Supplementary information

Moonlight controls lunar-phase-dependency and regular oscillation of clock gene expressions in a lunar-synchronized spawner fish, Goldlined spinefoot

Yuki Takeuchi¹, Ryo Kabutomori¹, Chihiro Yamauchi², Hitomi Miyagi², Akihiro Takemura², Keiko Okano¹, Toshiyuki Okano^{1*}

Author affiliations:

¹ Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan

² Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0213, Japan

*Corresponding author:

Dr. Toshiyuki Okano Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480, Japan Tel and Fax: +81-3-5369-7316 E-mail: okano@waseda.jp

Running title: Effect of moonlight on clock gene expression in lunar-responsive fish

Figure S1. Phylogenetic trees of CRY (A), PER (B), CLOCK (C), and BMAL (D) family proteins. The amino acid sequences of the Goldlined spinefoot CRY, PER, CLOCK, and BMAL candidates were deduced using the ORF Finder program (NCBI, http:// www.ncbi.nlm.nih.gov/). Multiple alignments with the other clock proteins (accession nos. of are shown in Tables S5-S8) and the construction of a phylogenetic tree using the Neighbor-Joining method (Saitou and Nei, 1987) were conducted using CLUSTAL W (http://clustalw.ddbj.nig.ac.jp/top-e.html). One thousand bootstrap repetitions were performed, and values are shown at the inner nodes. The scale bar is calibrated in substitutions per site.

Reference

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic

```
trees. Mo.I Biol. Evol. 4: 406-425
```


Figure S2. The daily expression profiles of *Cry* genes in the pituitary gland of the Goldlined spinefoot after interrupted moonlight for 1 lunar cycle. The pituitary glands of the fish (n = 5 except for NM-ZT18 and LQM-ZT6 in the ME group, and n=4 in the MI group) were collected at the time points shown in Fig. 1. The bar at the bottom of each graph represents the sunlight conditions. (Panels on the left: A, B, G, H, M, N, S, and T) The daily expression profiles of the genes at four lunar phases in moonlight exposed (ME) and moonlight interrupted (MI) groups. s.i. in panel A indicates a significant interaction. Different letters in panels N indicate statistical differences among lunar phase (two-way factorial ANOVA followed by Tukey's HSD test, p < 0.05). (Panels on the right: C-F, I-L, O-R, and U-X) The daily profiles shown on the left are replotted to compare the daily profiles of ME and MI groups at each lunar phase. Lunar phases are indicated by schematic moon images. s.i. and asterisks indicate significant interactions and significant differences, respectively, between ME and MI analyzed using two-way factorial ANOVA followed by Tukey's HSD test (p < 0.05). Statistical differences between ME and MI at each time point are indicated by daggers (Student's t-test, p < 0.05). Curves indicate significant rhythmicities detected with Cosinor analysis, while lines indicate no significant rhythmicity.

Figure S3. The daily expression profiles of *Per* genes in the pituitary gland of the Goldlined spinefoot after interrupted moonlight for 1 lunar cycle. The pituitary glands of the fish (n = 5 except for NM-ZT18 and LQM-ZT6 in ME group, and MI group [n = 4]) were collected at the time points shown in Fig. 1. The bar at the bottom of each graph represents the sunlight conditions. (Panels on the left: A, B, G, H, M, N, S, and T) The daily expression profiles of the genes at four lunar phases in moonlight-exposed (ME: panels A, G, M, and S) and moonlight-interrupted (MI: panels B, H, N, and T) groups. s.i. in panel N indicates significant interaction. The different letters in panel H indicate statistical differences among lunar phases (two-way factorial ANOVA followed by Tukey's HSD test, p < 0.05). (Panels on the right: C-F, I-L, O-R, and U-X) The daily profiles shown on the left are replotted to compare the daily profiles of ME and MI groups at each lunar phase. s.i. and asterisks indicate significant interactions and significant differences, respectively, between ME and MI groups analyzed using two-way factorial ANOVA followed by Tukey's HSD test (p < 0.05). Statistical differences between ME and MI groups at each time point are indicated by daggers (Student's t-test or Mann–Whitney U test, p < 0.05). Curves indicate significant rhythmicities detected with Cosinor analysis, while lines indicate no significant rhythmicity.

Figure S4. The daily expression profiles of *Clock* and *Bmal* genes in the pituitary gland of the Goldlined spinefoot after interrupted moonlight for 1 lunar cycle. The pituitary glands of the fish (n = 5 except for NM-ZT18 and LQM-ZT6 in ME group, and MI group [n = 4]) were collected at the time points shown in Fig. 1. The bar at the bottom of each graph represents the sunlight conditions. (Panels on the left: A, B, G, H, M, N, S, and T) The daily expression profiles of the genes at four lunar phases in moonlight-exposed (ME: panels A, G, M, and S) and moonlight-interrupted (MI: panels B, H, N, and T) groups. (Panels on the right: C-F, I-L, O-R, and U-X) The daily profiles shown on the left are replotted to compare the daily profiles of ME and MI groups at each lunar phase. Curves indicate significant rhythmicities detected with Cosinor analysis.

Figure S5. Acute effects of interrupted moonlight on *Per*, *Clock*, and *Bmal* gene expressions in the diencephalon and the pituitary gland. Sampling schedule and nocturnal light conditions were shown in Fig. 7A. The relative expression levels of *Per*, *Clock*, and *Bmal* genes in the diencephalon (A-D, I-L) and pituitary gland (E-H, M-P) were measured under three different nocturnal conditions. Presence or absence of natural moonlight and artificial moonlight is indicated by + or – along the x-axis. Asterisk indicates a significant difference among nocturnal light conditions (two-way factorial ANOVA followed by Tukey's HSD test, p < 0.05

Figure S6. Spectra of natural and artificial moonlight.

