Supplementary Data

		Time (min, after CORM-401 addition)								Time (min, after CORM-401 addition)							
	Gene	2.5	5	10	20	40	80		Gene	2.5	5	10	20	40	80		
	spy	34.3	124.4	357.1	330.3	420.8	250.2		spy	14.3	200.4	585.0	505.5	672.6	556.4		
	uhpT	3.3	18.0	76.2	124.2	216.7	142.8		uhpT	1.1	8.3	89.5	112.6	112.1	106.3		
1 1	mdtA	12.4	29.6	46.3	63.2	41.8	17.1		mdtA	12.4	35.2	63.0	59.9	60.2	39.3		
I 1	baeS	1.4	2.3	25.1	45.4	67.4	19.7		baeS	0.9	1.1	31.0	38.9	25.2	14.3		
1 1	mdtB	4.4	24.3	32.6	42.5	30.2	10.8		yebE	2.4	17.2	39.1	32.0	28.0	11.6		
	kdpC	0.4	1.5	32.8	33.8	18.2	5.5		mdtC	1.0	7.9	22.4	29.8	21.5	17.0		
1 1	yhdV	3.1	5.5	7.9	29.0	12.5	5.7		marA	3.6	11.4	16.7	28.6	47.8	20.4		
L 1	yebE	6.6	20.7	39.8	28.9	19.7	9.4		mdtB	1.1	10.4	24.8	23.0	20.8	18.4		
1 1	kdpF	0.9	6.2	20.8	28.0	1.8	2.0		marB	3.3	5.6	13.9	21.7	26.7	10.3		
1 1	mdtC	1.0	9.8	24.7	22.5	24.2	8.6		ycfS	2.1	25.7	42.2	20.1	20.7	6.1		
	kdpA	0.9	2.9	11.3	15.6	1.5	1.5		degP	0.8	2.0	18.9	18.5	23.9	12.0		
1 1	kdpB	0.7	1.3	9.8	13.8	7.5	4.8		htpX	2.4	10.5	16.1	14.5	12.5	7.6		
I	ycfS	3.4	10.6	19.9	13.6	9.8	5.1		ykgM	1.5	1.2	2.5	14.3	43.3	40.9		
U	cpxP	12.3	17.2	17.7	13.6	16.8	10.6		metB	1.4	1.1	5.6	13.0	2.6	0.8		
Pi	b3914	9.6	17.4	18.0	13.4	15.1	10.3	2	cpxP	4.6	11.9	17.0	12.9	11.5	5.9		
ere	cpxP	9.7	17.7	18.4	12.6	16.1	10.6	6	b3914	4.1	11.9	17.1	12.4	11.5	5.9		
< <	ybfA	2.9	5.1	6.1	11.8	7.4	3.0	A I	cpxP	4.7	11.4	13.0	11.7	11.3	6.5		
I 1	htpX	5.1	9.2	12.7	11.7	11.7	7.4		acrD	1.9	8.9	11.3	11.1	8.2	7.6		
I 1	znuA	1.0	2.6	6.5	11.2	10.0	5.2		marR	1.8	5.1	8.3	10.9	20.2	10.8		
	acrD	4.8	10.7	15.2	11.2	10.9	6.9		metF	2.0	1.2	5.9	9.8	1.5	0.7		
1 1	chaA	2.2	7.0	14.4	9.8	5.8	4.1		yjfN	0.6	5.9	8.2	9.6	9.2	2.1		
I	ybdZ	1.6	4.1	4.1	9.3	2.8	2.1		chaA	2.2	6.4	12.1	9.5	11.7	4.2		
L 1	metF	0.9	0.0	2.4	9.0	3.7	1.0		yhdV	1.3	1.9	5.6	9.2	9.1	12.8		
1 1	yobB	4.7	9.1	11.9	8.4	6.4	4.9		sdaA	1.4	4.1	9.1	9.2	18.2	6.7		
	ybdZ	1.7	3.8	3.5	8.3	2.0	2.0		yodA	0.8	1.9	3.9	9.2	34.6	15.3		
I 1	yaaX	2.9	4.2	7.5	8.3	6.3	3.3		mmuP	1.4	1.3	3.5	8.5	1.8	1.3		
1 1	glvC	0.5	1.0	1.0	7.9	1.3	3.3		metE	1.4	1.1	1.9	8.1	2.1	0.5		
	entA	0.8	1.8	5.3	7.8	4.7	1.8		kdpC	2.8	1.4	1.3	8.0	4.6	2.8		
	degP	2.2	1.2	1.9	7.5	7.4	4.1		frmB	1.4	1.5	3.1	7.9	17.8	9.7		
	yedX	2.2	6.0	4.3	7.4	5.0	4.2		yobB	3.1	8.2	9.6	7.9	6.2	4.0		

