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Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

This paper presents a method that is an extension of ARACNe and VIPER, both were developed by 

the same group. ARACNe constructs gene regulation network through coexpression analysis, 

VIPER estimates the activity of a regulatory protein in a certain cell-type, whereas the new method 

presented here, called metaVIPER, intends to estimate protein activities without prior knowledge of 

tissue information. This could happen, for example, in cancer tissues as well as in single-cell 

analysis. The main strategy is to first derive a reference set of regulons in well-defined tissue 

types, and then compare each regulon with the differentially expressed genes and select the one 

that has strongest overlap. Interestingly, this approach works well in identifying unknown tissue 

types from cancer samples and single-cell analysis.  

This work is very interesting. Reconstructing gene regulation networks in poorly characterized 

tissues such as cancer is a main challenge. The method proposed here seems to be a powerful tool 

for such analysis. The paper is very well written and would be of interest to the broad community.  

A few minor comments: 

1. It seems that the method would work only if there exist a diverse pool of tissues for which

regulons can be well-characterized. Is there a guide on how many such tissues are needed? 

Presumably it would also depend on the variability of the regulatory protein of interest?  

2. The single-cell analysis is very interesting, but I am a bit surprised to see that closely related

cell populations (as judged by the gene expression patterns) can be easily distinguished based on 

regulons obtained from tissue-level analysis, which presumably contains heterogeneous cell types. 

It would be great if the authors could provide some intuitive explanation.  

Reviewer #2 (Remarks to the Author): 

From a technical point of view this work is sound and the paper is also mostly well-written (some 

minor criticisms below).  

The essence of this paper is the observation, which others have made use of before, that pooling 

data across diverse expression samples from different tissues is more informative of cell regulation 

than only closely-related samples. This observation is applied to improve the authors' existing 

method, VIPER which in turn builds on their much older very well-cited method ARACNe. The 

outcome is that this new extension improves performance, and in particular overcomes certain 

requirements imposed by the original approach. Users of VIPER will be excited by this advance, 

and it will also open up use to new users with different data requirements.  

The introduction fails to put the work in context within the field. Would the authors have the 

reader believe they are the only group in the field? The authors only cite their own work in relation 

to the methodology (for which there is plenty of work to compare it to), the application (fewer, but 

still important citations to be made) and do not benchmark against other methods. Their previous 

papers have compared more adequately to other methods in their benchmarks, and have shown 

more direct results. The benchmarking is only a proxy for their stated end goal of identifying 

master regulators. The paper could be improved by either experimentally validating the master 

regulators directly, re-stating the objective to match the benchmark, or (probably) admitting the 



gap between the stated goal and the benchmark. 

Something which I would have really liked to have seen, and which would really add to the paper 

(but should not be a barrier to publication) is the performance of MetaVIPER on samples from 

different sources. Single cell sequence data, something which the paper makes much interest of, is 

notoriously difficult to use from different sources, and it would be of great interest to know if 

MetaVIPER can attain good results across different single cell (and other) sequence data sources 

where others have failed.  

The remaining remarks are minor, and refer to the writing. 

Search for the following grammatcial errors in the text:  

"... targets of a specific proteins in ..."  

"... a number of distinct benchmark based on ..."  

"... identify classical targets targeted therapy."  

"... systematically assess method's performance in orphan tissues ..." 

"Quality of a single cell gene expression profiles is ..."  

The discussion uses too many sensational words without scientific justification. "comprehensive, 

systematic" please explain what makes it comprehensive and systematic. "Critically ... " why is it 

critical? Critical for what?etc. Statements need to be backed up (e.g. with reference to the main 

body of the paper).  

The discussion uses the word dissected without explaining it. The discussion implies all specialized 

tissues correlate well with a analysis including a matched interactome when excluded, whereas 

there is only a single example tested. This is misleading. Also that sentence is nonsensical as is, 

althgouth from reading the rest of the paper it is clear what the intended meaning is. The word 

'mitigated' is not really the correct term in places where it is used. It should be written that the 

authors have 'previously' shown things with VIPER to distinguish from work done in this paper.  



