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1 Supplementary Table 

Supplementary Table Interactomes used in this work and datasets used to reverse engineer 

them. 

Tissue Type Expression 
source 

Acrony
m 

# 
Samples 

# 
Regulators 

# 
Targets 

# 
Interactions 

availability 

Bladder urothelial carcinoma TCGA RNA-Seq BLCA 427 6054 19785 489101 aracne.networks 

Breast invasive carcinoma TCGA RNA-Seq BRCA 1212 6054 19359 331919 aracne.networks 

Cervical squamous cell 
carcinoma and endocervical 
adenocarcinoma 

TCGA RNA-Seq CESC 309 6056 19839 583961 aracne.networks 

Colon adenocarcinoma TCGA RNA-Seq COAD 500 6056 19820 413789 aracne.networks 

Esophageal carcinoma TCGA RNA-Seq ESCA 198 5961 18679 529286 aracne.networks 

Glioblastoma multiforme TCGA RNA-Seq GBM 166 6056 19858 563850 aracne.networks 

Head and neck squamous cell 
carcinoma 

TCGA RNA-Seq HNSC 566 6055 19772 423104 aracne.networks 

Kidney renal clear cell 
carcinoma 

TCGA RNA-Seq KIRC 606 6054 19843 350478 aracne.networks 

Kidney renal papillary cell 
carcinoma 

TCGA RNA-Seq KIRP 323 6055 19858 452653 aracne.networks 

Acute myeloid leukemia TCGA RNA-Seq LAML 179 6007 19269 531535 aracne.networks 

Liver hepatocellular 
carcinoma 

TCGA RNA-Seq LIHC 423 6056 19829 469922 aracne.networks 

Lung adenocarcinoma TCGA RNA-Seq LUAD 576 6055 19742 399513 aracne.networks 

Lung squamous cell 
carcinoma 

TCGA RNA-Seq LUSC 552 6054 19741 455032 aracne.networks 

Ovarian serous 
cystadenocarcinoma 

TCGA RNA-Seq OV 299 6007 19140 647358 aracne.networks 

Pheochromocytoma and 
paraganglioma 

TCGA RNA-Seq PCPG 187 6506 19861 603617 aracne.networks 

Prostate adenocarcinoma TCGA RNA-Seq PRAD 550 6053 19820 330922 aracne.networks 

Rectum adenocarcinoma TCGA RNA-Seq READ 177 6056 19856 557911 aracne.networks 

Sarcoma TCGA RNA-Seq SARC 265 6112 20479 526591 aracne.networks 

Skin cutaneous melanoma TCGA RNA-Seq SKCM 472 6053 19840 425361 aracne.networks 

Stomach adenocarcinoma TCGA RNA-Seq STAD 307 6056 21663 561858 aracne.networks 

Testicular germ cell tumors TCGA RNA-Seq TGCT 156 6056 19860 432621 aracne.networks 

Thyroid carcinoma TCGA RNA-Seq THCA 568 6053 19861 317582 aracne.networks 

Thymoma TCGA RNA-Seq THYM 122 6056 19862 387923 aracne.networks 

Uterine corpus endometrial 
carcinoma 

TCGA RNA-Seq UCEC 581 6055 19716 469845 aracne.networks 

T lymphocyte Ref. 1 T 233 5086 13834 324963 figshare 

B lymphocyte Ref. 2 B 201 3651 8699 207336 figshare 

Skin cutaneous melanoma TCGA RNA-Seq SKCM 472 6201 19840 432922 figshare 

Glioblastoma multiforme REMBRANDT NA 804 3921 12683 482879 figshare 

Glioblastoma multiforme Ref. 3 NA 176 3099 8964 382144 figshare 

Glioblastoma multiforme TCGA affymetrix NA 202 3433 9812 421108 figshare 

Glioblastoma multiforme TCGA agilent NA 202 5560 17355 988514 figshare 

 



2 Supplementary Figures 

 

 

Supplementary Figure 1: Highest absolute NES values are obtained from tissue-matched 

interactomes. A) Since tissue-matching regulons are in general best models for proteins in that 

specific tissue, we conclude that correctly assessed regulons usually give high absolute activity. 

This is demonstrated by that across all tissue types, tissue-matching interactome harbors the 

most regulons with highest absolute activity. B) In some particular cases, tissue-matching 

regulons may not constitute the best model. For instance, as shown, in breast invasive 

carcinoma (BRCA), proteins in the upper panel are best modeled by regulons from other tissues. 

