
Supplementary Information

Supplementary Note 1: Overview of prior methods for cell-type identification

Various methods have been developed for cell type identification. SNNCliq 1 computes a similarity graph

among cells, referred to as shared nearest neighbor (SNN). It then uses a graph-based clustering algorithm

to identify dense subgraphs. Seurat 2 was originally designed for spatial reconstruction of scRNA-Seq

data. Since then, it has been extensively updated and used for cell-type identification. In more recent

versions (v2.2), Seurat adopted a graph-based approach similar to SNNCliq with extensive modifications

that deviate from the original version. TSCAN 3 starts by grouping genes with similar expression patterns

into “modules” and represents all cells in this reduced space. It then performs principal component analysis

(PCA) over the module space to further reduce dimensions. Finally, cells are clustered by fitting a mixture of

multivariate normal distributions to the data, with the number of components estimated using the Bayesian

Information Criterion (BIC). SCUBA 4 first uses k-means with gap statistic to cluster data along an initial

binary tree by analyzing bifurcation events for time-course data. Then, it refines the tree using a maximum

likelihood scheme. BackSPIN 5 is based on the SPIN algorithm, which permutes correlation matrix of

cell types to extract its underlying structure. BackSPIN then couples it with a divisive splitting procedure

to identify clusters from the ordered similarity matrix. Two methods are specifically designed to identify

rare cell types. RaceID 6 uses k-means to first cluster cells, with the number of clusters identified using

gap statistic. Then, it identifies rare cell types as outliers that are not explained by an appropriate noise

model, accounting for both biological and technical variations. GiniClust 7 aims to identify marker genes

that are specific to rare cell types using the concept of Gini index. Then, it computes distances between cell



types in this reduced subspace and uses DBSCAN clustering algorithm to identify cell types. In addition

to these methods, there are approaches that visualize cell types on a continuous spectrum in a given space.

Haghverdi et al. 8 use diffusion maps to model the continuous spectrum of cells. In another direction, Korem

et al. 9, adopted a previously developed method, called Pareto task inference (ParTI) 10 and applied it to

single cell datasets. The latter method itself is based on the original work of Shoval et al. 11. While ParTI

uses a similar notion non-convex archetypal analysis as what we do, our method begins with the separable

NMF method, the solution of which can be formulated as a convex problem, to pick “ideal” candidate cells

as archetypes. Then, it uses the non-convex PCHA procedure to refine these primary archetypes by sparse

local averaging to combat noise in the data. Furthermore, our method is founded on a biologically-inspired,

kernel-based approach, has a novel method to identify the number of cell types, and last but not the least, a

statistical method to construct regulatory circuits that uniquely distinguish each cell type.



Supplementary Note 2: Comparison of Entropy-based marker detection method

with Gini index and dispersion

In order to compare the performance of different methods to identify cell type-specific genes, we focused on

the Melanoma and the MouseBrain datasets, for which the original paper provided curated markers for cell

types. For each dataset, we ranked genes according to each measure, both before and after adjustment for

the effect of universally-expressed genes. Then, for each cell type, we created a true-positive vector based

on its curated markers and assessed the over-representation of these markers among top-ranked genes from

each method. Finally, we combined each of these over-representation p-values using Fisher’s method. Sup-

plementary Figure 1 illustrates the results for each dataset. As can be seen from the figure, in both datasets,

the dispersion method is superior before adjustment, whereas Gini index and Entropy-based methods excel

after adjustment. As a general trend, we observe that dispersion methods outperform in predicting markers

for the most frequent cells in the dataset (T and tumor cells in the Melanoma dataset, and S1Pyramidal,

CA1Pyramidal, and Oligodendrocyte in the MouseBrain datasets), whereas the other two methods signifi-

cantly outperform dispersion for the rest of cell types, including rare cell types.

Next, to evaluate the extent of overlap among top-ranked genes, we focused on the top 1,000 genes in

each method. Supplementary Figure 2 shows the Venn diagram for the overlap of datasets. The Gini index

and entropy based methods have the highest agreement with each other, while the entropy-based method has

a higher overlap with dispersion method than Gini index.
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Supplementary Figure 1: Performance of different marker detection methods before/after correction for the

effect of universally expressed genes.

425

497

894

474 77

5

24

Entropy

Gini Dispersion

95

184

741

646

89

0

170

Entropy

Gini Dispersion

Melanoma MouseBrain

Supplementary Figure 2: Overlap among top-ranked 1,000 genes predicted using dispersion, Gini index,

and entropy-based methods.



