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Dear GigaScience Editors,

Re: Resubmission of manuscript: Improving the annotation of the Heterorhabditis
bacteriophora genome

Thank you for the opportunity to revise our manuscript, Improving the annotation of the
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Heterorhabditis bacteriophora genome. After reviewing the GigaScience Article Types
instructions we are re-submitting the manuscript for consideration for publication as a
Data Note as we agree that it fits best as such.

We are grateful for the constructive and positive suggestions from all of the reviewers,
as well as their attention to detail. In particular, we  have added a supplementary
document detailing the command lines used to carry out the analysis, and hope that
this will prove useful to those wishing to replicate the experiments.

Below are the comments with our responses indicated. The accompanying manuscript
has the corresponding corrections and changes.

Yours Sincerely,

Florence McLean

Reviewer #1:
----------------
This manuscript describes the reannotation of the Heterorhabditis bacteriophora, an
entomopathogenic nematode widely used to control insect pests in horticulture.
A previous study was reported to encode an unusually high proportion of unique
proteins and a paucity of secreted proteins compared to other related nematodes. This
study asked whether these unusual characteristics were biological or methodological in
origin.

The work was carried out in the spirit of data improvement, rather than a rebuttal, and
while it is not a genome paper as such, it does reanalyse  a genome using new data
and different tools. It is very suited to the GigaScience philosophy and readership due
to the repeatable side and open access component.

I have checked that the Methods described and the Resources used meet the
minimum standards reporting check list. I note that data has been submitted to the
publicly available repositories (SRA and INSDC) but that the data is not yet available,
thus it cannot be reviewed at the moment.

**********Response*******************
The reads from the re-sequencing project are still in the process of being submitted to
the SRA and the DOI will be advised as soon as it is obtained.

Submission of the revised annotations to INSDC has been delayed over a question of
where they would fit into the ENA's data structure. The GFF file has therefore been
submitted to Zenodo (DOI:10.5281/zenodo.1169646), and is included in the
supplementary data uploaded to the GigaScience DB.
************************************

I have looked at  the files in https://github.com/DRL/mclean2017
There are 9 supplementary files of annotation, analyses and annotation pipelines
which look thorough and complete.

The repository also include splice site files.

The manuscript states that all custom scripts developed for this manuscript are
available at in this repository but I see only a single script in the /analysis folder. Is this
right?

**********Response*******************
Very few custom scripts were developed for the analysis of the data, the bulk of which
was carried out by executing published programs on the command line, and most
basic statistics reported in the manuscript (such as counts) were obtained from
manipulation and interrogation of files using unix command line tools. Although these
processes were not developed as scripts, we strongly agree with both reviewer #1
here, and reviewer #3 (see below), that provision of the code used in the analysis
would greatly enhance the manuscript. We have added a Methods Supplementary
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Note (Supplementary File 2) to this effect.
************************************

The gene prediction and protein orthology analyses and discussion were thorough and
fully explained, as well as future work (expanded transcriptome and comparative data
work) described.

My recommendation is that this manuscript be published as a research article.

I have some minor typos and suggestions which are probably more pertinent for a copy
editor to spot but include them here since I noted them down.

105 BUSCO; see below). Another unusual feature of the H. bacteriophora gene set
was the ->
105 BUSCO; see Table 2). Another unusual feature of the H. bacteriophora gene set
was the

**********Response*******************
Corrected
*************************************

107 Most nematode (and other metazoan) genomes have low proportions of non-
canonical introns (less than 1%),
[Reference needed]

**********Response*******************
Reference provided
*************************************

137 from the new Illumina data and sequence similarity from the NCBI nucleotide
database (nt) ->
137 from the new Illumina data and sequence similarity from the NCBI nucleotide (nt)
database

**********Response*******************
Corrected
*************************************

371 The assembly scaffolds were aligned to the NCBI nucleotide (nt) database, ->
371 The assembly scaffolds were aligned to the NCBI nt database,

**********Response*******************
Corrected
*************************************

397 version of the assembly. Hard masking was for known Nematoda repeats from the
->
397 version of the assembly. The assembly was hard-masked for known Nematoda
repeats from the….?

**********Response*******************
Corrected
*************************************

[Hard masked / hard-masked
Soft masked / soft-masked
check for consistent use]

**********Response*******************
Corrected to consistent use of hyphen
*************************************

406 bacteriophora annotation was identified from the general feature format file, and
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then->
406 bacteriophora annotation was identified from the general feature format (GFF) file,
and then

**********Response*******************
Corrected
*************************************

407 selected from the protein FASTA files. The general feature format file (GFF) for ->
407 selected from the protein FASTA files. The GFF file for

**********Response*******************
Corrected
*************************************

415 from the general feature format file as exon features ->
415 from the GFF file as exon features

**********Response*******************
Corrected
*************************************

423 bacteriophora. Intronic features were added to GFF3
[Explain what GFF3 is]

Expanded to general feature format version 3 (GFF3)

[Check consistent use of GFF (line 415) / GFF file / GFF format (744, 749)
Should be GFF file]

**********Response*******************
Corrected to be consistent
*************************************

424 gff3 -sort -tidy -retainids -fixregionboundaries -addintrons') and and splice sites
were ->
424 gff3 -sort -tidy -retainids -fixregionboundaries -addintrons') and splice sites were

**********Response*******************
Corrected
*************************************

445 the 23 Clade V nematodes were downloaded from WBPS8 (available at:
446 http://parasite.wormbase.org/index.html)
[Suggest link to ftp://ftp.ebi.ac.uk/pub/databases/wormbase/parasite/releases/WBPS8/)

**********Response*******************
Link changed to that suggested
*************************************

358 Parasite (WBPS8) [34].
[This is the first mention of WormBase Parasite so should include the home page
rather than line in 446]

**********Response*******************
Suggested link inserted into formerly line [358] and removed from formerly line [446]
*************************************

478 using MAFFT v7.267 (RRID:SCR_011811) [50], and the alignments trimmed with
NOISY
[Reference needed for NOISY.]

**********Response*******************
Reference added
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*************************************

480 v8.1.20 (RRID:SCR_006086) [51] with a PROTGAMMAGTR
[Reference needed for PROTGAMMAGTR]

**********Response*******************
Reference provided for RAXML. PROTGAMMAGTR is an option used within RAXML.
*************************************

Reviewer #2:
---------------
The manuscript "Improving the annotation of the Heterorhabditis bacteriophora
genome" presents the re-annotation of an existing high-quality genome assembly
which previously had low-quality gene annotation with many issues. By utilizing RNA-
Seq datasets and using the latest high-quality annotation tool (BRAKER1), significant
improvements were made in completeness, unique protein counts and secretion
predictions. This annotation improvement represents a very significant improvement in
how results from Heterorhabditis bacteriophora genome studies will be interpreted.

- The supporting data files are thorough and complete, and support the findings. One
suggestion: Although not part of the study, a text file could be added within Supp
Tables 2 and 3 which provides the WormBase assembly version used, and accession
IDs / web links to the genome assembly, so that readers can have all the information
they need to work with the new annotation within the single files.

**********Response*******************
Many thanks for your suggestion. I have added a text file into the Supporting data
called Publicly_available_assembly_details.txt which details the source, provider,
WormBase assembly version used, its Bioproject ID, and the FTP address for easy
download.
*************************************

- Tables 1 and 2 in the main text should also be reformatted. Shading is not permitted
by Gigascience. Also, removing vertical lines (both tables) and centering the numbers
on table 1 would help to improve their look.

**********Response*******************
Done- many thanks for the feedback
*************************************

- Please ensure that SRA and INSDC accessions are added, since they are currently
referenced as "XXXXXXX"

**********Response*******************
Please see comment above to reviewer # 1
*************************************

- Since InterProScan was ran, it would be interesting to look at the statistics in regards
to the identification of InterPro domains. For example, compare the number of proteins
with any annotated IPR domains, the total number of IPR domains identified, and the
number of unique IPR domains identified. The previous publication also performed this
comparison with other species using KEGG, so it may be interesting to repeat that
similar analysis with the current annotation, although there are many updated ways to
run KEGG so the re-analysis of the previous annotation may not match what was
previously found.

