another 

ensemble DNNs (light purple), each individual DNN consisted of one input layer with 164 input 

units, two hidden layers with the first hidden layer containing 1000 hidden units and the second 

hidden layer containing 100 hidden units and a Softmax output layer with 3 output units. 

Supplementary Figure S4. Performance of three ensemble methods in class-imbalanced data. 

The performance of three deep-learning-based ensemble methods, including classic bagging 

(AB), modified bagging (CD) and bagging-style bootstrapped resampling method (EF), in class-

imbalanced data of various degrees in Nhek cells (ACE) and Sknshra Cells (BDF). Three 

performance indicators, sensitivity, specifcity, and GM, were measured for the training set. 

Supplementary Figure S5. ROC of single-cell module for DeepRed in U87 cell. 

Supplementary Figure S6. The separate and pooled components of DeepRed. (A) The 

separate or pooled component of DeepRed combined 11 single-cell modules using simple 

averaging method. (B) DeepRed combined separate and pooled component using simple 

averaging method. 

Supplementary Figure S7. The pseudocode shows the detailed training steps of DeepRed. 

Supplementary Figure S8. Precision recall curve of DeepRed on training sets (A) and test 

sets (B). 



Supplementary Figure S9. Assessing hybrid structure of DeepRed. Performance assessment 

of each-level DNNs in DeepRed on 11 pooled training sets (A), 11 separate training sets (B), 

21 pooled test sets (C) and 21 separate test sets (D). The violin plot represents the distribution 

of AUC of individual DNN. Red cross indicates the average performance. 

Supplementary Figure S10. The validation of DeepRed on U87 experimentally-verified data. 

Supplementary Figure S11. The RNA editing sites used to validate the effectiveness of 

DeepRed. (A) The identification of true RNA editing sites and false RNA editing sites from wild-

type and knock-down sample. (B) The RNA editing sites used to validate the effectiveness of 

DeepRed. 

Supplementary Figure S12. Performance of DeepRed in comparison with separate samples 

method and GIREMI method. (A) The violin plot of FDR identified by DeepRed, separate 

samples method and GIREMI method for each individual in Geuvadis dataset. The first, second 

(median), and third quartiles were illustrated in a box-plot style. (B) The relationship between 

the sequence depth and the runtime of the RNA editing identified with DeepRed, separate 

samples method and GIREMI method. The insert plot represents the relationship between 

sequence depth and runtime of RNA editing identification in DeepRed. The runtime refers to 

the time spend on identifying RNA editing sites from candidates SNVs. Error bar represents the 

standard error of runtime across ten downsampling samples. 

Supplementary Figure S13. The A-to-I ratio and FDR of RNA editing sites identified by 

DeepRed, separate samples method and GIREMI method for each individual in Encode (A-B), 

roadmap (C-D), and CCLE (E-F) dataset. The first, second (median), and third quartiles were 

illustrated in a box-plot style. 

Supplementary Figure S14. The site importance score of bases flanking RNA editing sites 

for prediction. 

Supplementary Figure S15. The A-to-I ratio, FDR and reproducibility of RNA editing sites 

between RNA-seq prepared by different library methods and degraded by different methods. 



The A-to-I ratio, FDR (A), and reproducibility (B) of RNA editing sites in RNA-seq prepared by 

different library methods and degraded by different methods. 

Supplementary Figure S16. Assessment of impact of different laboratories on RNA editing 

identification. The number of identified RNA editing sites in each laboratory. A-to-I ratio and 

FDR of identified RNA editing sites in each laboratory. 

Supplementary Figure S17. The A-to-I ratio and number of A-to-I editing sites identified by 

separate samples method at different sequence depth.  

Supplementary Figure S18. Assessment of impact of different read mapping and variant calling 

methods on RNA editing identification. (A) The A-to-I ratio and FDR for different combination of 

read mapping method and variant calling method. (B) The number of A-to-I editing sites for 

different combination of read mapping method and variant calling method.  

Supplementary Figure S19. The number of RNA editing sites identified by separate sample 

method in human early embryogenesis.  

Supplementary Figure S20. The conservation analysis between primate lineages. Phylogenetic 

relationships among the primate lineage (left). Myr, million years ago. Ratio of RNA editing sites 

homologous to human in primate lineage (right). 

Supplementary Figure S21. The distribution of 12 possible mismatches in positive training 

set and negative training set. 
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1. Training procedure of DeepRed: 

Input: one-hot-encoded sequences and labels of training set 

Output: the probability of being each class 

for each component do 

for each single-cell module do 

for each ensemble DNN do 

for each individual DNN do 

1) resample class-balanced data with replacement from the raw class-

imbalanced training set. 

2) pre-train the DNN with sigmoid activation function layer by layer in an

unsupervised fashion, then use the pre-training as initialization of neural 

network weights W. The sigmoid activation function is: S x =
1

1+𝑒−𝑥

3) fine-tune the weights W of the DNN in term of cross-entropy using mini-batch 

gradient descent in a supervised manner. The cost function is:

J θ = −
1

𝑚
 1 𝑦 𝑖 = 𝑗 𝑙𝑜𝑔

𝑒𝜃𝑗
𝑇𝑥  𝑖 

𝑒𝜃𝑖
𝑇𝑥  𝑖𝑘

𝑙=1

𝑘

𝑗=1

𝑚

𝑖=1

+
𝜆

2
𝜃𝑖𝑗
2

𝑛

𝑗=0

𝑘

𝑖=1

where k is the number of classes, m is the number of input samples and n

is the dimension of feature. 

end 

end 

end 

end 
1. 

2. Prediction procedure of DeepRed:

Input: one-hot-encoded sequences of candidate SNVs 

Output: the probability of being each class 

for each component do 

for each single-cell module do 

for each ensemble DNN do 

for each individual DNN do 

forward propagate to get the posterior probability of each class based on the 

already-learnt weights W 

end 

average all the posterior probabilities of individual DNNs in the ensemble DNN 

end 

average all the posterior probabilities of ensemble DNN in the single-cell module 

end 

average all the posterior probabilities of single-cell modules in the component 

end 

average all the posterior probabilities of components as the final output of DeeRed. 

Fig. S7
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Fig. S12
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Fig. S13 
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