Supplementary Note 3: Distribution of clustering measures and significance

of differences between different cell similarity metrics

In the main text, we reported a mean over 100 trials of kernel k-means with the four kernels: ACTION,

IsoMap, MDS, and SIMLR. Supplementary Figure 3 shows the actual distribution of different quality mea-

sures for each kernel k-means run. The figure also reports a t-test between the first and second-best method.

As in the main figure, ACTION performs equally well or better than other metrics, with the only exception

being F-score for the Brain dataset.



Supplementary Figure 3: Performance of cell similarity metrics



Supplementary Figure 3 (previous page): For each extrinsic measure on each dataset, the distribution of

values for kernel k-means runs is presented. In each case, the p-value of t-test between the top-ranked versus

runner-up methods has been reported. (a) Brain dataset, (b) CellLines dataset, (c) Melanoma dataset, (d)

MouseBrain dataset.



Supplementary Note 4: Detailed analysis of cell types identified using differ-

ent similarity metrics – case study in the CellLines dataset

The CellLines data contains measurements from seven distinct cell-lines: A549, GM12878, H1, H1437,

HCT116, IMR90, K562. We used this dataset to assess the results from kernel k-means for all of the

different metrics. The goal was to use a standard algorithm and compare the results as we vary the type of

cell-similarity. Supplementary Figure 4 shows the subspace of cell line-specific markers, sorted according

to the identified cell types in different methods. In all cases, there exists a predicted cell type that mistakenly

mixes samples from the H1437 cell line with one or more other cell lines. In case of ACTION, it almost

identifies H1437 perfectly, with marginal contamination from from the K562 and IM90 cell lines. This,

however, is not surprising since all three of these cell lines are based on lung tissue.
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Supplementary Figure 4: Heatmap of predicted cell types using kernel k-means with different similarity

metrics (a) original, (a) Original, (b) ACTION, (c) IsoMap, (d) MDS, (e) SIMLR



Supplementary Note 5: Detailed analysis of cell types identified using differ-

ent cell type identification methods – case study in the CellLines dataset

Our next study is similar to the previous one (Supplemental Note ). In this study, the goal is to compare

cell-type identification methods rather than similarity metrics. (Supplementary Figure 5 shows the marker

subspace of identified cell types based on different different cell type identification methods, all of which

are nonparametric methods (in the sense that they automatically estimate the number of cell types). Among

these methods, ACTION that has the highest score and identifies almost all cell types correctly, except that

it mixes IMR90 with one of the batches of GM128787. In BackSPIN, all cell lines are either split between

two predicted cell types or are mixed with each other. This situation is somewhat better for ParTI, for which

the first batch of GM128787 and the H1 cell lines are predicted correctly. However, all other predicted

cell types are a mix of different cell lines. SNNCliq splits the cells into too many types. Finally, TSCAN,

which performs the second best, mixes parts of K562 and GM128787, and also splits H1 between separate

predicted classes. Overall, ACTION shows the highest consistency with the true annotation of cell types,

followed by TSCAN.
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Supplementary Figure 5: Heatmap of predicted cell types using different cell type identification meth-

ods applied to the CellLines dataset (a) original, (a) Original, (b) ACTION, (c) BackSPIN, (d) ParTI, (e)

SNNCliq, (f) TSCAN



Supplementary Note 6: Performance of SPA with preconditioner

Let Y = WH, where matrix W is defined as Y(:,S), with S being the selected column subspace of matrix

Y, and H is a non-negative matrix with column-sums equal to one. Moreover, let matrix Ỹ = Y + N,

where the noise is bounded: ‖N(:, j)‖2 ≤ ε. Then, the performance of the SPA algorithm has the following

upper bound guarantee:

max
1≤j≤k

min
s∈S
‖ Ỹ(:, s)−W(:, j) ‖≤ O

(
εκ2(W)

)
(1)

More recently, other techniques have been developed to enhance the robustness of SPA to noise 12.

These methods are based on the fact that premultiplying matrix Y by a nonsingular matrix Q preserves its

separability. In this case, the upper bound limit changes to: O
(
εκ(W)κ3(QW)

)
. Thus, by carefully choos-

ing matrix Q, we can enhance the conditioning of the problem. Ideally, if Q = W−1, then κ3(QW) = 1

and we reduced the upper bound from quadratic to linear. While W−1 is not accessible, we can approximate

W−1 using a minimum volume ellipsoid centered around the origin that contains all columns of the original

matrix X. Formally, this can be solved using the following SDP to identify matrix A∗:

A(∗) = argmax
A∈Sk+

det(A)

s.t.: Y(:, j)TAY(:, j) ≤ 1;∀j

Since AT is symmetric positive definite, we compute AT = QTQ using Cholesky factorization and use it

as a preconditioner.