**********Response*******************
Thank you for this suggestion. Extraction of these interproscan statistics did provide
further encouraging results. We have included a Supporting data file called
IPR.domain.analysis.txt containing the suggested Interproscan statistics and a
paragraph has been added to the text to describe the results. We do not feel that the
original Kegg analysis in the published paper generated meaningful biological insights
and have therefore not replicated it here.
******************************
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Reviewer #3:
---------------
Dear authors,

thank you for publishing the re-annotation of Heterorhabditis bacteriophora. It is both
interesting for the particular research community dealing with Heterorhabditis
bacteriophora, as well as for all research communities dealing with non-model
organisms, in general. You demonstrate that the software applied for annotating a
species can heavily impact conclusions drawn from a genome annotation project; and
that it is worth re-annotating also non-model organisms with state of the art tools.

Below, you find my review, structured according to the Guide for GigaScience
reviewers.

1. Is the rationale for collecting and analyzing the data well defined?

Yes.

2. Is it clear how data was collected and curated?

Yes, it is very clear.

3. Is it clear - and was a statement provided - on how data and analyses tools used in
the study can be accessed?

For data, it is very clear.

The authors also make an effort to demonstrate tool availability (not their own, but
software developed by others) by providing RRIDs. However, in some cases, the
provided RRIDs are more confusing than helpful.

RRID:SCR_008419 is given for BLAST v2.6.0+ but the RRID leads to an URL that is
not available (and in the past, when it was available, it corresponded to a particular
BLAST interface for balsting against Aedes aegypti, an organsim that is not relevant to
the manuscript under review). In this case, it would be more helpful to provide e.g. an
URL to the download location of BLAST v2.6.0+; or create a new RRID.

**********Response*******************
Apologies for this error, thank you for noting it. A URL for downloading BLAST v2.6.0
has been provided and the incorrect RRID removed.
*************************************

RRID:SCR_005622 is given for the RNA-Seq aligner STAR; the RRID leads to an URL
for a user/password protected STAR related web application. I strongly assume the
authors ran STAR locally, and thus, an URL to the offical STAR website would be more
appropriate (https://github.com/alexdobin/STAR/releases), or the creation of a new
RRID.

**********Response*******************
RRID corrected to the official website version

*************************************
For Rstudio, accidentally, the RRID to STAR web application is provided. Please
update to correct RRID or URL.

**********Response*******************
Corrected- thank you again for noting this error.
*************************************

(No RRID or URL is provided for BRAKER. The URL is available in the referenced
manuscript, though, and I believe that is sufficient. However, if journal policy is to
always print RRIDs or URLs, you might want to add one of the download URLs. Also,
BRAKER1 is the only tool where to do not list the version number (braker.pl --version).)
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Version added.

4. Are accession numbers given or links provided for data that, as a standard, should
be submitted to a community approved public repository?

In principle, yes, some accession numbers were still missing during the review process
but will be updated by the authors prior publication.

5. Is the data and software available in the public domain under a Creative Commons
license?

Scripts implemented particularly for this publication are avaiable at github, the license
is GNU Public License V3. There are differences between licenses, I kindly ask the
journal to check whether GPL fulfills the journal's requirements.

6. Are the data sound and well controlled?

Yes.

7. Is the interpretation (Analysis and Discussion) well balanced and supported by the
data?

Yes.

8. Are the methods appropriate, well described, and include sufficient details and
supporting information to allow others to evaluate and replicate the work?

In principle: yes. However, it might be useful to the community to provide not only
references to the particular tool and version, but also the exact command lines that
were used in this project. It would be really nice if you added the command lines to
some supplementary document. For example, a reader who knows that BRAKER1
software, will assume that braker was called with the option --softmasking when the
authors state that it was applied to a softmasked genome. A reader who is less familiar
with the software will maybe not know this and might thus not be able to replicate the
experiments, exactly.

**********Response*******************
Thank you for this suggestion, we agree and a Supplementary note has been added to
this effect.
*************************************

9. What are the strengths and weaknesses of the methods?

The authors used state of the art methods in a very suitable way.

10. Have the authors followed best-practices in reporting standards?

Yes.

11. Can the writing, organization, tables and figures be improved?

I am not a native speaker of English, myself, but I believe the language is good.

I hope that 1.747 as number of protein coding genes predicted by BRAKER1/soft-
masked in Table 2 is a typo, please fix.

**********Response*******************
Corrected- thank you for spotting this
*************************************

12. When revisions are requested.

Minor revisions:
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Please correct used software accessiblity references as recommended in point 3.-
corrected as above

Please correct typo in Table 2 (point 11).- corrected as above.

Discretionary revisions:

Please consider my statement to point 8.- corrected as above

The journal should probably have a look at the license issue (point 5).

13. Are there any ethical or competing interests issues you would like to raise?

No.

I hope you find this review useful.

Kind regards,

Katharina Hoff

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories
(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Yes
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Abstract 28 

Background: Genome assembly and annotation remains an exacting task. As the 29 

tools available for these tasks improve, it is useful to return to data produced with 30 

earlier instances to assess their credibility and correctness. The entomopathogenic 31 

nematode Heterorhabditis bacteriophora is widely used to control insect pests in 32 

horticulture. The genome sequence for this species was reported to encode an 33 

unusually high proportion of unique proteins and a paucity of secreted proteins 34 

compared to other related nematodes. Findings: We revisited the H. bacteriophora 35 

genome assembly and gene predictions to ask whether these unusual characteristics 36 

were biological or methodological in origin. We mapped an independent resequencing 37 

dataset to the genome and used the blobtools pipeline to identify potential 38 

contaminants. While present (0.2% of the genome span, 0.4% of predicted proteins), 39 

assembly contamination was not significant. Conclusions: Re-prediction of the gene 40 

set using BRAKER1 and published transcriptome data generated a predicted 41 

proteome that was very different from the published one. The new gene set had a 42 

much reduced complement of unique proteins, better completeness values that were 43 

in line with other related species’ genomes, and an increased number of proteins 44 

predicted to be secreted. It is thus likely that methodological issues drove the apparent 45 

uniqueness of the initial H. bacteriophora genome annotation and that similar 46 

contamination and misannotation issues affect other published genome assemblies. 47 
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Background 50 

The sequencing and annotation of a species’ genome is often but the first step in 51 

exploiting these data for comprehensive biological understanding. As with all scientific 52 

endeavour, genome sequencing technologies and the bioinformatics toolkits available 53 

for assembly and annotation are being continually improved. It should come as no 54 

surprise therefore that first estimates of genome sequences and descriptions of the 55 

genes they contain can be improved. For example, the genome of the nematode 56 

Caenorhabditis elegans was the first animal genome to be sequenced [1]. The 57 

genome sequence and annotations have been updated many times since, as further 58 

exploration of this model organism revealed errors in original predictions, such that 59 

today, with release WS260 [2] [3], very few of the 19099 protein coding genes 60 

announced in the original publication [1] retain their original structure and sequence. 61 

The richness of the annotation of C. elegans is driven by the size of the research 62 

community that uses this model species. However for most species, where the 63 

community using the genome data is small or less-well funded, initial genome 64 

sequences and gene predictions are not usually updated.  65 

Heterorhabditis bacteriophora is an entomopathogenic nematode which maintains a 66 

mutualistic association with the bacterium Photorhabdus luminescens. Unlike many 67 

other parasitic nematodes, it is amenable to in vitro culture [4] and is therefore of 68 

interest not only to evolutionary and molecular biologists investigating parasitic and 69 

symbiotic systems, but also to those concerned with the biological control of insect 70 

pests [5, 6]. P. luminescens colonises the anterior intestine of the free-living infective 71 

juvenile stage (IJ). IJs are attracted to insect prey by chemical signals [7, 8]. On 72 

contacting a host, the IJs invade the insect’s haemocoel and actively regurgitate P. 73 
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luminescens into the haemolymph. The bacterial infection rapidly kills the insect, and 74 