Reviewer #1 (Remarks to the Author): 

 This paper presents a method that is an extension of ARACNe and VIPER, both were developed by the 

same group. ARACNe constructs gene regulation network through coexpression analysis, VIPER 

estimates the activity of a regulatory protein in a certain cell-type, whereas the new method 

presented here, called metaVIPER, intends to estimate protein activities without prior knowledge of 

tissue information. This could happen, for example, in cancer tissues as well as in single-cell analysis. 

The main strategy is to first derive a reference set of regulons in well-defined tissue types, and then 

compare each regulon with the differentially expressed genes and select the one that has strongest 

overlap. Interestingly, this approach works well in identifying unknown tissue types from cancer 

samples and single-cell analysis. 

This work is very interesting. Reconstructing gene regulation networks in poorly characterized tissues 

such as cancer is a main challenge. The method proposed here seems to be a powerful tool for such 

analysis. The paper is very well written and would be of interest to the broad community. 

A few minor comments: 

1. It seems that the method would work only if there exist a diverse pool of tissues for which regulons

can be well-characterized. Is there a guide on how many such tissues are needed? Presumably it 

would also depend on the variability of the regulatory protein of interest?  

This is a very relevant point and the answer is not completely straightforward, because the number of 

required interactomes depends, of course, on the specific protein being evaluated, on the degree of 

conservation of its regulon across tissues, and on which tissues are currently represented in the 

collection of metaVIPER interactomes. Clearly, the more interactomes are available, the more likely it 

will be that a protein’s regulon in the unknown tissue of interest will be replicated, at least in part, in 

one of the tissue context for which an interactome has already been assembled. But can this be 

formulated in quantitative fashion? 

To address this important question in a more thorough and quantitative fashion, we now propose a 

metric representing the overall normalized enrichment score of all proteins based on their differentially 

expressed targets within the specific (and possibly unknown) context of interest. This is based on the 

fact that, as discussed in the manuscript (see Supplementary Fig. 1), regulons that are not representative 

of the specific tissue biology will not produce any statistically-significant enrichment. A metric can thus 

be computed as the Empirical Cumulative Distribution Function of the absolute value of the VIPER 

Normalized Enrichment Score (ECDF|NES|) of all proteins in an orphan tissue sample or samples. In a new 

Supplementary Fig. 7, we show the range of the ECDF|NES| as well as the standard deviation, using a 

violin plot representation, across all cohorts and corresponding tissue-matched interactomes in TCGA, 

as well as the average of the ECDF|NES| across all tissues. Thus, we can use the lowest value across all 

analyzed tissue types as a minimum threshold to determine whether a new, unknown tissue is well 

resolved by metaVIPER using the current set of interactomes or whether additional interactomes are 

required. As an example, we show the case of a hematopoietic cancer studied with a GBM-Specific 

interactome. As shown, the ECDF|NES| in the hematopoietic tumor cohort is significantly below that of 



the lowest tissue-matched interactome, thus suggesting that metaVIPER cannot properly resolve this 

context using only the GBM interactome.  

We revised the manuscript to reflect this point.  

2. The single-cell analysis is very interesting, but I am a bit surprised to see that closely related cell

populations (as judged by the gene expression patterns) can be easily distinguished based on regulons 

obtained from tissue-level analysis, which presumably contains heterogeneous cell types. It would be 

great if the authors could provide some intuitive explanation. 

We understand the concern by the reviewer but this is likely due to a common misunderstanding. 

Specifically, cells can be in different states without necessarily having a different regulatory network. For 

instance, as we reported for GBM in (Carro, MS, et al. "The transcriptional network for mesenchymal 

transformation of brain tumors." Nature 463.7279 (2010): 318.), we could identify master regulators for 

three different subtypes of GBM using a network that is inferred by bulk tissues representing not only 

different subtypes of the disease but likely also heterogeneous mixture of multiple cell types. In general, 

we have shown that if the lineage of the cells is conserved, then the differences in the underlying 

regulatory model are minimal (5% across 18 different types of normal and lymphoma related B cells). 

