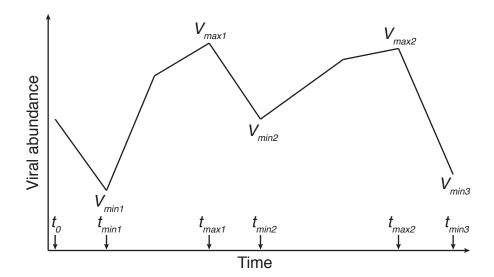
Mixing alters the lytic activity of viruses in the dark ocean


Christian Winter, Nicole Köstner, Carl-Philip Kruspe, Damaris Urban, Simone Muck, Thomas
Reinthaler, Gerhard J. Herndl

Appendix S3

Figure S1: Temporal development of viral abundance in virus dilution incubations

Equation 1: Frequency of infected cells (FIC)

Equation 2: Viral production (VP)

Figure S1: Temporal development of viral abundance in virus dilution incubations. The sketch depicts a typical example of the temporal development of viral abundance commonly obtained from virus dilution incubations. Additionally, the figure depicts local maxima (V_{max1} , V_{max2}) and minima (V_{min1} , V_{min2} , V_{min3}) of viral abundance and the corresponding time points (t_{min1} , t_{max1} , t_{min2} , t_{min3}) that are used to calculate the frequency of infected cells (FIC, Eq. S1) and viral production (VP, Eq. S2); start of the incubation: t_0 .

Equation S1: FIC =
$$\frac{[(V_{max1} - V_{min1}) + (V_{max2} - V_{min2})]}{\text{burst size}} \times \frac{100}{\text{prokaryotic abundance at } t_0}$$

Equation S2: VP =
$$\frac{[(V_{max1} - V_{min1}) + (V_{max2} - V_{min2})]}{(t_{max2} - t_{min1})}$$

The number of maxima and minima in the temporal development of viral abundance may vary so that the equations will have to be adapted accordingly.