H. bacteriophora grow and reproduce within the cadaver. After 2-3 cycles of 75 

replication, the nematode progeny develop into IJs, sequester P. luminescens and 76 

seek out new insect hosts. 77 

Axenic H. bacteriophora IJs are unable to develop past the L1 stage [9] , and H. 78 

bacteriophora may depend on P. luminescens for secondary metabolite provision [10, 79 

11]. Mutation of the global post-transcriptional regulator Hfq in P. luminescens reduced 80 

the bacterium’s secondary metabolite production and led to failed nematode 81 

development, despite the bacterium maintaining virulence against host (Galleria 82 

mellonella) larvae [12]. Together these symbionts are efficient killers of pest (and 83 

other) insects, and understanding of the molecular mechanisms of host killing could 84 

lead to new insecticides. 85 

H. bacteriophora was selected by the National Human Genome Research Initiative as 86 

a sequencing target [13]. Genomic DNA from axenic cultures of the inbred strain H. 87 

bacteriophora TTO1 was sequenced using Roche 454 technology and a high quality 88 

77 Mb draft genome assembly produced [14]. This assembly was predicted (using 89 

JIGSAW [15] ) to encode 21250 proteins. Almost half of these putative proteins had 90 

no significant similarity to entries in the GenBank non-redundant protein database, 91 

suggesting an explosion of novelty in this nematode. The predicted H. bacteriophora 92 

proteome had fewer orthologues of Kyoto Encyclopedia of Genes and Genomes loci 93 

in the majority of metabolic categories than nine other nematodes. H. bacteriophora 94 

was also predicted to have a relative paucity of secreted proteins compared to free-95 

living nematodes, postulated to reflect a reliance on P. luminescens for secreted 96 

effectors [14]. The 5.7 Mb genome of P. luminescens has also been sequenced [16]. 97 

The H. bacteriophora proteome had fewer shared orthologues when clustered and 98 
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compared to other rhabditine (Clade V) nematodes (including Caenorhabditis elegans 99 

and the many animal parasites of the Strongylomorpha) [17].  100 

In preliminary analyses we noted that while the genome sequence itself had high 101 

completeness scores when assessed with the Core Eukaryote Gene Mapping 102 

Approach (CEGMA) [18] (99.6% complete) and Benchmarking Universal Single-Copy 103 

Orthologs (BUSCO) [19] (80.9% complete and 5.6% fragmented hits for the BUSCO 104 

Eukaryota gene set), the predicted proteome scored poorly (47.8% complete and 105 

34.7% fragmented by BUSCO; see Table 2). Another unusual feature of the H. 106 

bacteriophora gene set was the proportion of non-canonical splice sites (i.e. those with 107 

a 5’ GC splice donor site, as opposed to the normal 5’ GT). Most nematode (and other 108 

metazoan) genomes have low proportions of non-canonical introns (less than 1%) 109 

[20], but the published gene models had over 9% non-canonical introns. This is more 110 

than double the proportion predicted for Globodera rostochiensis, a plant parasitic 111 

nematode where the unusually high proportion of non-canonical introns was validated 112 

via manual curation [20]. 113 

If these unusual characteristics reflect a truly divergent proteome, the novel proteins 114 

in H. bacteriophora may be crucial in its particular symbiotic and parasitic 115 

relationships, and of great interest to development of improved strains for horticulture. 116 

However, it is also possible that contamination of the published assembly or 117 

annotation artefacts underpin these unusual features. We re-examined the H. 118 

bacteriophora genome and gene predictions, and used more recent tools to re-predict 119 

protein coding genes from the validated assembly. As the BRAKER1 predictions were 120 

demonstrably better than the original ones, we explored whether some of the unusual 121 

characteristics of the published protein set, in particular the level of novelty and the 122 

proportion of secreted proteins, were supported by the BRAKER1 protein set. 123 
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 124 

Findings 125 

No evidence for substantial contamination of the H. bacteriophora genome assembly 126 

We used BlobTools [21] to assess the published genome sequence [14] for potential 127 

contamination. The raw read data from the published assembly was not available on 128 

the trace archive or short read archive (SRA). We thus utilised new Illumina short-read 129 

re-sequencing data generated from strain G2a1223, an inbred derivative of H. 130 

bacteriophora strain "Gebre", isolated by Adler Dillman in Moldova. G2a1223 has 131 

about 1 single-nucleotide change per ~2000 nucleotides compared to the originally-132 

sequenced TT01 strain. G2a1223 was grown in culture on the non-colonising 133 

bacterium Photorhabdus temperata. The majority of these data (96.3% of the reads) 134 

mapped as pairs to the assembly, suggesting completeness of the published assembly 135 

with respect to the new raw read data. In addition, 99.96% of the published assembly 136 

had at least 10-fold coverage from the new raw reads. 137 

The assembly was explored using a taxon-annotated GC-coverage plot, with coverage 138 

taken from the new Illumina data and sequence similarity from the NCBI nucleotide 139 

(nt) database (Figure 1). H. bacteriophora was excluded from the database search 140 

used to annotate the scaffolds to exclude self hits from the published assembly. All 141 

large scaffolds clustered congruently with respect to read coverage and CG content. 142 

A few (57) scaffolds had best BLASTn matches to phyla other than Nematoda (Table 143 

1). A small amount (5 kb) of likely remaining P. luminescens contamination was noted. 144 

We identified 100 kb of the genome of a strain of the common culture contaminant 145 

bacterium Stenotrophomonas maltophilia [22]. Contamination of the assembly with S. 146 

maltophilia was acknowledged [14] but removal of scaffolds before annotation was not 147 
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discussed. Two high-coverage scaffolds that derived from the H. bacteriophora 148 

mitochondrial genome were annotated as “undefined Eukaryota” because of 149 

taxonomic misclassification in the NCBI nt database. Many scaffolds with coverages 150 

close to that of the expected nuclear genome had best matches to two unexpected 151 

sources: the platyhelminths Echinostoma caproni and Dicrocoelium dendriticum, and 152 

several hymenopteran arthropods. Inspection of these matches showed that they were 153 

due to high sequence similarity to a family of H. bacteriophora mariner-like 154 

transposons [23] and thus these were classified as bona fide nematode nuclear 155 

sequences. A group of scaffolds contained what appears to be a H. bacteriophora 156 

nuclear repeat with highest similarity to histone H3.3 sequences from Diptera and 157 

Hymenoptera. The remaining scaffolds had low-scoring nucleotide matches to a 158 

variety of chordate, chytrid and arthropod sequences from deeply conserved genes 159 

(tubulin, kinases), but had coverages similar to other nuclear sequences. 160 

Scaffolds with average coverage of less than 10-fold were removed from the assembly 161 

(35 scaffolds spanning 132949 bases, 0.2% of the total span; see Supporting Data 162 

[24]: Low_coverage_scaffolds.txt). This removed all scaffolds aligning to S. maltophilia 163 

and to Photorhabdus spp. (104 kb). The origins of the additional 28 kb were not 164 

investigated. In the published annotation [14], 76 genes were predicted from these 165 

scaffolds. 166 

 167 

Improved gene predictions are biologically credible and have unexceptional novelty 168 

New gene predictions were generated from a soft-masked version of the filtered 169 

assembly using the RNA-seq based annotation pipeline BRAKER1 v1.9 [25], 170 

generating 16070 protein predictions from 15747 protein coding genes (see 171 
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Supporting Data [24]: BRAKER1.soft.masked.output.files.zip). We compared the soft-172 

masked predictions to those from the published analysis [14] (Figure 2, Table 2). The 173 

predicted proteins from the new BRAKER1/soft-masked gene set were, on average, 174 

longer (Figure 2A). While the average number of introns per gene was the same in the 175 