Supplementary Table S1. List of the Thirty Most Highly Regulated Genes, Both Aerobically and Anaerobically

Values shown are fold changes relative to the pre-CORM culture sampled at the time points shown.

SUPPLEMENTARY FIG. S1. CO release from CORM-401 in 0.1 *M* KPi (pH 7.4) at 37°C or 20°C. Assays were performed in the presence of excess dithionite with myoglobin (20 μ M) and 5 μ M CORM-401. Under these conditions, CORM-401 releases 2.4 mole equivalent of CO with a t_{1/2} of 5 min. $n=3\pm$ SEM.

SUPPLEMENTARY FIG. S2. TFInfer correlation profiles (coherence plots) showing TFs involved in the response to CORM-401 versus CO gas in *E. coli* **cells.** The *x*-coordinate of each point is presented with error bars and represents the profile difference between CORM-401 and CO treatments, computed as 1 minus the absolute Pearson correlation coefficient between the two profiles; the *y*-coordinate represents the change in magnitude of the response, computed as the difference of the norm of the two profiles. Data from aerobic (A, *top*) and anaerobic (**B**, *bottom*) conditions are shown. TFs whose response is similar for both CORM-401 and CO gas, both in magnitude and kinetics, will be located near the origin of each coherence plot in quadrant c, while TFs in quadrant b of each plot respond differently in both kinetics and amplitude. For example, CpxR, both aerobically and anaerobically, has a similar response in terms of the shape of the profile, but different magnitudes in (**A**) and (**B**), while ArcA (**A**) and ArgR (**B**) show similar magnitudes, but major differences in response profiles. TF, transcription factor.

Α			Fold change down-regulated							Fold change up-regulated						
			30+	20-30	10-20	5-10	2-5	0.0	2-5	5-10	10-20	20-30	30+			
		Relevant	CORM-401 AEROBIC							CORM-401 ANAEROBIC						
		regulatory	Time							Time						
Gene	Function	proteins	2.5	5.0	10.0	20.0	40.0	80.0	2.5	5.0	10.0	20.0	40.0	80.0		
суоА	cytochrome bo' terminal oxidase subunit II	ArcA (-)			0.44	0.20			0.44	0.11	0.09	0.20				
суоВ	cytochrome bo' terminal oxidase subunit I	ArcA (-)				0.23	1		0.50	0.33	0.32	0.38				
cyoC	cytochrome bo' terminal oxidase subunit III	ArcA (-)				0.20				0.22	0.26	0.34				
cyoD	cytochrome bo' terminal oxidase subunit IV	ArcA (-)				0.20				0.23	0.21	0.26	0.48			
cyoE	heme o synthase	ArcA (-)				0.21				0.33	0.36	0.37	0.48			
cydA	cytochrome bd-l terminal oxidase subunit I	ArcA (+), FNR (-)		2.88	2.42		2.86	3.07	2.01		0.32	0.26	0.25	0.38		
cydB	cytochrome bd-/ terminal oxidase subunit II	ArcA (+), FNR (-)		2.54	2.37	2.07	2.83	2.70			0.42	0.30	0.22	0.39		
nuoA	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)		0.49	-	0.43					0.39	0.29	0.27	0.39		
nuoB	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)										0.43	0.39			
nuoC	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)				0.49					0.46	0.33	0.35			
nuoE	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)				0.44					0.45	0.33	0.34			
nuoF	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)									0.47	0.34	0.31			
nuoG	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)		-							0.50	0.32	0.26	0.48		
nuoH	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)										0.41	0.30			
nuol	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)				. · · ·					6 0	0.43	0.32			
nuoJ	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)										0.47	0.34			
nuoK	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)					1					0.39	0.31			
nuoL	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)		-			1 î				l) l	0.47	0.35			
nuoM	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)					1				1	0.35	0.28	0.48		
nuoN	NADH:ubiquinone oxidoreductase I	ArcA (-), FNR (-)											0.36			
ndh	NADH dehydrogenase II	FNR (-)			2.27	2.50	2.45	2.04								