The natural moonlight spectrum was measured using a photonic multichannel spectral analyzer (Hamamatsu Photonics, Model PMA-11; type C7473-36) in Tokyo (Suginami city) on June 20 and 21, 2016 (light and dark red lines; Lunar phases 14.5 and 15.5, respectively). An apparatus to measure artificial moonlight was constructed using five power LEDs (UV power LED OSV5XME1C1E (403nm) Optosupply; 3W-UV-Ultra-Violet-420nm, LED generic; Royal Blue LED LuxeonK2; Cyan LuxeonK2; 1W Red-Violet Power LED OSR7XNE1E1E, Optosupply) and five 5mm LEDs (Warm White OSM54K5111A; Cyan OSC34L5111A; Blue OSUB5161A; Lime Green OSC64L5111A; Lavender OSCD4L5111A, all supplied by Optosupply). The combinatorial LED emissions (blue line) were tuned to fit the moonlight spectrum in Tokyo. Moonlight spectrum was also measured at the Sesoko station in Okinawa during an experiment on July 17, 2016 (black line; Lunar phase 12.2). The spectrum was similar to the spectrum in Tokyo on June 21, 2016, and both profiles were roughly reproduced using artificial moonlight.

Table S1 Summary of statistical analysis by three-way	ANOVA for evaluating the effect of lunar phase	, nocturnal light condition, and Zeitgeber time on	the clock gene expressions in the diencephalon of	the goldlined spinefoot
,				