Even when the models are different, there will be some regulons that are well conserved between 

multiple tissue types and these will contribute to providing the ability to distinguish different subtypes. 

Of course, the optimal way to use metaVIPER would thus be to first identify sub-populations, then using 

ARACNe to generate sub-population specific networks, and then re-analyze the data to get even better 

ability to perform tissue context specific assessment of protein activity.  

To specifically address the reviewer’s question, the reason why MES and PN subtypes can be 

distinguished by using GBM tissue-level networks is essentially that the underlying regulatory network 

of the MES and PN subtypes are highly overlapping. Differences in MES vs. PN state are caused by 

different activity of a handful of MR proteins rather than by different underlying regulatory networks. 

Reviewer #2 (Remarks to the Author): 

From a technical point of view this work is sound and the paper is also mostly well-written (some 

minor criticisms below). 

The essence of this paper is the observation, which others have made use of before, that pooling data 

across diverse expression samples from different tissues is more informative of cell regulation than 

only closely-related samples. This observation is applied to improve the authors' existing method, 

VIPER which in turn builds on their much older very well-cited method ARACNe. The outcome is that 

this new extension improves performance, and in particular overcomes certain requirements imposed 

by the original approach. Users of VIPER will be excited by this advance, and it will also open up use to 

new users with different data requirements. 

The introduction fails to put the work in context within the field. Would the authors have the reader 

believe they are the only group in the field? The authors only cite their own work in relation to the 



methodology (for which there is plenty of work to compare it to), the application (fewer, but still 

important citations to be made) and do not benchmark against other methods. Their previous papers 

have compared more adequately to other methods in their benchmarks, and have shown more direct 

results. The benchmarking is only a proxy for their stated end goal of identifying master regulators. 

The paper could be improved by either experimentally validating the master regulators directly, re-

stating the objective to match the benchmark, or (probably) admitting the gap between the stated 

goal and the benchmark. 

We really appreciate the comments of the reviewer and apologize if the manuscript generates the 

impression that we are the only group working in this field. However, we had a similar discussion with 

the Nature Genetics reviewers and editor and we agreed that, while there are multiple labs that have 

developed and used reverse engineering algorithm and network based algorithm to study cellular 

behavior, there really are no alternative algorithms to VIPER that we know of or that the reviewers could 

identify in terms of transforming a gene expression profile into a protein activity profile. As discussed in 

the VIPER manuscript (Alvarez, Mariano J., et al. "Functional characterization of somatic mutations in 

cancer using network-based inference of protein activity." Nature genetics 48.8 (2016): 838-847.), VIPER 

can leverage any transcriptional network reverse engineering algorithm. For that step, the choice of 

ARACNe is only one of many. Indeed, in that manuscript we did perform a comparative VIPER analysis 

when using different methods for mapping regulatory networks. As a result, we are not sure how to 

perform a comparative analysis as requested by the reviewer.  

With respect to experimental validation, we have published dozens of manuscripts where predictions by 

VIPER and by its predecessor, MARINa, were experimentally validated. In this manuscript, we show that 

predictions made by metaVIPER, when eliminating the matched interactome from the analysis, are 

virtually identical to those made using the tissue-matched interactomes. In addition, we show 

metaVIPER produces protein activity estimations that co-segregates better with mutational data. As a 

result, we do not see how providing validation for one or two MRs would be more convincing than the 

wealth of data that has already been produced, see (A. Califano, M. J. Alvarez, "The recurrent 

architecture of tumor initiation, progression and drug sensitivity". Nat Rev Cancer 17, 116-130, 2017) for 

a comprehensive compendium of all these studies. 

Something which I would have really liked to have seen, and which would really add to the paper (but 

should not be a barrier to publication) is the performance of MetaVIPER on samples from different 

sources. Single cell sequence data, something which the paper makes much interest of, is notoriously 

difficult to use from different sources, and it would be of great interest to know if MetaVIPER can 

attain good results across different single cell (and other) sequence data sources where others have 

failed. 