B	3					Fold change down-regulated							Fold change up-regulated					
0			30+	20-30	10-20	5-10	2-5	0.0	2-5	5-10	10-20	20-30	30+					
		Relevant		COF	RM-401	AERO	BIC			COR	M-401 A	NAER	OBIC					
	S	regulatory	Time						Time									
Gene	Product/Function	proteins	2.5	5.0	10.0	20.0	40.0	80.0	2.5	5.0	10.0	20.0	40.0	80.0				
chaA	Na+ : K+/H+ antiporter		2.2	7.0	14.4	9.8	5.8	4.1	2.2	6.4	12.1	9.5	11.7	4.2				
kdpA	K+ transporting ATPase subunit	KdpE (+)		2.9	11.3	15.6						2.1	2.3					
kdpB	K+ transporting ATPase subunit	KdpE (+)			9.8	13.8	7.5	4.8				3.7	3.4	2.0				
kdpC	K+ transporting ATPase subunit	KdpE (+)	0.4		32.8	33.8	18.2	5.5	2.8				4.6	2.8				
kdpD	regulator of the K+ transporting ATPase						2.1					2.5						
kdpE	regulator of the K+ transporting ATPase	KdpD-P (+)					2.7	2.6	2.0			2.4	2.3	2.0				
kdpF	K+ transporting ATPase subunit			6.2	20.8	28.0		2.0		0.5								
kefA (mscK)	Potassium-dependent mechanosensitive channel			_		2.5	2.6			J	_	2.0						
kefB	K+ : H+ antiporter			0.3	0.1	0.1												
kefC	K+ : H+ antiporter													1				
kefF	Regulator of the Kef transporter					0.2												
kefG	Protein required for KefB activity				0.4	0.5				1								
trkA	K+ transporter			2.3	2.6													
znuA	Zn2+ ABC transporter	Zur (-)	_	2.6	6.5	11.2	10.0	5.2			3.4	4.3	7.2	6.4				
mscL	mechanosensitive channel	RpoS (+)				0.4	0.4											
mscS	mechanosensitive channel	RpoS (+)		2.9	4.7	3.9					2.3	4.6	3.8	2.6				
aqpZ	Aquaporin	18 639			0.3	0.4	0.4	-						0				
ompC	Outer membrane porin C	CpxR (-), OmpR (-)	1		2.1		3.1	2.5						1				
ompF	Outer membrane porin F	CpxR (-), OmpR (-)	0.5	0.2	0.2	0.0	0.1	0.2			0.2	0.0	0.0	0.0				