BRAKER1/soft-masked and published predictions, the BRAKER1/soft-masked gene 176 

set had more single-exon genes (Figure 2B). Hard masking of the genome and re-177 

prediction resulted in fewer single exon genes, suggesting that many of these putative 178 

genes could be derived from repetitive sequence (Supporting Data [24]: 179 

BRAKER1.hard.masked.output.files.zip and BRAKER1_annotation_comparisons.txt), 180 

but only 316 of the single exon genes from the BRAKER1/soft-masked assembly had 181 

similarity to transposases or transposons. The BRAKER1/soft-masked annotations 182 

were taken forward for further analysis. 183 

Four-fifths (83.3%) of the published protein-coding gene predictions [14] overlapped 184 

to some extent with the BRAKER1/soft-masked predictions at the genome level, with 185 

a mean of 67% of the nucleotides of each BRAKER1/soft-masked gene covered by a 186 

published gene (Figure 2C). Half (8061) of the 15747 BRAKER1/soft-masked gene 187 

predictions had an overlap proportion of ≥0.9 with the published predictions. At the 188 

level of protein sequence only 836 proteins were identical between the two predictions, 189 

and only 2099 genes had identical genome start and stop positions. 190 

The BRAKER1/soft-masked and published gene sets were checked for completeness 191 

using BUSCO [19], based on the Eukaryota lineage gene set, and Caenorhabditis as 192 

the species parameter for orthologue finding. The BRAKER1/soft-masked gene set 193 

contained a substantially higher percentage of complete, and lower percentage of 194 

fragmented BUSCO genes than the published set (Table 2). Two H. bacteriophora 195 
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transcriptome datasets, publicly available Roche 454 data and Sanger expressed 196 

sequence tags, were mapped to the published and BRAKER1/soft-masked 197 

transcriptomes to assess gene set completeness. This suggested that the 198 

BRAKER1/soft-masked transcriptome predictions were more complete than the 199 

original (Table 2). 200 

Nearly half (9893/20964; 47.2%) of the published proteins were reported to have no 201 

significant matches in the NCBI non-redundant protein database (nr) [14]. This 202 

surprising result could be due to a paucity of data from species closely related to H. 203 

bacteriophora in the NCBI nr database at the time of the search, or inclusion of poor 204 

protein predictions in the published set, or both. Targeted investigation of these 9893 205 

orphan proteins here was not possible due to inconsistencies in gene naming in the 206 

publically available files. The published and BRAKER1/soft-masked proteomes were 207 

compared to the Uniref90 database [26], using DIAMOND v0.9.5 [27] with an 208 

expectation value cut-off of 1e-5. In the published proteome, 8962 proteins (42.7%) 209 

had no significant matches in Uniref90. Thus a relatively poorly populated database 210 

was not the main driver for the high number of orphan proteins reported in the 211 

published proteome. In the BRAKER1/soft-masked proteome, only 2889 proteins 212 

(18.3%) had no hits in the Uniref90 database (Table 2). 213 

OrthoFinder v1.1.4 [28] was used to define orthologous groups in the proteomes of 23 214 

rhabditine (Clade V) nematodes (Supporting Data [24]: Orthofinder_analysis) and just 215 

the published H. bacteriophora protein-coding gene predictions, or just the 216 

BRAKER/soft-masked proteome, or both. All proteins <30 amino-acids long were 217 

excluded from clustering (see Supporting: Orthofinder_analysis). We identified 5442 218 

singletons (26.8% of the proteome) when the analysis included only the published H. 219 

bacteriophora protein set. An additional 248 proteins formed H. bacteriophora-specific 220 
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orthogroups. Orthology analysis including only the BRAKER/soft-masked protein set 221 

predicted 1112 H. bacteriophora singletons (7.1% of the proteome) with 167 proteins 222 

in H. bacteriophora-specific orthogroups (Figure 2D).  In comparison, when the 223 

orthology analysis included the BRAKER1/soft-masked predictions  there were 1858 224 

C. elegans singletons (9.2% of the C. elegans proteome). Very few universal, single 225 

copy orthologues were defined in either analysis. Exploring “fuzzy-1-to-1” orthogroups 226 

(where true 1-to-1 orthology was found for greater than 75% of the 24 species - i.e. 18 227 

or more species), the published protein predictions had more missing fuzzy-1-to-1 228 

orthologues than did the BRAKER1/soft-masked predictions (Table 2). In the 229 

clustering that included both proteomes, 2019 clusters contained more proteins from 230 

the BRAKER1/soft-masked than the published proteome, whereas 2714 contained a 231 

larger number contributed from the published than the BRAKER1/soft-masked 232 

proteome (Supporting Data [24]: kinfin.zip). 233 

The published H. bacteriophora gene set had additional peculiarities. The published 234 

set of gene models included 102274 introns, 9069 of which (8.9%) had non-canonical 235 

splice sites (i.e. 5’ GC – AG 3’). Some of the genes in the published gene set had up 236 

to nine noncanonical introns (Figure 2E). In the BRAKER1/soft-masked gene set there 237 

were 109767 introns, 868 (0.8%) of which had non-canonical splice sites. This 238 

proportion is in keeping with that found in most other rhabditine nematodes. For 239 

example, the extensively manually annotated C. elegans has 2429 (0.6%) non-240 

canonical (5’ GC – AG 3’) introns. In C. elegans non-canonical introns are frequently 241 

found only in alternately spliced, and shorter isoforms, and over 93-99% were in genes 242 

that had homologues in other species, depending on the species used in the protein 243 

orthology clustering. However, in the published H. bacteriophora gene set, 34-49% of 244 

the genes with GC – AG introns were in H. bacteriphora-unique proteins. 245 
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A supermatrix maximum likelihood phylogeny was generated from the fuzzy-1-1 246 

orthologues in the clustering that included both H. bacteriophora proteomes (Figure 3; 247 

see Supporting Data [24]: Phylogenetic_analyses). The phylogeny, rooted with 248 

Pristionchus spp., shows the H. bacteriophora proteomes as sisters. However the 249 

BRAKER1/soft-masked proteome has a shorter branch length to Heterorhabditis’ most 250 

recent common ancestor with other Clade V nematodes, suggesting that the published 251 

proteome includes uniquely divergent sequences. 252 

The secretome of H. bacteriophora has been of particular interest as it may contain 253 

proteins involved in symbiotic interactions with P. luminescens, and proteins crucial to 254 

invasion and survival within the insect haemocoel. In the original publication, only 603 255 

proteins (2.8% of the proteome) were predicted to be secreted [14]. This proportion is 256 

much lower than in free living nematodes such as C. elegans and it was postulated 257 

that H. bacteriophora relies on P. luminescens for secreted effectors [14]. The signal 258 

peptide detection method used in the original analyses was not described [14]. We 259 

used SignalP version 4.1 within Interproscan to annotate proteins in both the 260 

BRAKER1 and published H. bacteriophora proteomes. Proteins having a predicted 261 

signal peptide but no transmembrane domain were classified as secreted. We 262 

identified 1023 (6.5%) putative secreted proteins in the BRAKER1/soft-masked 263 

proteome and 1067 (5.1%) in the published proteome. By the same method other 264 

rhabditine (Clade V) nematodes that do not have known symbiotic associations with 265 

bacteria, such as Teladorsagia circumcincta, had comparable secretome sizes to H. 266 

bacteriophora (Supporting Data [24]: Secretome_analysis.txt). This suggests that H. 267 

bacteriophora does not have a reduced secretome compared to other, related 268 

nematodes that do not have symbiont partners. 269 
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Interproscan was also used to annotate the BRAKER1 and published proteomes by 270 

identifying matches against the databases TIGRFAM v15.0, ProDom v2006.1, 271 

SMART-7.1, PrositePatterns v20.119, PRINTS v42.0, SuperFamily v1.75, Pfam 272 

v29.0, and PrositeProfiles v20.119. The BRAKER1 proteome had a greater number of 273 

proteins annotated with at least one domain compared to the published proteome, and 274 

a greater number of total domains identified (Supporting Data [24]: 275 

IPR.domain.analysis.txt). 276 

Discussion 277 

Assembly of, and genefinding in, new genomes is a challenging task, and especially 278 

so in larger genomes and those phylogenetically distant from any previously analysed 279 

exemplar. When applied de novo to datasets from extremely well-assembled and well-280 

annotated model species, even the best methods fail to recover fully contiguous 281 

assemblies and yield predicted gene sets that have poor correspondence with the 282 

known truth [29]. A major issue with primary assemblies and gene sets arises when 283 

exceptional findings are taken at face value, and used to assert exceptional biology in 284 

a target species [30]. Where these exceptions are in fact the result of methodological 285 

failings, the scientific record, including the public databases, becomes contaminated. 286 

