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Abstract 24 

Background: The Peruvian scallop, Argopecten purpuratus, is mainly cultured in 25 

Southern Chile and had been introduced into China in last century. Unlike other 26 

Argopecten scallops, the Peruvian scallop normally has a long life span of up to 7-10 27 

years. Therefore, researchers have been employing it to develop hybrid vigor. Here, 28 

we performed whole genome sequencing, assembly, and gene annotation of the 29 

Peruvian scallop, with an important aim to develop genomic resources for genetic 30 

breeding in scallops. Findings: A total of 463.19-Gb (Gigabase) raw DNA reads were 31 

sequenced. The draft genome assembly of 724.78 Mb was generated (accounting for 32 

81.87% of the estimated genome size 885.29 Mb), with a contig N50 size of 80.11 kb 33 

and scaffold N50 size of 1.02 Mb. Meanwhile, the repeat sequences were calculated 34 

to reach 33.74% of the whole genome, and a total of 26,256 protein-coding genes and 35 

3,057 non-coding RNAs were predicted from the assembly. Conclusion: We 36 

generated a draft genome assembly of the Peruvian scallop, which will provide solid 37 

resource for further genetic breeding and evolutionary history analysis of this 38 

economically important scallop. 39 

 40 

Keywords: Argopecten purpuratus; Peruvian scallop; genome assembly; annotation; 41 

gene prediction; phylogenetic analysis 42 

 43 

 44 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 45 

Data description  46 

Introduction 47 

The Peruvian scallop (Argopecten purpuratus), also known as Chilean scallop, is 48 

a medium-sized bivalve with a wide distribution in Peru and Chile [1]. In Chile, the 49 

cultured scallops reach a commercial size of around 9 cm in shell height within 14-16 50 

months [2]. It is a relatively stenotherm species as its natural habitat is largely under 51 

the influence of upwelling currents from Antarctica [3]. Unlike other Argopecten 52 

scallops, the Peruvian scallop normally has a long life span of up to 7-10 years [4, 5]. 53 

This scallop was introduced into China in the late 2000’s and had played an important 54 

role in stock improvement of Argopecten scallops via inter-specific hybridization [6, 7] 55 

with bay scallops.   56 

 57 

Whole genome sequencing  58 

Genomic DNA was extracted from muscle sample of a single A. purpuratus 59 

(Figure 1), which was obtained from a local scallop farm in Laizhou, Shandong 60 

Province, China. The traditional whole genome shotgun sequencing strategy was 61 

applied. Six libraries with different insert length (250 bp, 450 bp, 2 kb, 5 kb, 10 kb, 62 

and 20 kb) were constructed according to the standard protocol provided by Illumina 63 

(San Diego, CA, USA), and sequenced on the Illumina HiSeq4000 platform with 64 

paired-end 150 bp. In addition, SMRTbell libraries were prepared using either 10-kb or 65 

20-kb preparation protocols to optimize for the most high-quality and longest reads; 66 

subsequent sequencing was performed on PacBio Sequel instrument with SequelTM 67 

Sequencing Kit 1.2.1(Pacific Biosciences of California，USA). Finally, the 10X 68 

Genomics library was constructed and sequenced with paired-end 150 bp on the Hiseq 69 
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platform. The Chromium™ Genome Solution（10X Genomics，USA）massively 70 

partitions and molecularly barcodes DNA using microfluidics, producing 71 

sequencing-ready libraries with >1,000,000 unique barcodes. In total, 463.19 gigabases 72 

(Gb) of raw reads were generated, including 75.72, 70.22, 19.21, 45.71, 28.34, 11.78, 73 

18.01 and 194.20 Gb from the 250-bp, 450-bp, 2-kb, 5-kb, 10-kb, 20-kb libraries, 74 

Pacbio sequencing, and 10X Genomics library respectively. The raw reads were 75 

trimmed by removing adaptor sequences, ambiguous nucleotides and low-quality reads, 76 

and then these cleaned high-quality reads were used for subsequent genome 77 

assembling.  78 

 79 

Estimation of the genome size and sequencing coverage  80 

The 17-mer frequency distribution analysis [8] was performed on all the 81 

remaining clean reads to estimate the genome size of the Peruvian scallop using the 82 

following formula: genome size = k-mer number / peak depth. A total number of 6.22 83 