This is a very good point. To address this reviewer’s question, we analyzed filtered PBMC scRNA-Seq 

data generated using V2 (https://support.10xgenomics.com/single-cell-gene-

expression/datasets/2.0.1/pbmc4k, most updated) and V1 (https://support.10xgenomics.com/single-

https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.0.1/pbmc4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/2.0.1/pbmc4k
https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k


cell-gene-expression/datasets/1.1.0/pbmc3k) chemistry from 10x Genomics. While the gene expression 

profile data shows a strong batch effect in t-SNE projections, this was virtually absent in metaVIPER-

inferred protein activity. We provide these results as one additional supplementary figure, 

Supplementary Figure 6. 

We revised the manuscript according to the comment. 

The remaining remarks are minor, and refer to the writing. 

Search for the following grammatcial errors in the text: 

"... targets of a specific proteins in ..." 

"... a number of distinct benchmark based on ..." 

"... identify classical targets targeted therapy." 

"... systematically assess method's performance in orphan tissues ..." 

"Quality of a single cell gene expression profiles is ..." 

We thank the reviewer for these recommendations and we have addressed all of these in the revised 

manuscript. 

The discussion uses too many sensational words without scientific justification. "comprehensive, 

systematic" please explain what makes it comprehensive and systematic. "Critically ... " why is it 

critical? Critical for what?etc. Statements need to be backed up (e.g. with reference to the main body 

of the paper). 

The discussion uses the word dissected without explaining it. The discussion implies all specialized 

tissues correlate well with a analysis including a matched interactome when excluded, whereas there 

is only a single example tested. This is misleading. Also that sentence is nonsensical as is, althgouth 

from reading the rest of the paper it is clear what the intended meaning is. The word 'mitigated' is not 

really the correct term in places where it is used. It should be written that the authors have 

'previously' shown things with VIPER to distinguish from work done in this paper. 

We are sorry if the use of words appeared sensationalistic. However, we are not sure we understand 

how using the term systematic may appear sensationalistic. By systematic (or comprehensive for that 

matter), we simply mean that these analyses can be performed identically, using consistent statistical 

criteria for each one of 6,000 proteins for which regulons are available and across any tissue of interest. 

This is not the case for other methodologies (e.g. antibody based or Mass-spec based) aimed at 

measuring protein abundance or activity, which can only be used on a very small subset of proteins or 

only when large amount of tissue is available.  

In any case, we revised the manuscript according to reviewer’s comments to avoid any appearance of 

sensationalistic statements and to clarify the use of specific words. 

https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/pbmc3k


Reviewers' comments: 

Reviewer #1 (Remarks to the Author): 

The authors have done a great job revising their manuscript and completely addressed the 

concerns in my original review. The Empirical Cumulative Distribution Function metric added in the 

revision is very interesting and may serve a very powerful guide for research design.  

Reviewer #2 (Remarks to the Author): 

In re-reviewing this paper it has become clear that I did not understand some parts of it during the 

first review. It was by reading the authors' other papers that many things became clear that were 

not explained in this manuscript. If this paper is going to be published for a non-specialist 

audience then the authors should not assume that the readers have already read their other 

papers, especially the VIPER paper. For example 'protein activity' is not introduced (a reader could 

infer differential expression, or protein abundance), and a precise meaning of which in this context 

is completely central to the paper. A quick read of the VIPER paper cleared this up easily, but this 

paper in general does not stand alone, and the abstract and introduction would lead the reader to 

believe it is about master regulators, which never come into it in the end. I apologise for some of 

this comment being partly new since the first review, but I did touch on the gap between the 

stated goal of master regulators and the actual work on protein activity. This comment still 

stands.  

Why was Meta-VIPER removed from the title? 

The term NES is not defined. 

