SUPPLEMENTARY INFORMATION

Lack of formylated methionyl-tRNA has pleiotropic effects on *Bacillus subtilis*

Yanfei Cai^{1,2,} Pete Chandrangsu¹ Ahmed Gaballa¹ and John D. Helmann^{1*}

Table S1	Strains and Plasmids
Table S2	Oligonucleotides
Table S3	Suppressor mutations of <i>\Delta defA defB::erm</i> double mutant
FIG S1	Growth curves of the WT and <i>\Delta defA defB::erm fmt1</i> mutant in MM media
FIG S2	$\Delta defA \ defB::erm \ fmt1$ mutant is sensitive to hydrogen peroxide and PQ stress
FIG S3	△ <i>defA defB::erm fmt1</i> mutant is sensitive to iron intoxication
FIG S4	Disk diffusion assayA of WT and mutant strains on methylglyoxal
FIG S5	Disk diffusion assay of WT and mutant strains on fosfomycin

SI References

Strain	Genotype	Reference
CU1065	$trpC2$ att SP β	Lab stock
NCIB 3610	Marburg undomesticated strain	(1)
HB21001	001 <i>defA:null defB:erm with the deletion of base pair 119A of fmt</i>	
HB21002	defA:null defB:erm	
HB21003	003 defA::erm	
HB21004	321004 <i>defB::erm</i>	
HB21005	defA:null defB:erm with 909C deleted, G916T and G917T, the DNA from 813 to 905 deleted.	This study
HB21006	fmt::km	This study
HB21009	NCIB3610 fmt::km	This study
HB21011	fmt:km katA::tet	This study
HB21012	fmt::km yfmC::mls	This study
HB21014	fmt::km ahpCF::cat	This study
HB21015	fmt::km katA::mls ahpCF::cat	This study
HB21016	fmt::km P _{spac} fmt	This study
HB21017	NCIB3610 fmt::km P _{spac} fmt	This study
HB21018	fmt::km bshC::mls	This study
HB5612	yfmC::mls	(2)
HB14110	katA::mls	(3)
HB17882	katA::mls ahpCF::cat	(4)
HB17821	ahpCF::cat	(4)
HB11212	bshC::mls	(5)
pPL82	Expression of gene under P _{spac(hy)} promoter	(6)

Table S1 Strains and plasmids (the strains are CU1065 background, unless indicated)

Table S2. Oligonucleotides

No.	Name	Sequence		
6863	defA-up-fwd	CCGATAGCCAGGATCAAAGAT		
6864	defA-do-rev	GGAGGAGGTGTCAGTACTTT		
6865	defB-up-fwd	CACCTTTGCGCTAATCGT TG		
6866	defB-do-rev	TTGAATACGTTGGGACAGGC		
6891 fmt-up-fwd		GACCACTTAGACGGTGTGCT		
6892	fmt-do-rev	TCAGCAGCAGGTTGCTGTAT		
6893	defB-up-fwd	CGCGGATCCGTTTTATAGCGTCTTTCACGT		
6896	defB-do-rev	CGCGAATTCTGTTCCCGAACTGAAAGAAAT		
6897	defA-up-fwd	GCGAAGCTTCTCACGTCTTGGAGGGTAA		
6900	defA-do-rev	CGCAGATCTCTTAAAACAGGAACTGAAAAATC		
7110	fmt-up-rev(km)	CCTATCACCTCAAATGGTTCGCTGCAAATCATCCTTCCATA		
/110		TCCGCT		
7111	fmt-do-fwd(km)	CGAGCGCCTACGAGGAATTTGTATCGACTAGTGTTCGTGA		
		CATCGC		
7112	fmt-do-rev	AGCAGCCATTTGGTCAAGCA		
7285	fmt-up-f-ppl82	GCGAAGCTTATGAACTAGC GGATATGGAA		
7286	fmt-do-r-pp182	CGCAGATCTTTGTTCTAATTTGATCAGCG		

	strains	fmt	foldD	glyA
	∆defA defB∷erm fmt1	119A deleted	no	no
	∆defA defB∷glyA1	no	no	Δ813 to 905, Δ909C, G916T, G917T
Δ	∆defA defB::erm (sup3)*	no	no	no

Table S3 Suppressor mutations of *△defA defB*::*erm*

*This suppressed strain did not have a mutation in any of the three sequenced loci.