At best, erroneous assertions can be quickly checked and corrected, but at worst they 287 

can mislead and inhibit subsequent work.  288 

A second concern arises from the recognition that while no method can currently 289 

produce perfect assemblies and perfect gene sets from raw data, analyses using the 290 

same toolsets will resemble each other and reflect the successes and failings of the 291 

particulars of the algorithms employed. However, when comparing genome 292 

assemblies and gene sets produced by different pipelines, it may be that the disparity 293 
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in output generated by different pipelines dominates any signal from biology. Genomes 294 

assembled and annotated with the same tools will look more similar, and in a pool of 295 

assemblies and protein sets the one species that used a variant process will be flagged 296 

as exceptional. Again, the model organisms show the way: as new data and new 297 

scrutiny is added to the genome, better and better analyses are available. With 298 

additional analysis, and additional independent data, genome and gene predictions 299 

can be improved markedly for any species [31]. 300 

Here we examined the “outlier” whole-genome protein predictions from the 301 

entomopathogenic nematode H. bacteriophora [14]. The original publication noted that 302 

the number of novel proteins (those restricted to H. bacteriophora) was particularly 303 

large, while the number of secreted proteins was rather small, and suggested that 304 

these genome features might be a result of evolution to the species’ novel lifestyle 305 

(which includes an essential symbiosis with the bacterium P. luminescens). Overall 306 

we found that while the published genome sequence had a small amount of bacterial 307 

contamination, and a small number of “nematode” genes were predicted from these 308 

contaminants, the assembly itself was of high quality. Our re-prediction of the gene 309 

set of H. bacteriophora however suggested that the excess of unique genes, the lack 310 

of secreted proteins and several other surprising features of the original gene set were 311 

likely to be artefacts of the gene prediction pipeline chosen. While our gene set was 312 

by no means perfect (for example we identified an excess of single exon genes that 313 

derive from likely repetitive sequence) it had better biological completeness and 314 

credibility. 315 

We used the RNA-seq based annotation pipeline BRAKER1 [25], not available to the 316 

authors of the original genome publication, who used JIGSAW [15] (see 317 

Supplementary File 1). While JIGSAW achieved high sensitivity and specificity at the 318 
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level of nucleotide, exon and gene predictions in the nematode genome annotation 319 

assessment project, nGASP [29], direct comparison of the sensitivity and specificity of 320 

JIGSAW and BRAKER1 has not been published to the best of our knowledge. 321 

BRAKER1 has been shown to give superior prediction results over ab initio GeneMark-322 

ES, or ab initio AUGUSTUS alone [25]. In particular, BRAKER1 is able to better use 323 

transcriptome data for gene finding. While we supplied only a partial Roche 454 324 

transcriptome to BRAKER1, the resulting gene set has much improved numerical and 325 

biological scores. In particular we note that the biological completeness of the 326 

predicted gene set now matches that of the genome sequence from which it was 327 

derived (Table 2).  328 

The published gene set had an unusually high proportion (8.9%) of non-canonical (5’ 329 

GC – AG 3’) introns. While most genomes have a low proportion of non-canonical 330 

introns (usually approximately 0.5% of all introns), some species have markedly higher 331 

proportions [20]. The high proportion found initially in H. bacteriophora could perhaps 332 

have been taken as a warning that the prediction set was of concern. We note that 333 

gene predictors can be set to disallow any predictions that require non-canonical 334 

splicing, and many published genomes have zero non-canonical introns. These gene 335 

prediction sets are likely to categorically miss true non-canonically spliced genes. 336 

The new BRAKER1 gene prediction set had many fewer species-unique genes (7.1%) 337 

than did the original (42.7%) when compared to 23 other related nematodes. We 338 

regard this reduction in novelty as indicative of a better prediction, as, for example, C. 339 

elegans, the best-annotated nematode genome, had only 9.2% of species unique 340 

genes in our analysis. Having a large proportion of orphan proteins is not unique to 341 

the published H. bacteriophora predictions. Nearly half (47%) of the gene predictions 342 

in Pristionchus pacificus were reported to have no homologues in fifteen other 343 
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nematode species [32]. Evaluation of proteomic and transcriptomic evidence, as well 344 

as patterns of synonymous and non-synonymous substitution, suggested that as many 345 

as 42-81% of these genes were in fact expressed [33]. Therefore the high proportion 346 

of orphan genes in H. bacteriophora is not prima facie evidence of poor gene 347 

predictions. Expanded transcriptomic and comparative data are needed to build on the 348 

work we have presented in affirming the true H. bacteriophora gene set. 349 

Biological pest control agents may become increasingly important for ensuring crop 350 

protection in the future [34]. A number of factors currently limit the commercial 351 

applicability of H. bacteriophora, including their short shelf life, susceptibility to 352 

environmental stress and limited insect tropism [13, 35]. Accurate genome annotation 353 

will assist in the analysis of H. bacteriophora, facilitating the exploration of genes 354 

involved in its parasitic and symbiotic interactions, and supporting genetic 355 

manipulation to enhance its utility as a biological control agent. 356 
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A detailed description of the command lines used in the generation of the BRAKER1 362 

gene predictions and the associated analysis can be found in Supplementary File 2 363 

which accompanies this manuscript. 364 

Contaminant screening and Removal of Low Coverage Scaffolds 365 

The assembly scaffolds were aligned to the NCBI nt database, release 204, using 366 

Nucleotide-Nucleotide BLAST v2.6.0+ (available at:[36] ) in megablast mode, with an 367 

e-value cut off of 1e-25 and a culling limit of 2 [37]. H. bacteriophora hits were excluded 368 

from the search using a list of all H. bacteriophora associated gene identifiers 369 

downloaded from NCBI GenBank nucleotide database, release 219. Raw, paired-end 370 

Illumina reads from the re-sequencing project were mapped against the assembly, as 371 

paired, using Burrows-Wheeler Aligner (BWA) v0.7.15 (available at:[38] ) in mem 372 

mode with default options [39]. The output was converted to a BAM file using Samtools 373 

v1.3.1 (SAMTOOLS, RRID:SCR_002105) [40] and overall mapping statistics 374 

generated in flagstat mode. 375 

Blobtools v0.9.19 [21] was used to create taxon annotated GC-coverage plots for the 376 

published assembly, using the Nucleotide-Nucleotide BLAST and raw read mapping 377 

results. Scaffolds that did not have Nematoda as a top BLAST hit at the phylum level 378 

were identified, and the species-level top BLAST hit, length of scaffold, and scaffold 379 

mean base coverage were extracted from the Blobology output. Scaffolds with a mean 380 

base coverage of <10x were identified from the output of the Blobology pipeline and 381 

removed from the assembly. A list of excluded scaffolds is available in Supporting 382 

Data [24]: Low_coverage_scaffolds.txt. 383 
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Generation of BRAKER1 Gene Predictions 384 

Before annotation the published assembly was soft-masked for known Nematoda 385 

repeats from the RepeatMasker Library v4.0.6 using RepeatMasker v4.0.6 386 

(RepeatMasker, RRID:SCR_012954) [41] with default options. The two publicly 387 

available Roche 454 RNA-seq data files were adaptor and quality-trimmed using 388 