	Lunar Phase	LPvsZTvsNLC	LP	LP vs ZT (Moonlignt Exposed)			LP vs ZT (Moonlight Interrupted)				NLC vs	ZT (Moon Phase	fixed)						
Gene	(LP)	three-way interaction	simple	LP effect	ZT effect	simple	LP effect	ZT effect	simple	NLC effect	ZT effect	ZTO	(Stude ZT6	vs mi nt t-test) ZT12	ZT18				
Cry1a	NM								F(3, 28)=0.560, p=0.646	F(1, 28)=0.633, p=0.433	F(3, 28)=17.094, p=1.67e-06		no significa	int interaction					
	FQM	F/0 4401-4 040	F/0 04)-4 054	F(2, C4)=5, 007	F/2 C/1-40 C24	F(0, 40)-0.000	F(2, 40)-2 540	F(2, 40)-04 750	F(3, 28)=0.600, p=0.62022	F(1, 28)=8.677, p=0.00642	F(3, 28)=20.852, p=2.67e-07		no significa	int interaction					
	FM	p=0.408864	p=0.41095	p=0.00317	p<2e-16	p=0.4776	p=0.0698	p=4.86e-09	F(3, 28)=2.892,	F(1, 28)=10.081,	F(3, 28)=19.075,		no significa	int interaction					
	LOM								F(3, 28)=2.913,	F(1, 28)=1.972,	F(3, 28)=14.951,		no significa	int interaction					
Cry1b	NM								p=0.0518 F(3, 28)=0.604,	p=0.1713 F(1, 28)=4.304,	p=5.32e-06 F(3, 28)=29.403,		no eignifica	int interaction					
									p=0.6181 F(3, 28)=2.506.	p=0.0473 F(1, 28)=0.061.	p=8.48e-09 F(3. 28)=27.673.								
	FQM	F(9, 112)=1.646, p=0.110732	F(9, 64)=1.495, p=0.1691	F(3, 64)=2.401, p=0.0758	F(3, 64)=73.779, p<2e-16	F(9, 48)=2.356, p=0.0271	F(3, 48)=1.188, p=0.3242	F(3, 48)=43.871, p=8.52e-14	p=0.0794 F(3, 28)=6.510	p=0.8065 F(1, 28)=0.075	p=1.6e-08 F(3, 28)=47,919	W=15.	t(7)=1.9558.	t(7)=-0.049836	t(7)=-10.001.				
	FM								p=0.00176	p=0.78647	p=3.74e-11	p=0.2857	p=0.09138	p=0.9616	p=2.138e-05				
Card	LQM								p=0.0254	p=0.234	p=5.48e-07	p=0.4821	p=0.1122	p=0.7862	p=0.03175				
Ciyz	NM								F(3, 28)=3.199, p=0.03854	F(1, 28)=12.673, p=0.00135	F(3, 28)=7.731, p=0.00065	t(7)= -2.9812, p=0.02048	W=8, p=0.7302	t(7)=-2.8156, p=0.02594	t(7)=-0.031426, p=0.9758				
	FQM	F(9, 112)=1.879,	F(9, 64)=0.346,	F(3, 64)=5.639,	F(3, 64)=31.557,	F(9, 48)=1.912,	F(3, 48)=9.616,	F(3, 48)=20.632,	F(3, 28)=0.979, p=0.417	F(1, 28)=1.106, p=0.302	F(3, 28)=15.189, p=4.66e-06		no significa	int interaction					
	FM	p=0.06221	p=0.95572	p=0.00171	p=1.21e-12	p=0.0727	p=4.42e-05	p=4.42e-05 p=9.94e-09	F(3, 28)=0.22, p=0.882	F(1, 28)=2.04, p=0.164	F(3, 28)=15.91, p=3.13e-06		no significa	int interaction					
	LQM								F(3, 28)=2.604, p=0.0716	F(1, 28)=1.922, p=0.1766	F(3, 28)=36.436, p=8.38e-10		no significa	int interaction					
Cry3	NM								F(3, 28)=0.136, p=0.9379	F(1, 28)=57.488, p=2.93e-08	F(3, 28)=3.693, p=0.0234		no significa	int interaction					
	FQM	F(0.440)-0.740	F/0 04)-0 004	F(2, C4)=44, 200	F(2, C1)=5, C10	F(0, 40)=4 770	F(2, 40)=5,000	F(2, 40)-4 402	F(3, 28)=1.794, n=0.171	F(1, 28)=20.732, n=9.4e-05	F(3, 28)=1.631, n=0.204		no significa	int interaction					
	FM	p=0.6964	p=0.56187	p=4.48e-06	p=0.00169	p=0.09723	p=0.00321	(3, 46)=5.262, F(3, 46)=1.463, p=0.00321 p=0.23632	F(3, 28)=0.445, n=0.723	F(1, 28)=2.456,	F(3, 28)=1.224,		no significa	int interaction					
	LQM								F(3, 28)=1.396,	F(1, 28)=9.527,	F(3, 28)=6.014,		no significa	int interaction					
Per1	NM								F(3, 28)=3.515,	F(1, 28)=9.826,	F(3, 28)=44.431,	t(7)=2.2429,	t(7)=2.8408,	t(7)=-1.3896,	t(7)=1.3338,				
	FOM								p=0.02797 F(3, 28)=5.016,	p=0.00401 F(1, 28)=1.342,	p=8.59e-11 F(3, 28)=24.708,	p=0.05982 t(7)=1.9722,	p=0.02502 t(7)=-0.27518,	p=0.2072 t(7)=-3.6041,	p=0.224 t(7)=-2.1791,				
	- 4	F(9, 112)=0.854, p=0.5681	F(9, 64)=1.659, p=0.118	F(3, 64)=2.029, p=0.119	F(3, 64)=106.06, p<2e-16	F(9, 48)=1.776, p=0.09782	F(3, 48)=4.501, p=0.00732	3, 48)=4.501, F(3, 48)=53.321, p=0.00732 p=2.59e-15	p=0.00658 F(3, 28)=8.647,	p=0.25638 F(1, 28)=7.41,	p=5.07e-08 F(3, 28)=39.438,	p=0.0892 t(7)=2.4826,	p=0.7911 t(7)=5.3843,	p=0.008692 W=10,	p=0.06573 t(7)=-3.7572,				
									p=0.000321 F(3. 28)=6.316.	p=0.011032 F(1, 28)=0.017.	p=3.47e-10 F(3, 28)=40.892.	p=0.04205 t(7)=1.4808.	p=0.001026 t(7)=2.82.	p=1 t(7)=-2.8963.	p=0.007101 W=0.				
Per2a	LQM								p=0.00208	p=0.898	p=2.31e-10	p=0.1822	p=0.02577	p=0.02311	p=0.01587				
	NM								p=0.812881	p=0.034904	p=0.000276	47-0 4050	no significa	int interaction	N(T)= 0 40005				
	FQM	F(9, 112)=0.864,	F(9, 64)=0.137,	F(3, 64)=2.134,	F(3, 64)=37.845,	F(9, 48)=1.664, n=0.12435	F(3, 48)=2.381,	2.381, F(3, 48)=6.100,	p=0.000373	p=0.736624	p=2.08e-05	p=0.04503	p=0.6704	p=0.00444	p=0.6527				
	FM	p=0.0000	p=0.880	p=0.105	p=3.04e=14	p=0.12435	p=0.00113	p=0.00133	F(3, 28)=3.879, p=0.01946	F(1, 28)=9.674, p=0.00427	F(3, 28)=11.145, p=5.48e-05	t(7)=2.9992, p=0.01996	t(7)=2.4313, p=0.04533	t(7)=-0.19197, p=0.8532	t(7)=-0.1728, p=0.8677				