Supplementary Note 7: Pseudo-code for fitting a geometric construct over

single cells

Algorithm 1 SPA algorithm with prewhitening
Input: Y ∈ Rm×n: adjusted expression profile of cells

Output: A ∈ Rm×k: primary functions, H ∈ Rk×n
+ : functional identity of cells

1: Solve minimum volume ellipsoid problem to identify preconditioner Q.

2: K = YTY,R = QY,S = {}

3: for i = {1, · · · ,maxk} do

4: α = argmaxj ‖rj‖2 {rj is the jth column}

5: β = R(:, α)

6: R← (I− ββT

βTβ
)R {Orthogonal Projection}

7: S ← S ∪ {β}

8: Construct archetype similarity graph from G = K(S,S)

9: if subgraphdensity(G) is significant then

10: break

11: end if

12: end for

13: Initialize C0 using selected columns in S, and run kernel PCHA with K to estimate matrices C and H

14: A = YC



Supplementary Note 8: Computational runtime analysis

In terms of timing, the most time-consuming part of ACTION is the preconditioning using minimum volume

ellipsoid method, which depends on the solver being used. Using CVX with Mosek solver, timings are as

reported in Supplementary Figure 6. For larger datasets, it can be seen that ACTION scales more gracefully

compared to other methods.
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Supplementary Figure 6: Time-wise, smaller values are the better. It can be seen that ACTION scales better

as the datasets grow.



Supplementary Note 9: Robustness of ACTION method in presence of noise

and outliers

To further evaluate the effect of preconditioning convex Non-negative Matrix Factorization (NMF), as well

as relaxing it with Principal Convex Hull Analysis (PCHA), we performed a simulation to assess the impact

of outliers on these methods, as well as to find the critical point at which an outlier becomes a rare cell type.

To this end, we again focus on the CellLines dataset. In this case, H1 cell line (embryonic stem cell) is the

farthest from the rest of cell lines. We set up an experiment in which we held out H1 and gradually intro-

duced different percentages of H1 cells, varying from one to ten percent. For each case, we tried 10 individ-

ual replicas. Supplementary Figure 7a-c presents the performance of each method in identifying cell types,

measured with respect to known cell types. In each case, we observe that preconditioning (Pre-SPA) signifi-

cantly enhances the quality of results compared to Successive Projection Algorithm (SPA) alone. However,

this makes the results unstable (has a high variance). Applying PCHA on top (PreSPA+PCHA) smooths out

these variations. In order to assess the performance of these methods in identifying rare cell types, we used

bipartite matching in each case to find the closest predicted cell type to H1 and then used hypergeometric

p-value to assess the overlap of these two sets. These results, presented in Supplementary Figure 7d, show

that both PreSPA, and PreSPA+PCHA are sensitive enough to identify rare cell types. However, PreSPA is

sensitive to low percentages of introduced H1, whereas PreSPA-PCHA considers percentages less than 2%

to be noise/outlier and after that starts to identify it as a rare cell type.
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Supplementary Figure 7: Robustness of ACTION method in presence of noise and outliers (a)-(c) Differ-

ent measures of cell type identification quality as a function of introduced noise, (d) Analysis of the critical

point of transitioning from noise to rare cell type.



Supplementary Note 10: Visualizing the functional space of cells

Unlike the conventional application of t-distributed stochastic neighbor embedding (tSNE), which is used

to project the transcriptional profile of cells into a lower dimensional space, we propose a framework that

captures the distribution of cells around archetypes. To this end, we focus on the functional identity of cells

with respect to our archetypes, which is computationally represented by the matrix H. Each column in

this matrix is a stochastic vector (sums to one) that represents the extent to which a cell is close to a given

archetype. To visualize this continuous functional space, we first initialize the solutions using the Fiedler

embedding (as opposed to tSNE that uses random initialization). Then, we use tSNE to update the initial

coordinates. The following pseudo-code illustrates the proposed projection.

1. Take H from the PCHA as input.

2. Set H̃ = [H; I]

3. Let h̃i be the ith column of H̃, and compute entries of the matrixDij = ‖h̃i− h̃j‖2 (that is, Euclidean

distance between vectors h̃i and h̃j).

4. Convert Distances to Similarity following Network Similarity Fusion 13 affinity matrix construction

(a) Let d∗i be the average distance from ith cell to its top k = round(n/10) closest neighbors, with

n being the total number of cells. (If you sort columns of the matrix D, this is just the top k

entries.)

(b) Set Σi,j = (d∗i + d∗j + 2ε+Dij)/3, where ε is 2−52.