C	Fold change down-regulated							Fold change up-regulated						
190		30+	20-30	10-20	5-10	2-5	0.0	2-5	5-10	10-20	20-30	30+		
			and the second second	The second second										
	Relevant		CORM-40	1 AERO	BIC CON	DITION	S	CC	DRM-401	ANAER	OBIC CC	NDITION	NS	
	regulatory			Ti	me					Tir	me			
Gene Product/Function	proteins	2.5	5.0	10.0	20.0	40.0	80.0	2.5	5.0	10.0	20.0	40.0	80.0	
baeR DNA-binding response regulator	CpxR (+), BaeR (+)		1	4.2	5.9	6.6	4.3			3.7	5.3	4.8	3.5	
baeS Sensory histidine kinase	CpxR (+), BaeR (+)	2	2.3	25.1	45.4	67.4	19.7		1	31.0	38.9	25.2	14.3	
acrD AcrAD-TolC multidrug efflux system; permease subunit	CpxR (+), BaeR (+)	4.8	10.7	15.2	11.2	10.9	6.9		8.9	11.3	11.1	8.2	7.6	
marA DNA-binding transcriptional dual regulator	CpxR (+)	3.0	3.3	4.9	4.7	7.8	2.7	3.6	11.4	16.7	28.6	47.8	20.4	
marB Polypeptide: multiple antibiotic resistance protein	CpxR (+)		2.2		4.4	6.5		3.3	5.6	13.9	21.7	26.7	10.3	
marR DNA-binding transcriptional repressor	CpxR (+)				2.5	3.2			5.1	8.3	10.9	20.2	10.8	
mdtA Multidrug efflux system; subunit A	CpxR (+), BaeR (+)	12.4	29.6	46.3	63.2	41.8	17.1	12.4	35.2	63.0	59.9	60.2	39.3	
mdtB Multidrug efflux system; subunit B	CpxR (+), BaeR (+)	4.4	24.3	32.6	42.5	30.2	10.8		10.4	24.8	23.0	20.8	18.4	
mdtC Multidrug efflux system; subunit C	CpxR (+), BaeR (+)		9.8	24.7	22.5	24.2	8.6		7.9	22.4	29.8	21.5	17.0	
mdtD Predicted transport protein	CpxR (+), BaeR (+)	2		()	2.0) — — — — — — — — — — — — — — — — — — —	2.6	2.7	2.4	2.3	
spy Envelope stress protein	CpxR (+), BaeR (+)	34.3	124.4	357.1	330.3	420.8	250.2	14.3	200.4	585.0	505.5	672.6	556.4	
slt Soluble lytic murein transglycosylase	CpxR (+)		2.5	3.8	3.4	3.5	2.5		2.5	3.8	3.4	3.5	2.5	
degP Serine protease	CpxR (+)	2.2			7.5	7.4	4.1		2.0	18.9	18.5	23.9	12.0	
cpxA Sensory histidine kinase	CpxR (+)	0			2.0				2.0	2.9	2.8	2.1	2.5	
cpxP Inhibitor of the Cpx response	CpxR (+)	12.3	17.2	17.7	13.6	16.8	10.6	4.6	11.9	17.0	12.9	11.5	5.9	
cpxR Transcriptional dual regulator	CpxR (+)		2.3	3.4	3.2	2.6	2.0		3.1	3.4	3.4	3.3	3.1	

SUPPLEMENTARY FIG. S3. Differential expression of genes, both aerobically and anaerobically, in response to $67 \mu M$ CORM-401, involved in (A) the respiratory chains, (B) osmoregulation, and (C) general stress responses, metal ion stress, and cell envelope stress. Values within each cell are fold changes in transcript levels relative to the no-CORM condition. The heat map (*above*) also quantifies the changes elicited in selected genes.

SUPPLEMENTARY FIG. S4. CORM-401 enhances the antimicrobial effects of cefotaxime and trimethoprim with additive effects on growth and viability. In (A) and (B), bacterial growth was followed in Evans medium with glucose until $OD_{600nm} \sim 0.3$ was reached. CORM-401 and antibiotics were then added to the cultures; OD readings and samples for viability were taken at regular intervals. In (A) (cefotaxime) and (B) (trimethoprim), *squares* show control cultures, *triangles* are antibiotic alone $(1 \ \mu g \ ml^{-1})$, *inverted triangles* are CORM-401 alone $(100 \ \mu M)$, and *diamonds* are antibiotic and CORM combined. In (C) (cefotaxime) and (D) (trimethoprim), *black columns* show control cultures, *diagonal hatched bars* are antibiotic alone $(1 \ \mu g \ ml^{-1})$, *horizontally striped bars* are CORM-401 alone $(100 \ \mu M)$, and *open bars* are antibiotic and CORM combined. $n = 3 \pm SD$. *, p < 0.05 (T-test).