	LQM								F(3, 28)=2.593, p=0.0724	F(1, 28)=0.035, p=0.8521	F(3, 28)=11.200, p=5.28e-05		no significa	int interaction					
Per2b	NM								F(3, 28)=0.362, p=0.78101	F(1, 28)=6.012, p=0.020709	F(3, 28)=9.289, p=0.000199		no significa	int interaction					
	FQM	F(9, 112)=0.842,	F(9, 64)=1.005,	F(3, 64)=0.597,	F(3, 64)=47.026,	F(9, 48)=2.266,	F(3, 48)=21.614,	F(3, 48)=8.563,	F(3, 28)=1.600, p=0.2117	F(1, 28)=5.106, p=0.0318	F(3, 28)=23.471, p=8.46e-08		no significa	int interaction					
	FM	p=0.578961	p=0.446	p=0.619	p=3.53e-16	p=0.033205	p=5.32e-09	p=5.32e-09	p=5.32e-09	p=5.32e-09	p=5.32e-09	e-09 p=0.000117	F(3, 28)=0.772, p=0.519197	F(1, 28)=0.007, p=0.935763	F(3, 28)=10.096, p=0.000112		no significa	int interaction	
	LQM								F(3, 28)=0.58, p=0.63325	F(1, 28)=12.34, p=0.00152	F(3, 28)=45.28, p=7.2e-11		no significa	int interaction					
Per3	NM								F(3, 28)=1.494, p=0.238	F(1, 28)=2.587, p=0.119	F(3, 28)=52.237, p=1.36e-11		no significa	int interaction					
	FQM	F(9, 112)=0.074, p=0.530186	F(9, 64)=0.836, p=0.586	F(3, 64)=2.014, n=0.121	F(3, 64)=114.584,	F(9, 48)=1.828, p=0.0872	F(3, 48)=2.208, n=0.0992	F(3, 48)=75.609,	F(3, 28)=0.362, p=0.78122 F(3, 28)=2.216.	F(1, 287)=16.681, p=0.000335 F(1, 28)=10.451.	F(3, 28)=35.350, p=1.17e-09 F(3, 28)=35.384		no significa	int interaction					
	FM	p=0.000100	p=0.000	p-0.121	p-20-10	p=0.0012	p-0.0002	p-20-10	p=0.1083 F(3, 28)=4.666,	p=0.00313 F(1, 28)=24.721,	p=1.16e-09 F(3, 28)=66.225,	t(7)=-4.0745,	no significa t(7)=-0.37949,	t(7)=-3.0149,	W=0,				
Clock1a	NM								p=0.00912 F(3, 28)=7.836,	p=2.99e-05 F(1, 28)=48.364,	p=7.85e-13 F(3, 28)=24.167,	p=0.004723 W=0,	p=0.7156 W=0,	p=0.01953 W=0,	p=0.01587 t(7)=-2.0242,				
	5014								p=0.000598 F(3, 28)=3.296,	p=1.46e-07 F(1, 28)=12.259,	р=6.33e-08 F(3, 28)=13.692,	p=0.01587 W=1,	p=0.01587 W=0,	p=0.01587 W=1,	p=0.08262 t(7)=-0.61614,				
	rum.	F(9, 112)=1.167, p=0.3231	F(9, 64)=0.514, p=0.859	F(3, 64)=0.812, p=0.492	F(3, 64)=171.201, p<2e-16	F(9, 48)=0.88, p=0.5495	F(3, 48)=2.516, p=0.0693	F(3, 48)=36.286, p=2.14e-12	p=0.03492	p=0.00157	p=1.1e-05	p=0.03175	p=0.01587	p=0.03175	p=0.5573				
	FM								p=0.0851	p=8.72e-05	p=6.13e-07	NT)- 4 5074	no significa	int interaction	N70- 5 7550				
Clockth	LQM								P=0.00181	p=1.23e-09	p=7.57e-14	p=0.002773	p=0.01587	p=0.0003961	p=0.0006943				
S.OCK ID	NM								p=0.31792 F(3, 28)=4.427.	p=0.00395 F(1, 28)=2.880.	p=0.13393 F(3, 28)=16.979.	W=13,	no significa t(7)=-2.6704.	w=2,	t(7)= 2.6301.				
	FQM	F(9, 112)=2.331, p=0.019061	F(9, 64)=0.634, p=0.7640	F(3, 64)=2.191, p=0.0976	F(3, 64)=19.754, p=3.54e-09	F(9, 48)=2.863, p=0.00872	F(3, 48)=10.762, p=1.59e-05	F(3, 48)=17.479, p=8.32e-08	p=0.0114 F(3, 28)=0.166.	p=0.1008 F(1, 28)=0.229.	p=1.77e-06 F(3, 28)=8.813.	p=0.5556	p=0.03198	p=0.06349	p=0.03391				
	FM LOM								p=0.918672 F(3, 28)=2.470,	p=0.635756 F(1, 28)=7.211,	p=0.000283 F(3, 28)=15.835,		no significa	int interaction					
Bmai1	NM								p=0.0825 F(3, 28)=3.560,	p=0.0120 F(1, 28)=2.809,	p=3.26e-06 F(3, 28)=34.243,	t(7)=-2.1692,	t(7)=-0.53115,	t(7)=2.044,	t(7)=1.4724,				
	FQM	F/0 4401-4 0/7	F/0 04)-0 000	F/2 641-4 6-5	F/2 C/1-400 C	F/0 401-4 555	F(2, 40)-2 7-5	F(2, 40)-54 707	p=0.0267 F(3, 28)=1.158, p=0.242	p=0.1049 F(1, 28)=0.025,	p=1.66e-09 F(3, 28)=33.523,	p=0.0667	p=0.6117 no significa	p=0.08023 int interaction	p=0.1844				
	FM	r(9, 112)=1.242, p=0.27709	r(9, 64)=0.337, p=0.959	r(3, 64)=1.878, p=0.142	r(3, 64)=188.623, p<2e-16	r(9, 48)=1.598, p=0.1429	r(3, 48)=2.799, p=0.0499	r(3, 48)=54.705, p=1.61e-15	p=0.343 F(3, 28)=2.084, p=0.125	p=0.874 F(1, 28)=1.617, p=0.214	p=2.090-09 F(3, 28)=73.898, p=2.04e-13		no significa	int interaction					
	LQM								F(3, 28)=0.942, p=0.433	F(1, 28)=0.114, p=0.738	F(3, 28)=91.761, p=1.35e-14		no significa	int interaction					
Bmal2	NM								F(3, 28)=2.276, p=0.102	F(1, 28)=0.061, p=0.806	F(3, 28)=32.350, p=3.07e-09		no significa	int interaction					
	FQM	F(9, 112)=0.389,	F(9, 64)=0.926,	F(3, 64)=7.885,	F(3, 64)=156.656,	F(9, 48)=0.446,	F(3, 48)=0.428,	F(3, 48)=34.596,	F(3, 28)=1.950, p=0.145	F(1, 28)=0.241, p=0.627	F(3, 28)=22.122, p=1.51e-07		no significa	int interaction					
	FM	p=0.93804	p=0.508658	p=0.000148	p<2e-16	p=0.902	p=0.734	p=4.69e-12	F(3, 28)=2.055, p=0.12885	F(1, 28)=9.377, p=0.00481	F(3, 28)=31.960, p=3.5e-09		no significa	int interaction					
	LQM								p=0.469	p=0.189	p=2.52e-11		no significa	int interaction					