× 1010 k-mers and the peak k-mer depth of 69 was employed to obtain the estimated 84 

genome size at 885.29 Mb (Table 1), and the estimated repeat sequencing ratio 85 

reaches 33.74%.  86 

 87 

De novo genome assembly and quality assessment of A. purpuratus genome 88 

All the pair-end Illumina reads were first assembled into scaffolds using Platanus 89 

[9], and then were applied to fill the gaps by GapCloser [10]. Subsequently, the 90 

Pacbio data were used for additional gap filling by PBJelly v14.1 with default 91 

parameters [11], and then all the Illumina reads were employed for two rounds to 92 

correct the genome assembly by Pilon v1.18 [12]. After that, the 10X linked-reads 93 

were used to link scaffolds by fragScaff [13]. Finally, a draft genome of 724.78 Mb 94 
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was assembled (accounting for 81.87% of the estimated genome size at 885.29 Mb), 95 

with a contig N50 size of 80.11 kb and a scaffold N50 size of 1.02 Mb (Table 1). 96 

With this initial assembly, we applied the short insert library reads to map with 97 

the assembled genome using BWA software [14] to calculate the mapping ratio and 98 

assess the assembly integrity. In summary, 91.05% short reads were mapped onto the 99 

assembled genome with a coverage of 89.40%, indicating a good reliability of our 100 

genome assembly. CEGMA (Core Eukaryotic Genes Mapping Approach) defines a 101 

set of conserved protein families that occur in a wide range of eukaryotes, and 102 

presents a mapping procedure to accurately identify their exon-intron structures in a 103 

novel genomic sequence [15]. A protein is classified as complete if the alignment of 104 

the predicted protein to the HMM profile represents at least 70% of the original KOG 105 

domain, otherwise it is classified as partial. Through mapping to the 248 core 106 

eukaryotic genes, a total of 222 genes (89.52%) were identified. BUSCO 107 

(Benchmarking Universal Single-Copy Orthologs) provides quantitative measures for 108 

the assessment of genome assembly completeness, based on evolutionarily-informed 109 

expectations of gene content from near-universal single-copy orthologs [16]. We 110 

confirmed that 89% of the 843 single-copy genes were identified, indicating a good 111 

integrity of the genome assembly.  112 

  113 

Repeat sequence analysis of the genome assembly 114 

We searched transposable elements (TEs) in the assembled genome through 115 

ab-initio and homology based methods. For the former method, we applied 116 

RepeatModeler [17] (the parameter set as '--engine_db wublast') to build a specific 117 

repeat database. For the latter method, we employed known repeat library (Repbase) 118 

[18] to identify repeats with RepeatMasker [19] (the parameter set as '-a -nolow 119 
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-no_is -norna -parallel 3 -e wublast --pvalue 0.0001') and RepeatProteinMask (the 120 

parameter set as '-noLowSimple -pvalue 0.0001 -engine wublast') [19]. Tandem 121 

repeats finder (TRF) was used to find tandem repeats with the parameters setting as 122 

'Match = 2, Mismatching penalty = 7, Delta = 7, PM = 80, PI = 10, Minscore = 50, 123 

MaxPeriod = 2,000' [20]. Finally, we summarized that the total repeat sequences are 124 

294,496,811 bp, accounting for 40.63% of the assembled genome, and including 125 

11.46% of tandem repeats, which is consistent with our above-mentioned estimation 126 

(Table 2). 127 

 128 

Gene annotation  129 

 (1) Annotation of protein coding genes  130 

The annotation strategy for protein-coding genes integrated de novo prediction 131 

with homology and transcriptome data based evidence. Homology sequences from 132 

Pacific oyster (Crassostrea gigas), Mollusks (Lottia gigantean), Mosquito (Anopheles 133 

gambiae), Amphioxus (Branchiostoma floridae), Nematode (Caenorhabditis elegans), 134 

Ascidian (Ciona intestinalis), Fruit fly (Drosophila melanogaster), Leech (Helobdella 135 

robusta), Human (Homo sapiens), Octopuses (Octopus bimaculoides), Sea urchin 136 

(Strongylocentrotus purpuratus) were downloaded from Ensemble [21]. The protein 137 

sequences of homology species were aligned to the assembled genome with 138 

TBLASTn (e-value ≤ 10-5) [22] and predicted gene structures with GeneWise (the 139 

parameter set as '-genesf') [23]. The transcriptome data from muscle, sequenced by 140 