(c) Set Σ̃i,j =


Σi,j + ε Σi,j ≥ ε

ε Otherwise.

(d) Set Wi,j to be the probability that a normally distributed random variable with mean 0 and

standard deviation Σ̃i,j has value Di,j .

5. Set G = (W + WT )/2 be the weighted graph between cells.

6. Set L = diag(G · ones(n, 1))−G (that is, L is the combinatorial Laplacian of G).

7. Compute the three smallest eigenvalues and eigenvectors of L, (v1, λ1), (v2, λ2), (v3, λ3). Note that

λ1 is zero because of the Laplacian structure.

8. Set x = v2/
√
λ2

9. Set y = vy/
√
λ3

10. Run t-SNE to update x,y coordinates.

11. Final map represents the distribution of cells around each archetype.



Supplementary Note 11: List of 20 top-ranked genes for each archetype in

the Melanoma dataset

1-T 2-B 3-T/Unresolved 4-Tumor 5-Tumor 6-Tumor 7-Macro 8-Endo/CAF

NKG7 MS4A1 UGDH-AS1 DCT APOC2 SAA1 TYROBP IGFBP7

CD8A CD79A ROCK1P1 PMEL APOD TF FCER1G EFEMP1

CST7 HLA-DRA TMEM212 LHFPL3-AS1 SERPINA3 SFRP1 CD14 CCL21

GZMA BANK1 HERC2P4 CTSK MIA MAGEA4 IFI30 BGN

CD3D CD79B ASTN2 TYRP1 A2M RGS5 C1QC THY1

CCL4 IGLL5 SHISA9 TUBB4A SERPINE2 MAGEC2 C1QA TFPI

IL32 IRF8 ORC4 SCD TYR PDK4 AIF1 CLDN5

GZMK CD37 SPC25 GPM6B APOE C2orf82 C1QB PDLIM1

PRF1 CD19 LOC643406 RAB38 IFI27 ALDH1A3 S100A9 COL1A1

CD2 CD74 LOC646214 PIR TRIML2 CAMP FCGR3A C1R

KLRK1 CXCR4 ODF2L KIT MFGE8 SERPINA3 CSF1R RARRES2

ITM2A SELL ABCC9 CA14 NSG1 C1QTNF3 MS4A6A CYR61

RGS1 VPREB3 L2HGDH BCAN RDH5 ANGPTL4 IGSF6 DCN

PDCD1 HLA-DPA1 LYZ SNAI2 SLC26A2 ERRFI1 HCK C1S

CD27 TCL1A LOC286437 GSTO1 CAPN3 COL1A2 PILRA NNMT

TIGIT HLA-DQB1 MAB21L3 MLANA MT2A MRPL36 VSIG4 CXCR7

LCK BCL11A KCNQ1OT1 SLC45A2 SPP1 FN1 IL1B IGFBP4

CTSW LTB ARHGEF26-AS1 GPR143 TM4SF1 HAPLN1 TMEM176B ECSCR

IL2RG NAPSB FBLIM1 TRPM1 PMEL SAA2 CD163 GNG11

SIRPG CD22 GLIPR1L2 CDK2 CDH19 MGP FCN1 CLU

7.7× 10−67 3.5× 10−59 1.6× 10−3 2.5× 10−22 4.8× 10−53 5.0× 10−05 2.4× 10−176 5.9× 10−98

Supplementary Table 1: Table of the top 20 residual genes after orthogonalization. Each archetype is also

annotated with its enriched cell type. Bolded genes are the genes that coincide with known markers provided

by the original paper. The last row is the p-value of enrichment of markers among all genes sorted after

orthogonalizing each archetype.



Supplementary Note 12: Regulated downstream targets of MITF factor in

Subclasses B and C

The following table lists the full set of significant downstream targets of MITF in both subclasses B & C.

Genes GPNMB, MLANA, PMEL and TYR are shared between two subclasses, whereas the rest of targets

are unique to one of them. For genes that have significant effect on the survival rate, their Cox coefficient

is presented in the table. A positive Cox coefficient indicates that high expression of the given genes is

associated with poor survival.



Target Subclass B Subclass C Cox Coefficient

ACP5 X -

CDK2 X 0.218

CTSK X -

DCT X -

KIT X 0.3214

OCA2 X 0.3038

TRPM1 X 0.188

TYRP1 X 0.2422

GPNMB X X -

MLANA X X -

PMEL X X 0.2765

TYR X X -

BEST1 X -

BIRC7 X -

FOS X -

MET X -

Supplementary Table 2: MITF target genes in Subclasses B&C
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