BBDuk v36.92 (unpublished toolkit from Joint Genome Institute, n.d.). Reads below 389 

an average quality of 10 or shorter than 25 nucleotides were discarded. Regions with 390 

average quality below 20 were trimmed. The cleaned reads were mapped to the soft-391 

masked assembly using STAR v2.5 (STAR, RRID:SCR_015899) with default options 392 

[42, 43]. The soft-masked assembly was annotated with BRAKER1 v1.9 [25] with 393 

guidance from the mapping output from STAR. An identical annotation method was 394 

applied to a hard-masked version of the assembly. The assembly was hard-masked 395 

for known Nematoda repeats from the RepeatMasker Library v4.0.6 using 396 

RepeatMasker v4.0.6 with default options. The published and BRAKER1 proteomes 397 

were compared using DIAMOND v0.9.5 [27] in BLASTP mode to the Uniref90 398 

database (release 03/2017) [26] with an expectation value cut-off of 1e-5 and no limit 399 

on the number of target sequences.  Hits to H. bacteriophora proteins were removed 400 

using its TaxonID. 401 

Gene Prediction Statistics 402 

Gene-level statistical summaries were calculated including only the longest isoforms 403 

of the BRAKER1 gene predictions. The longest isoform for each gene in the BRAKER1 404 

H. bacteriophora annotation was identified from the general feature format (GFF) file, 405 

and then selected from the protein FASTA files. The GFF file for the published gene 406 

predictions did not contain any isoforms and was analysed in its entirety. f Introns were 407 
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inferred for the published GFF file using GenomeTools v1.5.9 in -addintrons mode 408 

[44]. Intron frequencies were then calculated for the published and BRAKER1 409 

annotations from their respective GFF files. Exon frequencies were calculated for the 410 

published annotations directly from the GFF file. For the BRAKER1 annotations, exon 411 

frequency per gene was assumed to be equivalent to coding DNA sequence (CDS) 412 

frequency and inferred from the GFF file, as exon features were not included in the 413 

GFF file. Intron frequency histograms and bar plots were generated in Rstudio 414 

v1.0.136 (RStudio, RRID:SCR_000432) with R v3.3.2 (R Project for Statistical 415 

Computing, RRID:SCR_001905) and in some instances the package ggplot2 v2.2.1. 416 

As intron frequency lists did not contain single exon genes (those with no introns), 417 

these were added manually to the intron frequency lists in Microsoft Excel before 418 

importing the data into Rstudio. 419 

The proportion of introns with GC – AG splice junctions was assessed for the gene 420 

models of C. elegans (WS258), and the published and BRAKER1/soft-masked gene 421 

models of H. bacteriophora. Intronic features were added to  general feature format 422 

version 3 (GFF3) files using GenomeTools v1.5.9 [44] (‘gt gff3 -sort -tidy -retainids –423 

fixregionboundaries -addintrons’) and splice sites were extracted using the script 424 

extractRegionFromCoordinates.py [20]. Results were visualised using the script 425 

plot_GCAG_counts.R (available at: [45]). 426 

Gene features, extracted from the GFF files, were assessed for overlap using bedtools 427 

v2.26 (BEDTools, RRID:SCR_006646) in intersect mode [46]. Only genes on the 428 

same strand were considered to be overlapping. To calculate the number of identical 429 

proteins shared between the published and BRAKER1 proteomes non-redundant 430 

protein fasta files were generated using cd-hit v4.6.1 (CD-HIT, RRID:SCR_007105) 431 
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[47] for the BRAKER1 and published predictions. The files were concatenated, sorted 432 

and unique sequences counted using unix command line tools. 433 

BUSCO v2.0.1 (BUSCO, RRID:SCR_015008) [19], with Eukaryota as the lineage 434 

dataset, and Caenorhabditis as the species parameter for orthologue finding was 435 

applied to both proteomes and the published assembly to calculate BUSCO scores. 436 

CEGMA (CEGMA, RRID:SCR_015055) [18] was run on the published genome 437 

sequence. BWA was used with default settings to map the RNA-seq datasets (the 438 

Sanger ESTs in assembled form) to the CDS transcripts from the published and 439 

BRAKER1 annotations and the summary statistics obtained with Samtools v1.3.1 in 440 

flagstat mode. 441 

Protein orthology analyses 442 

OrthoFinder v1.1.4 [28] with default settings was used to identify orthologous groups 443 

in the proteomes of 23 Clade V nematodes with the addition of either the 444 

BRAKER1/soft-masked and published H. bacteriophora proteomes separately or 445 

simultaneously. The proteomes for the 23 Clade V nematodes were downloaded from 446 

WBPS8 (available at:[48]) or GenomeHubs.org (available at: [49]), and detailed source 447 

information is available in Supporting Data [24]: Secretome.analysis.txt. All proteomes 448 

were filtered to contain only the longest isoform of each gene, and for all proteomes 449 

(except the BRAKER1/soft-masked H. bacteriophora protein set), proteins less than 450 

30 amino-acids in length were excluded before clustering. For the H. bacteriophora 451 

BRAKER1/soft-masked protein set, proteins less than 30 amino-acids (SF5.2) were 452 

removed manually from the orthofinder clustering statistics after clustering. None of 453 

these proteins seeded new clusters and are therefore will not have influenced the 454 

clustering results. Kinfin v0.9 [50], was used with default settings to identify true and 455 
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fuzzy 1-to-1 orthologues, and their associated species specific statistics. Fuzzy 1-to-1 456 

orthologues are true 1-to-1 orthologues for greater than 75% of the species clustered. 457 

For the clustering analysis presented in Supporting Data [24]: Orthofinder_analysis, 458 

the BRAKER1/soft-masked and published proteomes were clustered simultaneously 459 

to the 23 other Clade V nematode proteomes, and singletons, and species-specific 460 

clusters were excluded. 461 

Interproscan and search for transposons 462 

Interproscan v5.19-58.0 (RRID:SCR_005829) [51] was used in protein mode to 463 

identify matches in the BRAKER1 and published proteomes in the following 464 

databases: TIGRFAM v15.0, ProDom v2006.1, SMART-7.1, SignalP-EUK v4.1, 465 

PrositePatterns v20.119, PRINTS v42.0, SuperFamily v1.75, Pfam v29.0, and 466 

PrositeProfiles v20.119. For secretome analysis of the 23 Clade V nematodes 467 

Interproscan v5.19-58.0 was run against the SignalP-EUK v4.1 database alone. 468 

InterProScan was run with the option for all match calculations to be run locally and 469 

with gene ontology annotation activated. The number of single exon genes with 470 

similarity to transposons or transposases in the BRAKER1/soft-masked predictions 471 

was calculated by searching the full InterProScan results for the strings ‘Transposon’, 472 

‘transposon’, ‘Transposase’, or ‘transposase’ and the number of single exon gene 473 

InterProScan results containing these terms counted. InterProScan results from 474 

searching the SignalP-EUK-4.1 database were queried to identify putative secreted 475 

proteins. Those with a predicted signal peptide but no transmembrane region were 476 

considered to be secreted. 477 
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Phylogenetic Analyses 478 

Both H. bacteriophora proteomes were clustered simultaneously with the 23 Clade V 479 

nematode proteomes into orthologous groups using Orthofinder v1.0 [28]. The fuzzy 480 

1-to-1 orthologues were extracted and processed using GNU parallel [52]. They were 481 

aligned using MAFFT v7.267 (RRID:SCR_011811) [53], and the alignments trimmed 482 

with NOISY v1.5.12 [54]. A maximum likelihood gene tree was generated for each 483 

orthologue using RaXML v8.1.20 (RRID:SCR_006086) with a PROTGAMMAGTR 484 

amino-acid substitution model [55]. Rapid Bootstrap analysis and search for the best 485 

scoring ML tree within one program run with 100 rapid bootstrap replicates was used. 486 

The trees were pruned using PhyloTreePruner v1.0 [56] to remove paralogues, with 487 

0.5 as the bootstrap cutoff and a minimum of 20 species in the orthogroup after pruning 488 

for inclusion in the supermatrix. Where species had more than one putative orthologue 489 

in an orthogroup the longest was selected. The remaining 897 orthogroups were re-490 

aligned using MAFFT v7.267, trimmed with NOISY v1.5.12 and concatenated into a 491 

supermatrix using FASconCAT v.1.0 [57]. A supermatrix maximum-likelihood tree was 492 

generated using RAxML with the rapid hill climbing algorithm (default), with a 493 

PROTGAMMAGTR amino-acid substitution model and 100 bootstrap replicates . 494 

Pristionchus spp. were designated as the outgroup. The tree was visualised in 495 