Illumina sequencing platform, were mapped onto our genome assembly with Tophat 141 

(the parameter set as '--max-intron-length 500000 -m 2 --library-type fr-unstranded') 142 

[24] and assembled to gene model with Cufflinks (the parameter set as 143 

'--multi-read-correct') [25] according to the pair-end relationships and the overlap 144 
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between aligned reads. The de novo prediction of genes was carried out with four 145 

programs: Augustus  (the parameter set as '-uniqueGeneId true 146 

--noInFrameStop=true --gff3 on –genemodel complete –strand both') [26], Genscan 147 

(the default parameter) [27], GlimmerHMM (the parameter set as ' -f -g') [28] and 148 

SNAP (the default parameter) [29]. All evidences of gene model were integrated 149 

using EvidenceModeler (EVM) [29]. Finally, we identified 26,256 protein-coding 150 

genes in the Peruvian scallop genome. A total of 26,513 genes were predicted through 151 

the de novo method, 19,394 genes were annotated by RNA transcripts or raw RNA 152 

reads, and 15,608 genes were supported by homolog evidence. The average transcript 153 

length, CDS length and intron length were calculated to be 10,534 bp, 1,418 bp and 154 

1,505 bp respectively (Table 1). 155 

 156 

(2) Gene functional annotation  157 

Gene functions were predicted from the best BLASTP (e-value ≤ 10-5) hits in 158 

SwissProt databases [30]. Gene domain annotation was performed by searching the 159 

InterPro database [31]. All genes were aligned against Kyoto Encyclopedia of Genes 160 

and Genomes (KEGG) [32] to identify the best hits for pathways. Gene Ontology (GO) 161 

terms for genes were obtained from the corresponding InterPro entry [33]. Finally, 162 

among these annotated genes, 70.3% encoded proteins showed homology to proteins 163 

in the SwissProt database, 91.1% were identified in the non-redundant (Nr) database, 164 

70.4% were identified in the KEGG database, 72.1% were identified in the InterPro, 165 

and a total of 92.1% could be mapped to the functional databases.  166 

 167 

(3) Non-coding RNA annotation 168 
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The non-coding RNA genes, including miRNAs, rRNAs, snRNAs and tRNAs, 169 

were identified. The tRNAscan-SE software with eukaryote parameters [34] was 170 

employed to predict tRNA genes. The miRNA and snRNA genes in the assembled 171 

genome were extracted by INFERNAL software [35] against the Rfam database [36] 172 

with default parameters. Finally, 1,132 miRNAs, 1,664 tRNAs, 41 rRNAs and 220 173 

snRNAs were discovered from the Peruvian scallop genome.  174 

 175 

Global gene family classification 176 

Protein-coding genes from the Peruvian scallop and other sequenced species, 177 

including Human (H. sapiens), Amphioxus (B. floridae), Fruit fly (D. melanogaster), 178 

Red flour beetle (T. castaneum), Nematode (Caenorhabditis elegans), brachiopod 179 

(Lingula anatine), Helobdella robusta Capitella teleta, Octopus bimaculoides, Lottia 180 

gigantean, mollusk (Aplysia californica), Pacific Abalone (Haliotis discus), Pacific 181 

oyster (C. gigas), pearl oyster (Pinctada fucata), Yesso scallop (Patinopecten 182 

yessoensis), and cold seep mussel (Bathymodiolus platifrons), Brown mussel 183 

(Modiolus philippinarum) were analyzed. All data were downloaded from Ensemble 184 

[21] or NCBI [37]. For each protein-coding gene with alternative splicing isoforms, 185 

we only kept the longest protein sequence as the representative. 186 

Gene family analysis was based on the homolog of gene sequences in related 187 

species, which was initially implemented by the alignment of an "all against all" 188 

BLASTP (with a cutoff of 1e-7), and subsequently the alignments with high-scoring 189 

segment pairs were conjoined for each gene pair by TreeFam [38]. To identify 190 

homologous gene pairs, we required more than 30% coverage of the aligned regions 191 

in both homologous genes. Finally, homologous genes were clustered into gene 192 

families by OrthoMCL [39] with the optimized parameter of '-inflation 1.5'. All 193 
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protein-coding genes from the examined 18 genomes were employed to assign gene 194 

families. In total, the protein-coding genes were classified into 45,268 families and 195 