	Lunar	LPvsZTvsNLC	LP v	/s ZT (Moonlignt E	(posed)	LP vs ZT (Moonlight Interrupted)		NLC vs ZT (Moon Phase fixed)						
Gene	Phase (LP)	three-way	simple	LP effect	ZT effect	simple	LP effect	ZT effect	simple	NLC effect	ZT effect	770	ME VS MI (Student t-test) ZTE ZT12	7749
Cry1a	NM FQM FM LQM	F(9, 110)=1.400, p=0.1967	F(9, 62)=2.271, p=0.02855	F(3, 62)=4.972, p=0.00372	F(3, 62)=88.791, p<2e-16	F(9, 48)=1.317, p=0.253	F(3, 48)=1.197, p=0.321	F(3, 48)=86.114, p<2e-16	F(3, 27)=4.072, p=0.0165 F(3, 28)=2.137, p=0.118 F(3, 28)= 8.16, p=0.000465 F(3, 27)=0.771, n=0.52	F(1, 27)=56.411, p=4.44e-08 F(1, 28)=102.058, p=7.68e-11 F(1, 28)=156.87, p=5.39e-13 F(1, 27)=70.284, n=5.40e.09	F(3, 27)=49.778, p=3.93e-11 F(3, 28)=45.337, p=7.10e-11 F(3, 28)=47.52, p=4.12e-11 F(3, 27)=35.961, n=142e-09	t(7)=-2.4841, p=0.04196 t(7)=-5.1224, p=0.001365	t(7)=-5.225, t(7)=-6.385 p=0.001219 p=0.00037 no significant interaction t(7)=-7.7855, t(7)=-8.675 p=0.0001084 p=5.412e- no significant interaction	2118 3, t(6)=-3.7387, 1 p=0.009638 9, t(7)=-5.3965, 15 p=0.001012
Cry1b	NM FQM FM LQM	F(9, 110)=1.011, p=0.43573	F(9, 62)=1.823, p=0.0818	F(3, 63)=1.539, p=0.2134	F(3, 62)=76.680, p<2e-16	F(9, 48)=2.307, p=0.0303	F(3, 48)=2.428, p=0.0768	F(3, 48)=100.361, p<2e-16	F(3, 27)=0.328, p=0.805 F(3, 28)=2.219, p=0.108 F(3, 28)=3.116, p=0.041965 F(3, 27)=0.735,	F(1, 27)=2.150, p=0.154 F(1, 28)=7.237, p=0.0119 F(1, 28)=18.029, p=0.000217 F(1, 27)=4.045,	F(3, 27)=30.254, p=8.75e-09 F(3, 28)=55.887, p=6.09e-12 F(3, 28)=121.526, p=3.69e-16 F(3, 27)=44.150,	t(7)=-4.3703, p=0.003273	no significant interaction no significant interaction t(7)=-0.28118, t(7)=-2.102 p=0.7867 p=0.0736 no significant interaction	4, t(7)=-8.378, l p=6.78e-05
Cry2	NM FQM FM	F(9, 110)=0.866, p=0.557735	F(9, 62)=0.791, p=0.625	F(3, 63)=1.081, p=0.364	F(3, 62)=42.128, p=5.72e-15	F(9, 48)=1.120, p=0.367564	F(3, 48)=6.794, p=0.000656	F(3, 48)=80.670, p<2e-16	p=0.5403 F(3, 27)=2.42, p=0.0879 F(3, 28)=0.503, p=0.683 F(3, 28)=5.191, p=0.00561 F(3, 27)=2.319,	p=0.0544 F(1, 27)=32.46, p=4.71e-06 F(1, 28)=1.376, p=0.251 F(1, 28)=29.099, p=9.45e-06 F(1, 27)=45.254,	p=1.51e-10 F(3, 27)=40.16, p=4.31e-10 F(3, 28)=29.350, p=8.64e-09 F(3, 28)=24.319, p=5.95e-08 F(3, 27)=35.110,	W=3, p=0.1111	no significant interaction no significant interaction t(7)=-2.9315, t(7)=-3.624 p=0.02198 p=0.0844	9, t(7)=-2.4648, 5 p=0.04316
Cry3	NM FQM FM LQM	F(9, 110)=1.058, p=0.400	F(9, 62)=1.013, p=0.4397	F(3, 62)=2.287, p=0.0873	F(3, 62)=14.468, p=2.99e-07	F(9, 48)=1.284, p=0.27	F(3, 48)=0.560, p=0.644	F(3, 48)=22.640, p=2.81e-09	p=0.0979 F(3, 27)=0.585, p=0.62995 F(3, 28)=1.267, p=0.304749 F(3, 28)=0.959, p=0.42593 F(3, 27)=2.047, p=0.130888	p=3.19e-07 F(1, 27)=6.001, p=0.021067 F(1, 28)=1.385, p=0.249086 F(1, 28)=12.089, p=0.00167 F(1, 27)=20.700, p=0.000102	p=1.84e-09 F(3, 27)=9.884, p=0.000143 F(3, 28)=9.252, p=0.000205 F(3, 28)=4.270, p=0.0133 F(3, 27)=15.737, p=4.09e-06		no significant interaction no significant interaction no significant interaction no significant interaction	
Per1	NM FQM FM LQM	F(9, 110)=1.328, p=0.2305	F(9, 62)=1.751, p=0.0963	F(3, 62)=2.790, p=0.0478	F(3, 62)=66.667, p<2e-16	F(9, 48)=1.160, p=0.342	F(3, 48)=0.458, p=0.713	F(3, 48)=68.435, p<2e-16	F(3, 27)=0.651, p=0.589 F(3, 28)=0.695, p=0.5627 F(3, 28)=3.403, p=0.031296 F(3, 27)=1.347, p=0.28013	F(1, 27)=0.751, p=0.394 F(1, 28)=5.919, p=0.0216 F(1, 28)=17.700, p=0.000241 F(1, 27)=9.436, p=0.00481	F(3, 27)=20.018, p=4.92e-07 F(3, 28)=50.862 p=1.86e-11 F(3, 28)=39.276, p=3.63e-10 F(3, 27)=43.367, p=1.85e-10	t(7)=-3.0784, p=0.01786	no significant interaction no significant interaction t(7)=-0.29256, t(7)=-1.241 p=0.7783 p=0.2543 no significant interaction	8, t(7)=-5.9134, p=0.0005915
Per2a	NM FQM FM LQM	F(9, 110)=1.346, p=0.2219	F(9, 62)=1.326, p=0.2421	F(3, 62)=0.818, p=0.48883	F(3, 62)=5.691, p=0.00165	F(9, 48)=1.827, p=0.08747	F(3, 48)=3.184, p=0.03205	F(3, 48)=5.064, p=0.00397	F(3, 27)=1.661, p=0.19892 F(3, 28)=0.096, p=0.9614 F(3, 28)=1.773, p=0.17511 F(3, 27)=0.810, p=0.49935	F(1, 27)=9.689, p=0.00435 F(1, 28)=4.198, p=0.0499 F(1, 28)=59.061, p=3.36e-08 F(1, 27)=21.545, p=7.98e-05	F(3, 27)=3.697, p=0.02379 F(3, 28)=1.741, p=0.1813 F(3, 28)=5.642, p=0.00374 F(3, 27)=6.274, p=0.00227		no significant interaction no significant interaction no significant interaction no significant interaction	