FIG S1 Growth curves of the WT and $\Delta defA \ defB::erm \ fmt1$ (fmt1, HB21001) mutant in MM plus different metal (OD₆₀₀ at the time indicated in hours). The WT in MM (red triangle), in MM plus 10 μ M Fe (green triangle), in MM plus 5 μ M Mn (purple triangle). The *fmt1* mutant in MM (red square), in MM plus 10 μ M Fe (green square) and MM plus 5 μ M Mn (purple square).

FIG S2 an $\Delta defA \ defB::erm \ fmt1$ (HB21001) mutant has elevated sensitivity to hydrogen peroxide and PQ. Sensitivity of WT (black column) and $\Delta defA \ defB::erm \ fmt1$ (white column), to hydrogen peroxide stress as monitored using a disk diffusion assay. The results are expressed as the diameter of the inhibition zone (mm) minus the diameter of the filter paper disk (6.5 mm). The disks were spotted with 3 µl of 0.8M H₂O₂ or 5 µl of 0.5 M PQ. The mean ± SE from at least three biological replicates are reported.

FIG S3 The $\Delta defA \ defB::erm \ fmt1$ mutant is sensitive to iron intoxication. Growth of WT (CU1065) and $\Delta defA \ defB::erm \ fmt1$ (HB21001) under iron intoxication condition by monitoring cell growth in liquid culture (OD₆₀₀ vs. hours). Iron concentration dependence of growth inhibition for the strains in LBC medium amended with various concentrations of FeSO₄ (added from a 100 mM stock prepared in 0.1 N HCl). Growth inhibition is apparent with 3.5 mM Fe(II) (red square) and 4 mM Fe(II) (green trangle). Growth curves are an average of four cultures monitored in parallel (technical replicates), and the results are representative of experiments performed at least three times.

FIG S4 Disk diffusion assay of WT (WT; CU1065; black bars) and mutant strains on Methylglyoxal (MG, 22 μ mol). The results are expressed as the diameter of the inhibition zone (mm) minus the diameter of the filter paper disk (6.5 mm). The mean \pm SE from at least three biological replicates are reported.

FIG S5 Disk diffusion assay of WT (WT; CU1065; black bars) and mutant strains on fosfomycin (250 μ g). The results are expressed as the diameter of the inhibition zone (mm) minus the diameter of the filter paper disk (6.5 mm). The mean \pm SE from at least three biological replicates are reported.

SI Bibliography and References Cited

- 1. **Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R.** 2001. Fruiting body formation by *Bacillus subtilis*. Proc Natl Acad Sci U S A **98**:11621-11626.
- 2. Ollinger J, Song KB, Antelmann H, Hecker M, Helmann JD. 2006. Role of the Fur regulon in iron transport in *Bacillus subtilis*. J Bacteriol **188:**3664-3673.
- 3. **Faulkner MJ, Ma Z, Fuangthong M, Helmann JD.** 2012. Derepression of the *Bacillus subtilis* PerR peroxide stress response leads to iron deficiency. J Bacteriol **194**:1226-1235.
- Guan G, Pinochet-Barros A, Gaballa A, Patel SJ, Arguello JM, Helmann JD. 2015. PfeT, a P1B4 type ATPase, effluxes ferrous iron and protects *Bacillus subtilis* against iron intoxication. Mol Microbiol 98:787-803.
- 5. Gaballa A, Chi BK, Roberts AA, Becher D, Hamilton CJ, Antelmann H, Helmann JD. 2014. Redox regulation in *Bacillus subtilis*: the bacilliredoxins BrxA(YphP) and BrxB(YqiW) function in debacillithiolation of S-bacillithiolated OhrR and MetE Antioxid Redox Signal 21:357-367.
- Quisel JD, Burkholder WF, Grossman AD. 2001. In vivo effects of sporulation kinases on mutant Spo0A proteins in *Bacillus subtilis*. J Bacteriol 183:6573-6578.