108 strict single-copy orthologs (Figure 2).  196 

 197 

Phylogenetic analysis  198 

Evolutionary analysis was performed using these single-copy protein-coding 199 

genes from the examined 18 species. Amino acid and nucleotide sequences of the 200 

ortholog genes were aligned by the multiple alignment software MUSCLE with 201 

default parameters [40]. A total number of 108 single-copy ortholog alignments were 202 

concatenated into a super alignment matrix of 242,085 nucleotides. A Maximum 203 

Likelihood method (ML) deduced tree was inferred based on the matrix of nucleotide 204 

sequences using RAxML with default nucleotide substitution 205 

model-PROTGAMMAAUTO [41]. Clade support was assessed using bootstrapping 206 

algorithm in the RAxML package with 100 alignment replicates (Figure 3) [42]. The 207 

constructed phylogenetic tree (Figure 3) indicated that the Peruvian scallop and Yesso 208 

scallop are clustered closely first and then clustered with Oysters and Mussels, which 209 

is in consistent with their putative evolution relationships [43, 44].  210 

 211 

The estimation of divergence time 212 

The species divergence times were inferred with MCMCTree included in PAML 213 

v4.7a [45] with the parameter set as '--model 0 --rootage 1200 -clock 3', and 214 

evolutionary analysis was performed using single-copy protein-coding genes from the 215 

18 examined species. Based on the phylogenetic tree (Figure 3), we estimated that the 216 

divergence between the Peruvian scallop and Yesso scallops happened at 113.6 Mya 217 

ago.  218 
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 219 

Conclusion 220 

In the present study, we reported the first whole genome sequencing, assembly and 221 

annotation of Peruvian scallop (A. purpuratus), an economically important bivalve in 222 

China. The assembled draft genome of 724.78 Mb accounts for 81.87% of the 223 

estimated genome size (885.29 Mb). A total of 26,256 protein-coding genes and 3.057 224 

non-coding RNAs were predicted from the assembly. In the coming future, this 225 

generated genome assembly will provide solid support for deep biological studies. 226 

With availability of these genomic data, subsequent development of genetic markers 227 

for further genetic selection and molecular breeding of scallops could be realized. Our 228 

current genome data will also definitely facilitate the genetic evolutionary history 229 

analysis for the abundant scallops in the world. 230 
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 369 

 370 

Table 1. Summary of the Peruvian scallop genome assembly and annotation 371 

Genome assembly Parameter 

Contig N50 size (kb) 80.11 

Scaffold N50 size (Mb) 1.02 

Estimated genome size (Mb) 885.29 

Assembled genome size (Mb) 724.78 

Genome coverage (×) 303.83 

The longest scaffold (bp) 11,125,544 

Genome annotation Parameter 

Protein-coding gene number 26,256 

Average transcript length (kb) 10.53 

Average CDS length (bp) 1,418.29 

Average intron length (bp) 1,505.92 

Average exon length (bp) 201.09 

Average exons per gene 7.05 

 372 

 373 

 374 

 375 

 376 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 377 

 378 

 379 

 380 

 381 

Table 2. The prediction of repeats elements in the Peruvian scallop genome. 382 

Type Repeat Size (bp) % of genome 

TRF 83,037,380 11.46 

RepeatMasker 237,471,691 32.76 

RepeatProteinMask 21,719,425 3.00 

Total 294,496,811 40.63 
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Figure 1 Picture of a representative Peruvian scallop in China. 402 
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 408 

 409 

 410 

Figure 2. Distribution of genes in different species. Abbreviations: Aca, Aplysia 411 

californica; Apu, Argopecten purpuratus; Bfl, Branchiostoma floridae; Bpl, 412 

Bathymodiolus platifrons; Cel, Caenorhabditis elegans; Cgi, Crassostrea gigas; Cte, 413 

Capitella teleta; Dme, Drosophila melanogaster; Has, Homo sapiens; Hdi, Haliotis 414 

discus; Hro, Helobdella robusta; Lan, Lingula anatine; Lgi, Lottia gigantean; Mph, 415 

Modiolus philippinarum; Obi, Octopus bimaculoides; Pfu, Pinctada fucata; Tca, 416 

Tribolium castaneum.  417 
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 427 

 428 

 429 

Figure 3. Bootstrap support of phylogenetic tree. A ML tree was constructed by 430 

RAxML based on 108 single-copy protein-coding genes of the related species. The 431 

total number of bootstrap was 100. 432 
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