The authors dealt with most other comments from the first review, but the possibility of 

benchmarking is still outstanding (the Nature Genetics editor's opinion notwithstanding). Whilst 

there may not be an identical approach to the authors', the better differential expression methods 

would be a very standard thing to compare to on their benchmarks. Since their approach is acting 

as a proxy, it would be important to know how it performs relative to differential expression which 

would be another simpler proxy that before metaVIPER people would have employed. Especially 

with regard to metaVIPER there are some differential expression and expression clustering 

algorithms that specifically attempt to cater for situations of low numbers of replicates in samples 

by using information across other samples for which there are more replicates. This is exactly what 

metaVIPER does for VIPER, so a direct comparison is warranted.  



Reviewer #2 (Remarks to the Author): 

In re-reviewing this paper it has become clear that I did not understand some parts of it during the 

first review. It was by reading the authors' other papers that many things became clear that were not 

explained in this manuscript. If this paper is going to be published for a non-specialist audience then 

the authors should not assume that the readers have already read their other papers, especially the 

VIPER paper. For example 'protein activity' is not introduced (a reader could infer differential 

expression, or protein abundance), and a precise meaning of which in this context is completely 

central to the paper. A quick read of the VIPER paper cleared this up easily, but this paper in general 

does not stand alone, and the abstract and introduction would lead the reader to believe it is about 

master regulators, which never come into it in the end. I apologise for some of this comment being 

partly new since the first review, but I did touch on the gap between the stated goal of master 

regulators and the actual work on protein activity. This comment still stands. 

We agree with the reviewer that the manuscript, in its current form, is not self-contained and relies 

heavily on the readers being familiar with the VIPER algorithm. To address this issue, we have modified 

the manuscript to explain the basis for using the expression of a protein’s transcriptional targets (direct 

for TFs, and least indirect for signaling proteins) as a multiplexed gene reporter assay to assess its 

activity. We thank the reviewer for this comment as sometimes, one may take things for granted and 

this may be confusing to a general audience.  

Why was Meta-VIPER removed from the title? 

Unfortunately, the journal has specific requirements about the title not containing punctuation marks. 

Therefore, we had removed the “metaVIPER:" element. However, depending on the editor’s and 

reviewers’ recommendations, we would be happy to change the title to “Quantitative Assessment of 

Protein Activity in Orphan Tissues and Single Cells Using the metaVIPER Algorithm” 

The term NES is not defined. 



In the revised manuscript, we defined NES as “Normalized Enrichment Score”, which represents the 

Kolmogorov-Smirnov statistics to measure the enrichment of a protein transcriptional targets in 

differentially expressed genes.  

The authors dealt with most other comments from the first review, but the possibility of 

benchmarking is still outstanding (the Nature Genetics editor's opinion notwithstanding). Whilst there 

may not be an identical approach to the authors', the better differential expression methods would be 

a very standard thing to compare to on their benchmarks. Since their approach is acting as a proxy, it 

would be important to know how it performs relative to differential expression which would be 

another simpler proxy that before metaVIPER people would have employed. Especially with regard to 

metaVIPER there are some differential expression and expression clustering algorithms that 

specifically attempt to cater for situations of low numbers of replicates in samples by using 

information across other samples for which there are more replicates. This is exactly what metaVIPER 

does for VIPER, so a direct comparison is warranted. 

We apologize if our comments about the algorithm comparison in Nature Genetics may have appeared 

smug. This was not our intention at all. We were simply stating that it is difficult to compare to other 

methodologies because we are not aware of any other published algorithm to infer protein activities 

from gene expression data. However, we completely understand the reviewer’s desire to at least 

compare metaVIPER to gene expression based analyses. To address this request, we now introduce a 

systematic benchmarking of single cell analyses using gene expression and protein activity. We thank 

the reviewer for this suggestion as it further highlights the advantages of metaVIPER analysis, especially 

in the context of single cell data, as shown in a new Figure 4 that summarizes these results. 