Per2b	NM FQM FM LQM	F(9, 110)=1.390, p=0.2011	F(9, 62)=1.450, p=0.187	F(3, 62)=0.263, p=0.852	F(3, 62)=68.133, p<2e-16	F(9, 48)=2.240, p=0.0352	F(3, 48)=1.139, p=0.343	F(3, 48)=56.217, p=9.75e-16	F(3, 27)=0.714, p=0.552 F(3, 28)=0.615, p=0.611145 F(3, 28)=6.801, p=0.00138 F(3, 27)=1.987, p=0.139662	F(1, 27)=7.158, p=0.0125 F(1, 28)=17.929, p=0.000224 F(1, 28)=22.096, p=6.29e-05 F(1, 27)=20.674, n=0.000103	F(3, 27)=16.062, p=3.44e-06 F(3, 28)=34.574, p=1.49e-09 F(3, 28)=49.911, p=2.32e-11 F(3, 27)=54.472, p=1.4e-11	W=10, p=1	no significant interaction no significant interaction t(7)=-3.8129, t(7)=-6.211 p=0.006603 p=0.0004 no significant interaction	2, W=0, k p=0.01587
Per3	NM FQM FM LQM	F(9, 110)=1.376, p=0.2077	F(9, 62)=1.973, p=0.0577	F(3, 62)=2.448, p=0.072	F(3, 62)=181.555, p<2e-16	F(9, 48)=1.247, p=0.29	F(3, 48)=1.154, p=0.337	F(3, 48)=125.530, p<2e-16	F(3, 27)=0.557, p=0.648 F(3, 28)=0.273, p=0.844 F(3, 28)=3.922, p=0.0186 F(3, 27)=1.520, p=0.232	$\begin{array}{l} F(1,27){=}0.000,\\ p{=}0.996\\ F(1,28){=}0.069,\\ p{=}0.794\\ F(1,28){=}0.107,\\ p{=}0.7456\\ F(1,27){=}2.055,\\ p{=}0.163\\ \end{array}$	F(3, 27)=67.598, p=1.12e-12 F(3, 28)=90.647, p=1.58e-14 F(3, 28)=92.870, p=1.16e-14 F(3, 27)=60.904, p=3.83e-12	t(7)=1.5083, p=0.1752	no significant interaction no significant interaction t(7)=1.1783, t(7)=-3.38(p=0.2772 p=0.0117 no significant interaction	3, t(7)=-6.9448, 5 p=0.0002222
CIOCKTA	NM FQM FM LQM	F(9, 110)=0.700, p=0.7076	F(9, 62)=0.816, p=0.604	F(3, 62)=0.656, p=0.582	F(3, 62)=81.603, p<2e-16	F(9, 48)=2.240, p=0.0352	F(3, 48)=4.639, p=0.00629	F(3, 48)=147.115, p=<2e-16	F(3, 27)=0.463, p=0.711 F(3, 28)=0.851, p=0.4781 F(3, 28)=0.294, p=0.83 F(3, 26)=2.962, p=0.05070	$\begin{array}{c} F(1,27){=}0.036,\\ p{=}0.851\\ F(1,28){=}3.525,\\ p{=}0.0709\\ F(1,28){=}0.080,\\ p{=}0.78\\ F(1,26){=}9.172,\\ p{=}0.00549\\ \end{array}$	F(3, 27)=33.483, p=3.04e-09 F(3, 28)=46.837, p=4.87e-11 F(3, 28)=65.869, p=8.38e-13 F(3, 26)=58.219, p=1.14e-11		no significant interaction no significant interaction no significant interaction no significant interaction	
Clock1b	NM FQM FM LQM	F(9, 110)=0.687, p=0.7191	F(9, 62)=0.972, p=0.47213	F(3, 62)=5.921, p=0.00128	F(3, 62)=56.143, p<2e-16	F(9, 48)=1.281, p=0.27157	F(3, 48)=6.320, p=0.00106	F(3, 48)=119.532, p<2e-16	F(3, 27)=0.345, p=0.792962 F(3, 28)=0.227, p=0.877 F(3, 28)=1.916, p=0.14989 F(3, 27)=0.460, p=0.7125	F(1, 27)=17.257, p=0.000294 F(1, 28)=0.511, p=0.481 F(1, 28)=47.496, p=4.14e-11 F(1, 27)=2.988, p=0.0953	F(3, 27)=26.783, p=3.01e-08 F(3, 28)=22.595, p=1.23e-07 F(3, 28)=12.428, p=0.00148 F(3, 27)=71.189, p=6.06e-13		no significant interaction no significant interaction no significant interaction no significant interaction	
Bmal1	NM FQM FM LQM	F(9, 110)=1.652, p=0.1094	F(9, 62)=2.475, p=0.0175	F(3, 62)=2.002, p=0.1229	F(3, 62)=196.159, p<2e-16	F(9, 48)=1.545, p=0.159	F(3, 48)= 2.143, p=0.107	F(3, 48)=207.184, p=<2e-16	F(3, 27)=1.194, p=0.33076 F(3, 28)=0.129, p=0.942 F(3, 28)=4.33, p=0.0125 F(3, 26)=1.321, p=0.288	F(1, 27)=9.656, p=0.00441 F(1, 28)=0.500, p=0.485 F(1, 28)=26.01, p=2.11e-05 F(1, 26)=37.181, p=1.64e-06	F(3, 27)=152.999, p=<2e-16 F(3, 28)=55.746, p=6.28e-12 F(3, 28)=96.79, p=6.88e-15 F(3, 26)=196.126, p=<2e-16	t(7)=-2.4058, p=0.04707	no significant interaction no significant interaction t(7)=-4.0909, t(7)=-3.000 p=0.004626 p=0.0199 no significant interaction	4, t(7)=-2.2722, 8 p=0.05729
Bmal2	NM FQM FM LQM	F(9, 109)=1.266, p=0.263455	F(9, 62)=1.032, p=0.42513	F(3, 62)=4.165, p=0.00943	F(3, 62)=150.998, p<2e-16	F(9, 47)=0.971, p=0.4758	F(3, 47)=3.777, p=0.0165	F(3, 47)=141.828, p<2e-16	F(3, 27)=0.620, p=0.6080 F(3, 28)=1.412, p=0.26009 F(3, 28)=0.049, p=0.985 F(3, 26)=5.375, p=0.00515	F(1, 27)=4.327, p=0.0471 F(1, 28)=8.490, p=0.00695 F(1, 28)=0.001, p=0.981 F(1, 26)=11.358, p=0.00236	F(3, 27)=53.776, p=1.62e-11 F(3, 28)=55.636, p=6.43e-12 F(3, 28)=101.831, p=3.6e-15 F(3, 26)=96.841, p=3.12e-14	t(7)=-2.6494, p=0.03297	no significant interaction no significant interaction no significant interaction t(6)=-1.2941, t(6)=2.947 p=0.2432 p=0.0251	3, t(7)=2.0476, p=0.07982