Dendroscope v3.5.9 [58].  496 

Input data and data availability 497 

The H. bacteriophora genome and annotations [14] were downloaded from Wormbase 498 

Parasite (WBPS8) (see Supporting Data [24]: 499 

Publicly_available_assembly_details.txt). The ESTs [59, 60] were obtained from NCBI 500 

dbEST [61] (accessions listed in Supporting Data [24]: EST.acc.txt), and the 501 
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assembled versions used in the analysis are available in Supporting Data [24]: 502 

EST.assembled.fas. Roche 454 transcriptome data [14] were obtained from the Short 503 

Read Archive (Accession numbers: SRX001441 and SRX001440). H. bacteriophora 504 

strain Gebre, a gift from Adler Dillman, was inbred by selfing single hermaphrodites 505 

for five generations to generate the strain G2a1223. New Illumina HiSeq2000, paired 506 

end, 75 base data were generated from H. bacteriophora G2a1223 genomic DNA by 507 

the Millard and Muriel Jacobs Genetics and Genomics Laboratory at Caltech (Short 508 

Read Archive accession number: SRP135845). 509 

The revised gene annotations for H. bacteriophora have been submitted to Zenodo 510 

[62]. The supporting data for this manuscript is additionally available via the 511 

GigaScience repository, GigaDB [24]. 512 

 513 

Competing interests  514 

The authors declare that they have no competing interests 515 

Funding  516 

This project was supported by FMs Wellcome Trust-funded graduate programme 517 

[204052/Z/16/Z].  518 

Author’s contributions 519 

Conceptualization, MB; Methodology, FM, DB, and MB; Formal analysis, FM, DRL and 520 

MB; Supervision, MB; Writing- original draft, FM and DRL; Writing- review and editing, 521 

FM, MB, DRL, DB, HTS; Resources, HTS. 522 

Acknowledgements 523 

Sujai Kumar, Lewis Stevens, Carlos Caurcel and Elisabeth Sjokvist offered expert 524 

technical support and advice. Igor Antoshechkin of the Millard and Muriel Jacobs 525 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 23 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

Genetics and Genomics Laboratory at Caltech assisted with Illumina sequencing. 526 

Adler Dillman provided the parental strain for the inbred H. bacteriophora strain 527 

G2a1223. 528 

 529 

 530 

References 531 

 532 

1. C. elegans Sequencing Consortium. Genome sequence of the nematode C. 533 

elegans: a platform for investigating biology. Science (80- ). 1998;282:2012–8. 534 

2. WormBase, version WS260. http://www.wormbase.org/. 535 

3. Howe KL, Bolt BJ, Cain S, Chan J, Chen WJ, Davis P, et al. WormBase 2016: 536 

expanding to enable helminth genomic research. Nucleic Acids Res. 2016;44:D774-537 

80. doi:10.1093/nar/gkv1217. 538 

4. Gil GH, Choo HY, Gaugler R. Enhancement of entomopathogenic nematode 539 

production in in-vitro liquid culture of Heterorhabditis bacteriophoraby fed-batch 540 

culture with glucose supplementation. Appl Microbiol Biotechnol. 2002;58:751–5. 541 

doi:10.1007/s00253-002-0956-1. 542 

5. Memari Z, Karimi J, Kamali S, Goldansaz SH, Hosseini M. Are Entomopathogenic 543 

Nematodes Effective Biological Control Agents Against the Carob Moth,Ectomyelois 544 

ceratoniae? J Nematol. 2016;48:261–7. 545 

6. Rezaei N, Karimi J, Hosseini M, Goldani M, Campos-Herrera R. Pathogenicity of 546 

Two Species of Entomopathogenic Nematodes Against the Greenhouse Whitefly, 547 

Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in Laboratory and Greenhouse 548 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 24 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

Experiments. J Nematol. 2015;47:60–6. 549 

7. Dillman AR, Guillermin ML, Lee JH, Kim B, Sternberg PW, Hallem EA. Olfaction 550 

shapes host-parasite interactions in parasitic nematodes. Proc Natl Acad Sci USA. 551 

2012;109:E2324-33. doi:10.1073/pnas.1211436109. 552 

8. Anbesse S, Ehlers RU. Attraction of Heterorhabditis sp. toward synthetic (E)-beta-553 

cariophyllene, a plant SOS signal emitted by maize on feeding by larvae of Diabrotica 554 

virgifera virgifera. Commun Agric Appl Biol Sci. 2010;75:455–8. 555 

9. Han R, Ehlers RU. Pathogenicity, development, and reproduction of Heterorhabditis 556 

bacteriophora and Steinernema carpocapsae under axenic in vivo conditions. J 557 

Invertebr Pathol. 2000;75:55–8. doi:10.1006/jipa.1999.4900. 558 

10. Ciche TA, Bintrim SB, Horswill AR, Ensign JC. A Phosphopantetheinyl transferase 559 

homolog is essential for Photorhabdus luminescens to support growth and 560 

reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora. J 561 

Bacteriol. 2001;183:3117–26. doi:10.1128/JB.183.10.3117-3126.2001. 562 

11. Bennett HPJ, Clarke DJ. The pbgPE operon in Photorhabdus luminescens is 563 

required for pathogenicity and symbiosis. J Bacteriol. 2005;187:77–84. 564 

doi:10.1128/JB.187.1.77-84.2005. 565 

12. Tobias NJ, Heinrich AK, Eresmann H, Wright PR, Neubacher N, Backofen R, et 566 

al. Photorhabdus-nematode symbiosis is dependent on hfq-mediated regulation of 567 

secondary metabolites. Environ Microbiol. 2017;19:119–29. doi:10.1111/1462-568 

2920.13502. 569 

13. Ciche T. The biology and genome of Heterorhabditis bacteriophora. WormBook. 570 

2007;:1–9. doi:10.1895/wormbook.1.135.1. 571 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 25 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

14. Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim K, et al. A lover and a fighter: 572 

the genome sequence of an entomopathogenic nematode Heterorhabditis 573 

bacteriophora. PLoS One. 2013;8:e69618. doi:10.1371/journal.pone.0069618. 574 

15. Allen JE, Salzberg SL. JIGSAW: integration of multiple sources of evidence for 575 

gene prediction. Bioinformatics. 2005;21:3596–603. 576 

doi:10.1093/bioinformatics/bti609. 577 

16. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, et al. 578 

The genome sequence of the entomopathogenic bacterium Photorhabdus 579 

luminescens. Nat Biotechnol. 2003;21:1307–13. doi:10.1038/nbt886. 580 

17. Blaxter M, Koutsovoulos G. The evolution of parasitism in Nematoda. Parasitology. 581 

2015;142 Suppl 1:S26-39. doi:10.1017/S0031182014000791. 582 

18. Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core genes 583 

in eukaryotic genomes. Bioinformatics. 2007;23:1061–7. 584 

doi:10.1093/bioinformatics/btm071. 585 

19. Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO: 586 

assessing genome assembly and annotation completeness with single-copy 587 

orthologs. Bioinformatics. 2015;31:3210–2. doi:10.1093/bioinformatics/btv351. 588 

20. Eves-van den Akker S, Laetsch DR, Thorpe P, Lilley CJ, Danchin EGJ, Da Rocha 589 

M, et al. The genome of the yellow potato cyst nematode, Globodera rostochiensis, 590 

reveals insights into the basis of parasitism and virulence. Genome Biol. 2016;17:124. 591 

doi:10.1186/s13059-016-0985-1. 592 

21. Laetsch DR, Blaxter ML. BlobTools: Interrogation of genome assemblies [version 593 

1; referees: 2 approved with reservations]. F1000Res. 2017;6:1287. 594 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 26 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

doi:10.12688/f1000research.12232.1. 595 

22. Fierst JL, Murdock DA, Thanthiriwatte C, Willis JH, Phillips PC. Metagenome-596 

Assembled Draft Genome Sequence of a Novel MicrobialStenotrophomonas 597 

maltophiliaStrain Isolated fromCaenorhabditisremaneiTissue. Genome Announc. 598 

2017;5. doi:10.1128/genomeA.01646-16. 599 

23. Grenier E, Abadon M, Brunet F, Capy P, Abad P. A mariner-like transposable 600 

element in the insect parasite nematode Heterorhabditis bacteriophora. J Mol Evol. 601 