Specifically, one of the critical issues in using single cell gene expression is that the majority of genes 

produce no detectable mRNA reads. In contrast, metaVIPER can estimate activity of 6,000 critical 

proteins, including all TFs, co-TFs, signaling proteins, and chromatin remodeling enzymes, even if their 

expression is undetectable. To systematically assess this difference, we analyzed single cell data from a 

mixture of T cells, B cells, and melanoma cells (Ref. 35) either by gene expression analysis or by 

metaVIPER analysis. We first clustered single cells in individual sub-populations – by expression or 

activity clustering (Fig. 4a and 4f, respectively) – and then assessed the top 100 most differentially 

expressed genes and most differentially active proteins in each pairwise comparison (i.e., T cells vs. 

melanoma, T cells vs. B cells, and B cells vs. melanoma) by using a “virtual bulk” tissue expression profile 

obtained by summing the mRNA counts for each gene across all cells in a cluster. Finally, we assessed 

how many of these differentially genes/proteins could be recapitulated as differentially 

expressed/active at the single cell level (e.g., in an individual T cell vs. the bulk of melanoma cells). 

Figure 4b shows that at the single gene level metaVIPER systematically outperforms gene expression 

analysis. This difference is further exacerbated when considering a pair of genes/proteins (Fig. 4g).  



This difference allows us to perform the equivalent of FACS sorting on any pair of relevant markers 

chosen from the 6,000 proteins assessed by metaVIPER (Fig4h – j). The same analysis is virtually 

impossible at the gene expression level, as the majority of single cells would lay either on the y-axis (i.e. 

no mRNA reads for the first marker) or on the x-axis (i.e. no mRNA reads for the second marker), with a 

substantial number of cells actually being at the intersection of the two axes (x = 0; y = 0) (Fig4c – e). In  

For instance, consider key lineage markers, such as CD19 and CD3, which are expressed in B and T cells 

respectively. From metaVIPER analysis (Fig. 4j), one can clearly observe a CD19+/CD3- cluster 

corresponding to B cells, a CD19-/CD3+ cluster corresponding to T cells, and a CD19-/CD3- cluster 

corresponding to melanoma cells. In contrast, no clusters can be detected by gene expression analysis, 

with only a handful of single cells having measurable expression for both marker (Fig. 4e). This allows us 

to perform “virtual FACS” analysis across any pair of proteins assessed by metaVIPER, as shown by 

additional examples, such as FOXP3, vs. PAX5 and POU2F2 vs. STAT4. This also shows that metaVIPER 

can be used to probe into the biology of individual cells based on the activity of critical lineage markers 

(TFs/co-TFS) and surface markers (signaling proteins), whose encoding genes are undetectable at the 

mRNA level. 

To address these questions, we updated our ARACNe network collection to include interactomes 

reconstructed from 4 GBM datasets (microarray-based), as well as B-cell, T-cell and melanoma (SKCM) 

datasets. We updated the single cell analysis accordingly. Updates include: 

1. ARACNe network collection, including description in Supplementary Table, and data repository

in Figshare.

2. Figure 2, 3; Supplementary Figure 3, 4



Reviewers' comments: 

Reviewer #2 (Remarks to the Author): 

The authors have addressed everything apart from the issue, critical to a methods paper, if 

benchmarking against independent 3rd party software. The authors have compared their software 

to their own expression analysis, but this is not what I suggested.  

I suggested that their approach be compared to the current best in the field for their application 

case. I also explicitly suggested that the authors find a method that uses information across 

multiple samples to bootstrap missing information which is the principle they have followed. I am 

not up-to-date on what is the best in the field, especially for single-cell data, but there are popular 

methods such as EdgeR and DESeq, with many more listed here:  

https://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tool s#Co-expression_networks  

A search reveals DGEClust which uses the same principle as the authors' approach of using 

information across samples, but there's probably a better/newer more popular method that could 

be used.  

I leave it to the authors to select and justify the choice of 3rd party software for comparison. 



As per our prior discussions, comparative analysis of metaVIPER performance vs. other algorithms is 

challenging. This is because most of the methodologies developed to deal with the low-depth profiling 

of single cell transcriptomes and consequent high gene dropout rates – e.g. Vu et al., 2016 PMID: 

27153638, Kharchenko et al., 2014 PMID: 24836921 or Finak et al., 2015 PMID: 26653891 – were not 

designed to reduce dropout effects at the single cell level but only at the sub-cluster level. I.e., they are 

meant to improve differential expression analysis between distinct sub-populations of molecularly 

similar cells (clusters) rather than between individual cells. By dropout genes we indicate genes having 

zero reads in a specific scRNA-Seq profile. 