Table S2 Summary of statistical analysis by three-way ANOVA for evaluating the effect of lunar phase, nocturnal light condition, and Zeitgeber time on the clock gene expressions in the pituitary gland of the goldined spinefoot

Table S3 Cosinor analysis of clock gene expression levels in the diencephalon

	Lunor	Nocturnal Light Condition (NLC)					
Gene	Lunar Phase	Moonlight	Exposed	I (ME)	Moonlight I	nterrupt	ed (MI)
Conc	(LP)	Acrophase	SEM	p value	Acrophase	SEM	p value
Cry1a	NM	4.2	1.33	<0.001	4.1	1.55	0.002
	FQM	5.4	1.33	<0.001	6.1	1.58	0.002
	FM	5.5	1.30	<0.001	4.9	1.67	0.018
	LQM	3.9	1.34	<0.001	6.2	1.63	0.007
Cry1b	NM	1.4	0.99	<0.001	1.9	1.10	<0.001
	FQM	1.5	1.06	<0.001	1.7	1.50	0.002
	FM	1.5	0.89	<0.001	23.3	1.26	<0.001
	LQM	2.9	1.10	<0.001	23.6	1.39	0.006
Cry2	NM	12.7	1.38	0.006	10.9	1.30	0.031
	FQM	11.5	1.31	<0.001	9.9	1.48	0.012
	FM	11.7	1.31	<0.001	10.8	1.44	0.003
	LQM	11.6	1.36	0.001	11.5	1.32	<0.001
Cry3	NM	n.d.	1.60	0.163	n.d.	1.62	0.059
	FQM	n.d.	1.62	0.068	n.d.	1.79	0.332
	FM	n.d.	1.64	0.440	n.d.	1.78	0.182
	LQM	23.1	1.56	0.006	n.d.	1.80	0.059
Per1	NM	0.1	0.99	<0.001	23.4	1.10	<0.001
	FQM	0.2	1.06	<0.001	22.0	1.50	0.009
	FM	0.7	0.89	<0.001	21.8	1.26	<0.001
	LQM	0.6	1.10	<0.001	22.1	1.39	<0.001
Per2a	NM	2.1	1.37	0.008	1.0	1.54	0.015
	FQM	1.9	1.29	<0.001	n.d.	1.73	0.109
	FM	2.2	1.36	<0.001	n.d.	1.80	0.413
	LQM	2.8	1.37	<0.001	n.d.	1.77	0.145
Per2b	NM	5.2	1.40	0.005	4.0	1.41	0.007
	FQM	6.3	1.26	<0.001	8.1	1.39	0.001
	FM	5.4	1.38	<0.001	n.d.	1.68	0.082
	LQM	5.9	1.27	<0.001	6.6	1.52	< 0.001
Per3	NM	2.1	0.94	<0.001	1.3	1.08	< 0.001
	FQM	2.8	1.00	<0.001	2.1	1.33	< 0.001
	FM	1.9	0.87	<0.001	0.0	1.24	< 0.001
01	LQM	2.6	0.87	<0.001	0.9	1.14	<0.001
CIOCK1a		12.8	1.01	<0.001	11.4	1.14	0.003
	FQM	12.3	1.08	<0.001	11.1	1.08	0.014
	FM	12.7	0.97	<0.001	11.1	1.18	0.003
Cleakth		11.9	1.06	<0.001	11.6	1.22	<0.001
CIOCKID		11.2	1.51	0.020	n.a.	1.80	0.897
		12.8	1.44	<0.001	10.5	1.37	<0.001
		12.3	1.44	0.003	12.7	1.5/	0.013
Drm o ld		12.9	1.50	0.015	12.5	1.5/	<0.001
DMaii		11.0	0.01	<0.001	10.4	1.00	0.001
		12.2	0.92	<u>\0.001</u>	11.1	1.40 1.00	
		12.2	0.00	<u>\0.001</u>	11.1	1.00	
Bmall		10.7	1 10	<0.001	11.3	1.17	
Diliaiz	EOM	13.2	1.19		11.4	1.54	0.000
		13.1	1.20	0.001	11.1	1.20	0.009
		12.2	1 1 2		11.0	1.35	
		12.3	1.13	-0.00 I	0.11	1.23	10.00