Also, in some cases, tissue-matching regulons may not be the only appropriate model. For 

instance, besides BRCA regulons, proteins in the lower panel can also be appropriately 

modeled by regulons from other tissue types. 
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Supplementary Figure 2: Inference protein activity for orphan tissues. Correlation of 

protein activity inferred from 1) metaVIPER, with all available interactomes (all), 2) metaVIPER, 

with all non-matching interactomes (non) and 3) VIPER with matching interactome (mch). Then 

violin plots show the probability density distribution for the Pearson’s correlation coefficient for 

each of the evaluated tissue types.



Supplementary Figure 3: Single cell quality as confounding factor in understanding 

heterogeneity and regulatory properties. With expression measured by both log2(rpm+1) (A) 

and variance stabilizing transformation (VST) in DESeq R package4(B), cells with higher quality 

(higher number of genes detected) tend to have higher correlation with other cells. In some 

cases, inter-population correlation between high quality cells even exceeds intra-population 

correlation between low quality cells. This is no longer seen with metaVIPER predicted protein 

activity (C), indicating it to be a more robust measurement of heterogeneity and regulatory 

properties from single cells.
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Supplementary Figure 4: metaVIPER integration outperforms analysis with single interactome. As shown in Supplementary Fig 1, for a single cell type, the tissue-matched regulatory 

model usually gives the highest absolute protein activity inferences. That is to say, in a scenario where different cell types exist, the best regulatory model will give high variance of protein 

activity across the dataset. We compared the variance of protein activity inferences based on VIPER analysis across 27 distinct tissue-lineage contexts with that of metaVIPER integration. In all 

cases, metaVIPER outperformed the VIPER analysis. The figures show the ΔAUC between ecdf curve for a null model, built by uniformly shuffling the expression profile sample-wise (shown in 

black), and that of VIPER/metaVIPER analysis (shown in red), among which metaVIPER gives the highest value.



 

Supplementary Figure 5: metaVIPER reduces discrepancies between different scRNA-

Seq data sources. We analyzed filtered PBMC scRNA-Seq data generated using 10x 

Genomics V1 (Black) and V2 (Blue) chemistry. To make them comparable, we randomly 

selected 200 single cells for each data sources Discrepancies between different scRNA-Seq 

data sources were observed using expression, while no longer seen using metaVIPER 

predicted protein activity 

  



 

Supplementary Figure 6: metaVIPER reduces discrepancies between different expression 

quantification tools. We analyzed scRNA-Seq data reported by Wu et al.5. Transcriptomic 

profiles were quantified using STAR6 (Blue) and kallisto7 (Black). Discrepancies between 

different expression quantification tools were no longer seen using metaVIPER predicted protein 

activity.



 

Supplementary Figure 7: Quality control for protein activity analysis.  Since properly assigned regulons give high absolute 

normalized enrichment score (Supplementary Figure 1), therefore we use the Empirical Cumulative Distribution Function of the 

absolute value of the VIPER Normalized Enrichment Score (ECDF|NES|) of all proteins with significant predicted activity to estimate 

whether the protein activity analysis is satisfactory. We provided the distribution of the proposed score within each tumor type (GBM, 

OV etc.) as well as among all TCGA samples (TCGA) using tissue-matching interactome as references for trustworthy protein activity 

analysis. We also analyzed LAML samples with GBM interactome, which is completely misassigned (LAML and GBM have distinct 

lineage origination) as the negative control (Neg.Ctrl.). If metaVIPER analysis gives similar result, probably the included interactomes 

don’t have a satisfactory coverage on regulatory information of the analyzed samples.



References 

1 Della Gatta, G. et al. Reverse engineering of TLX oncogenic transcriptional networks 
identifies RUNX1 as tumor suppressor in T-ALL. Nat Med 18, 436-440 (2012). 

2. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master 
regulators of proliferation in germinal centers. Mol Syst Biol 6, 377 (2010). 

3 Phillips, H. S. et al. Molecular subclasses of high-grade glioma predict prognosis, 
delineate a pattern of disease progression, and resemble stages in neurogenesis. 
Cancer Cell 9, 157-173 (2006). 

4. Anders, S. & Huber, W. Differential expression analysis for sequence count data. 
Genome Biol 11, R106 (2010). 

5. Wu, A. R. et al. Quantitative assessment of single-cell RNA-sequencing methods. 
Nature methods 11.1, 41-46 (2014). 

6. Dobin, A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29.1, 15-21 
(2013). 

7. Bray, N. L. et al. Near-optimal probabilistic RNA-seq quantification, Nature 
Biotechnology 34, 525–527 (2016). 

 