We also systematically benchmarked metaVIPER’s performance against the best methodology for gene 

expression profile normalization, i.e., the RSEM algorithm (Li et al., 2011 PMID: 21816040). RSEM pre-

assembles sequencing reads into transcripts, thus resulting in a more accurate gene expression 

assessment.  

We apologize the fact that the graph used to assess the latter comparison (metaVIPER vs. RSEM) in the 

previous resubmission may have been misleading. Indeed, for the RSEM analysis in that graph, we had 

considered only cells where at least one read from the gene of interest was detected (i.e. dropout cells 

for each tested gene were not included in the analysis), thus significantly improving RSEM results. To 

address this problem, we modified the graph (see below) to show the analysis of all single cell pairs, 

such that the number of single cell pairs analyzed is the same for metaVIPER, [Redacted], and RSEM. As 

shown, the difference in reproducibility is remarkable with a mode of 80% of cell pairs showing 

statistically reproducible differential activity of the top 100 most differentially active proteins in the 

corresponding sub-population bulk profiles (metaVIPER, cyan curve) vs. only 15% and 10% for the 

RSEM-based (magenta curve) and [Redacted] (yellow curve) analysis of the top 100 differentially 

expressed genes in the same single cell pair, respectively (panel C). The difference becomes even more 

striking when a pair of genes/proteins is considered (panel D), as would be the case for virtual FACS 

analyses.  

[Redacted]

[Redacted]



Results: 

To address the remaining reviewer’s concerns, we have modified the manuscript (changes tracked in red) 

to include the results of the more comprehensive RSEM vs. metaVIPER benchmark analysis, including 

changes to the content and legend of Figure 4. We also report the full comparison of metaVIPER to both 

RSEM and [Redacted] in the rebuttal for the reviewer’s consideration.

Figure 4: Comparative analysis of single cell metaVIPER performance compared to gene expression 

based methods. We identified the 100 most differentially expressed genes and differentially active 

proteins based on the analysis of 5 synthetic bulk samples created by averaging the expression of 100 

randomly selected single cells from the melanoma, B cell, and T cell population clusters, respectively. (A, 

B) Based on t-SNE analysis, synthetic bulk samples clustered more tightly when analyzed based on

VIPER-inferred protein activity than based on gene expression. (C). This panel shows the percent of the 

top 100 most differentially expressed genes/active proteins (Y axis) recapitulated as significantly 

differentially expressed/active in a given fraction of individual cells from two different clusters (e.g., T 

cells vs B cells) (X axis). The yellow, magenta, and turquoise curves show the results of [Redacted],
RSEM, and metaVIPER-based analyses, respectively. (D). The same analyses were repeated to assess 

reproducible differential expression/activity of a gene/protein pair, as relevant for virtual FACS analyses. 

(F-H) Virtual FACS analyses using expression and activity of established lineage marker TFs by RSEM, 

[Redacted], and metaVIPER analysis (see main text and Figure 3 for details). (I-K) Virtual FACS analysis

using expression and activity of STAT4 and POU2F – both identified as differentially expressed and 

active candidate biomarkers from bulk sample analyses, – using the same three methods. (L-N) Virtual 

FACS analysis based on expression and activity of CD3 and CD19 cell surface markers, as used in 

standard FACS analyses, using the same three methods. We also provide an example showing how B 

and T cells would be separated in a bona fide experimental FACS analysis using CD3 and CD19 

antibodies (E, figure from https://www.tonbobio.com/antibodies-and-reagents/percp-anti-human-

cd19-sj25c1.html) 

https://www.tonbobio.com/antibodies-and-reagents/percp-anti-human-cd19-sj25c1.html
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REVIEWERS' COMMENTS: 

Reviewer #2 (Remarks to the Author): 

The benchmarking has now been addressed. Benchmarking is often challenging, especially when 

doing something different or new, but comparisons, even if not direct, are still important. 
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