		Nocturnal Light Condition (NLC)					
0	Lunar	Moonlight Exposed		(ME)	Moonlight I	nterrupte	ed (MI)
Gene	Phase (LP)	Acrophase	SEM	p value	Acrophase	SEM	p value
Cry1a	NM	3.1	1.22	<0.001	4.1	1.41	<0.001
	FQM	4.4	1.34	0.001	3.6	1.55	<0.001
	FM	2.8	1.29	<0.001	4.5	1.45	<0.001
	LQM	4.2	1.31	<0.001	5.1	1.51	<0.001
Cry1b	NM	0.5	0.59	<0.001	1.1	0.91	<0.001
	FQM	0.7	0.75	<0.001	0.6	0.86	<0.001
	FM	1.7	0.69	<0.001	0.7	0.96	<0.001
	LQM	1.5	0.73	<0.001	1.2	1.15	<0.001
Cry2	NM	11.0	1.35	<0.001	11.1	1.47	<0.001
	FQM	12.4	1.37	0.001	12.4	1.45	<0.001
	FM	11.7	1.42	0.001	11.5	1.37	<0.001
-	LQM	12.4	1.32	<0.001	11.4	1.47	<0.001
Cry3	NM	23.5	1.49	0.005	22.8	1.74	0.003
	FQM	23.6	1.57	0.049	1.3	1.11	<0.001
	FM	n.d.	1.57	0.110	1.5	1.18	<0.001
	LQM	22.9	1.48	0.001	22.4	1.74	0.001
Per1	NM	24.0	1.49	<0.001	0.5	1.74	0.005
	FQM	23.3	1.57	<0.001	23.3	1.11	<0.001
	FM	1.0	1.57	<0.001	23.3	1.18	<0.001
	LQM	0.9	1.48	<0.001	23.8	1.74	< 0.001
Per2a	NM	n.d.	1.56	0.351	20.6	1.58	0.038
	FQM	n.d.	1.57	0.208	n.d.	1.82	0.478
	FM	n.d.	1.51	0.075	n.d.	1.78	0.160
5.01	LQM	n.d.	1.54	0.070	n.d.	1.75	0.228
Perzo		n.a.	1.37	0.051	5.3	1.52	0.010
	FQM	n.a.	1.43	0.054	4.2	1.57	0.014
	FM	3.4 5.5	1.30	0.001	6.9 C 5	1.59	0.009
Der?		5.5	1.40	< 0.001	0.0	1.54	<0.001
Pers		1.4	0.94	<0.001	1.7	1.13	
		1.4	0.90		1.5	1.11	
		2.2	0.70		1.5	1.10	
Clock12		1.4	0.90	<0.001	11.0	1.27	
CIUCKIA		12.5	1 00	<0.001	11.9	1.00	
	EM	12.0	0.84	<0.001	12.0	0.84	<0.001
		13.4	0.04	<0.001	12.1	1 1 2	<0.001
Clock1b	NM	11.5	1 28	<0.001	12.1	1.13	<0.001
CIOCKID	FOM	13.5	1 33	<0.001	13.3	1.52	<0.001
	FM	13.5	1.00	<0.001	12.3	1.55	<0.001
	LOM	13.2	1.00	<0.001	12.0	1.55	<0.001
Rmal1	NM	12.1	0.83	<0.001	12.2	1.00	<0.001
2.11411	FOM	12.7	1.02	<0.001	12.8	1.25	<0.001
	FM	12.8	1.02	<0.001	12.1	1.13	<0.001
	LOM	13.2	1.02	<0.001	12.3	1.30	< 0.001
Bmal2	NM	12.4	0.97	<0.001	12.3	1.21	< 0.001
	FOM	12.6	1.05	< 0.001	12.4	1.21	< 0.001
	FM	12.2	0.99	< 0.001	12.3	1.11	<0.001
	LQM	13.4	0.93	<0.001	12.3	1.44	<0.001

Table S4 Cosinor analysis of clock gene expression levels in the pituitary gland

Table S5 Accession numbers of CRYs used in the phylogenetic analysis

Protein name	Accession number
Goldlined spinefood CRY1a	FX985477
Goldlined spinefood CRY1b	BAL72538
Goldlined spinefood CRY2	FX985476
Goldlined spinefood CRY3	BAL72539
Goldlined spinefood CRY6	FX985478
Zebrafish CRY1a	NP_001070765
Zebrafish CRY1b	BAA96847
Zebrafish CRY2a	BAA96848
Zebrafish CRY2b	NP_571867
Zebrafish CRY3	AAH46088
Zebrafish CRY4	BAA96851
Zebrafish CRY6	XP_009291670
Nile tilapia CRY1a	XP_005456675
Nile tilapia CRY1b	XP_005471126
Nile tilapia CRY2a	XP_005477802
Nile tilapia CRY3	XP_013129259
Seabass CRY1	AFP33464
Seabass CRY2	AFP33463
Xenopus tropicalis CRY1	NP_001017311
Xenopus tropicalis CRY2	BAI82612
Xenopus tropicalis CRY4	BAO09600
Xenopus tropicalis CRY6	XP_002938187
Chicken CRY1	AAK61385
Chicken CRY2	AAK61386
Chicken CRY4	NP_001034685
Mouse CRY1	NP_031797
Mouse CRY2	NP_034093
Anopheles gambia CRY1	ABB29886
Danaus plexippus CRY1	AAX58599
Drosophila melanogaster CRY1	AAC83828
Anopheles gambia CRY2	ABB29887
Danaus plexippus CRY2	ABA62409

Table S6 Accession numbers of PERs used in the phylogenetic analysis

Protein name	Accession number
Goldlined spinefood PER1	ABA42096
Goldlined spinefood PER2a	FX985479
Goldlined spinefood PER2b	EF208027
Goldlined spinefood PER3	FX985480
Zebrafish PER1a	NP_001025354
Zebrafish PER1b	NP_997604
Zebrafish PER2	NP_878277
Zebrafish PER3	NP_571659
Nile tilapia PER1b	ENSONIP00000011630
Nile tilapia PER2a	ENSONIP00000012334
Nile tilapia PER2	ENSONIP0000009999
Nile tilapia PER3	ENSONIP0000024320
Seabass PER1	ADI71975
Senegal sole PER2	CAQ86911
Senegal sole PER3	CAQ68365
Xenopus tropicalis PER1	AAI21905
Xenopus tropicalis PER2b	XP_012825562
Xenopus tropicalis PER3	NP_001072696
Mouse PER1	NP_035195
Mouse PER2	NP_035196
Mouse PER3	NP_035197
Drosophila melanogaster PER	NP_525056

Table S7 Accession numbers of CLOCKs used in the phylogenetic analysis

Protein name	Accession number
Gollined spinefoot CLOCK1a	FX985868
Gollined spinefoot CLOCK1b	LC367223
Chicken CLOCK	AAL98708
Mouse CLOCK	NP_031741
Human CLOCK	AAF13733
Xenopus laevis CLOCK	NP_001083854
Xenopus tropicalis CLOCK	NP_001122127
Nile tilapia CLOCK1a	XP_019207337
Nile tilapia CLOCK1b	XP_003452181
Zebrafish CLOCK1a	NP_571032
Zebrafish CLOCK1b	NP_840080
Zebrafish CLOCK2 (NPAS2)	NP_840084
Drosophila melanogaster CLOCK	AAC39101

Table S8 Accession numbers of BMALs used in the phylogenetic analysis

Protein name	Accession number
Goldlined spinefood BMAL1	FX985869
Goldlined spinefood BMAL2	LC367224
Chicken BMAL1	NP_001001463
Chicken BMAL2	NP_989464
Human BMAL1a	NP_001284653
Human BMAL2	BAB01485
Mouse BMAL1	NP_001229977
mouse BMAL2	ABC79590
Xenopus laevis BMAL1	AAW80970
Zebrafish BMAL1	NP_571652
Zebrafish BMAL2	NP_571653
Drosophila melanogaster CYCLE	NP_524168