1999;48:328–36. 602 

24. McLean F, Berger D, Laetsch DR, Schwartz HT, Blaxter M. Supporting data for 603 

“Improving the annotation of the Heterorhabditis bacteriophora genome” GigaScience 604 

Database 2018. http://dx.doi.org/10.5524/100404 . 605 

25. Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: 606 

Unsupervised RNA-Seq-Based Genome Annotation with GeneMark-ET and 607 

AUGUSTUS. Bioinformatics. 2016;32:767–9. doi:10.1093/bioinformatics/btv661. 608 

26. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bansal P, Bridge AJ, et al. 609 

UniProtKB/Swiss-Prot, the Manually Annotated Section of the UniProt 610 

KnowledgeBase: How to Use the Entry View. Methods Mol Biol. 2016;1374:23–54. 611 

doi:10.1007/978-1-4939-3167-5_2. 612 

27. Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using 613 

DIAMOND. Nat Methods. 2015;12:59–60. doi:10.1038/nmeth.3176. 614 

28. Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome 615 

comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 616 

2015;16:157. doi:10.1186/s13059-015-0721-2. 617 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 27 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

29. Coghlan A, Fiedler TJ, McKay SJ, Flicek P, Harris TW, Blasiar D, et al. nGASP--618 

the nematode genome annotation assessment project. BMC Bioinformatics. 619 

2008;9:549. doi:10.1186/1471-2105-9-549. 620 

30. Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, et al. No 621 

evidence for extensive horizontal gene transfer in the genome of the tardigrade 622 

Hypsibius dujardini. Proc Natl Acad Sci USA. 2016;113:5053–8. 623 

doi:10.1073/pnas.1600338113. 624 

31. Yoshida Y, Koutsovoulos G, Laetsch DR, Stevens L, Kumar S, Horikawa DD, et 625 

al. Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius 626 

varieornatus. PLoS Biol. 2017;15:e2002266. doi:10.1371/journal.pbio.2002266. 627 

32. Baskaran P, Rödelsperger C, Prabh N, Serobyan V, Markov GV, Hirsekorn A, et 628 

al. Ancient gene duplications have shaped developmental stage-specific expression 629 

in Pristionchus pacificus. BMC Evol Biol. 2015;15:185. doi:10.1186/s12862-015-0466-630 

2. 631 

33. Prabh N, Rödelsperger C. Are orphan genes protein-coding, prediction artifacts, 632 

or non-coding RNAs? BMC Bioinformatics. 2016;17:226. doi:10.1186/s12859-016-633 

1102-x. 634 

34. Kergunteuil A, Bakhtiari M, Formenti L, Xiao Z, Defossez E, Rasmann S. Biological 635 

Control beneath the Feet: A Review of Crop Protection against Insect Root Herbivores. 636 

Insects. 2016;7. doi:10.3390/insects7040070. 637 

35. Ali F, Wharton DA. Cold tolerance abilities of two entomopathogenic nematodes, 638 

Steinernema feltiae and Heterorhabditis bacteriophora. Cryobiology. 2013;66:24–9. 639 

doi:10.1016/j.cryobiol.2012.10.004. 640 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 28 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

36. NCBI blast executables. ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.6.0/. 641 

37. Boratyn GM, Camacho C, Cooper PS, Coulouris G, Fong A, Ma N, et al. BLAST: 642 

a more efficient report with usability improvements. Nucleic Acids Res. 2013;41 Web 643 

Server issue:W29-33. doi:10.1093/nar/gkt282. 644 

38. Sourceforge.net. https://sourceforge.net/projects/bio-bwa/files/. Accessed 1 Apr 645 

2017. 646 

39. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler 647 

transform. Bioinformatics. 2009;25:1754–60. doi:10.1093/bioinformatics/btp324. 648 

40. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence 649 

Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. 650 

doi:10.1093/bioinformatics/btp352. 651 

41. Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements 652 

in genomic sequences. Curr Protoc Bioinformatics. 2009;Chapter 4:Unit 4.10. 653 

doi:10.1002/0471250953.bi0410s25. 654 

42. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: 655 

ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. 656 

doi:10.1093/bioinformatics/bts635. 657 

43. Dobin A, Gingeras TR. Optimizing RNA-Seq Mapping with STAR. Methods Mol 658 

Biol. 2016;1415:245–62. doi:10.1007/978-1-4939-3572-7_13. 659 

44. Gremme G, Steinbiss S, Kurtz S. GenomeTools: a comprehensive software library 660 

for efficient processing of structured genome annotations. IEEE/ACM Trans Comput 661 

Biol Bioinform. 2013;10:645–56. doi:10.1109/TCBB.2013.68. 662 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 29 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

45. Laetsch D. plot_GCAG_counts.R . 663 

https://github.com/DRL/mclean2017/tree/master/analysis/splice_sites.  664 

46. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic 665 

features. Bioinformatics. 2010;26:841–2. doi:10.1093/bioinformatics/btq033. 666 

47. Huang Y, Niu B, Gao Y, Fu L, Li W. CD-HIT Suite: a web server for clustering and 667 

comparing biological sequences. Bioinformatics. 2010;26:680–2. 668 

doi:10.1093/bioinformatics/btq003. 669 

48. WormBase ParasiteSite version 8. 670 

ftp://ftp.ebi.ac.uk/pub/databases/wormbase/parasite/releases/WBPS8/. Accessed 2 671 

April 2017. 672 

49. GenomeHubs.org. http://ensembl.caenorhabditis.org/index.html. Accessed 2 Apr 673 

2017. 674 

50. Laetsch DR, Blaxter ML. KinFin: Software for Taxon-Aware Analysis of Clustered 675 

Protein Sequences. G3 (Bethesda). 2017;7:3349–57. doi:10.1534/g3.117.300233. 676 

51. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, et al. InterPro in 677 

2017-beyond protein family and domain annotations. Nucleic Acids Res. 678 

2017;45:D190–9. doi:10.1093/nar/gkw1107. 679 

52. Tange O. GNU Parallel - The Command-Line Power Tool. login: The USENIX 680 

Magazine. 2011;36:42–7. 681 

53. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: 682 

improvements in performance and usability. Mol Biol Evol. 2013;30:772–80. 683 

doi:10.1093/molbev/mst010. 684 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 30 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

54. Dress AWM, Flamm C, Fritzsch G, Grünewald S, Kruspe M, Prohaska SJ, et al. 685 

Noisy: identification of problematic columns in multiple sequence alignments. 686 

Algorithms Mol Biol. 2008;3:7. doi:10.1186/1748-7188-3-7. 687 

55. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses 688 

with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90. 689 

doi:10.1093/bioinformatics/btl446. 690 

56. Kocot KM, Citarella MR, Moroz LL, Halanych KM. PhyloTreePruner: A 691 

Phylogenetic Tree-Based Approach for Selection of Orthologous Sequences for 692 

Phylogenomics. Evol Bioinform Online. 2013;9:429–35. doi:10.4137/EBO.S12813. 693 

57. Kück P, Meusemann K. FASconCAT: Convenient handling of data matrices. Mol 694 

Phylogenet Evol. 2010;56:1115–8. doi:10.1016/j.ympev.2010.04.024. 695 

58. Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted 696 

phylogenetic trees and networks. Syst Biol. 2012;61:1061–7. 697 

doi:10.1093/sysbio/sys062. 698 

59. Sandhu SK, Jagdale GB, Hogenhout SA, Grewal PS. Comparative analysis of 699 

the expressed genome of the infective juvenile entomopathogenic nematode, 700 

Heterorhabditis bacteriophora. Mol Biochem Parasitol. 2006;145:239–44. 701 

doi:10.1016/j.molbiopara.2006.01.002. 702 

60. Hao Y-J, Montiel R, Lucena MA, Costa M, Simoes N. Genetic diversity and 703 

comparative analysis of gene expression between Heterorhabditis bacteriophora 704 

Az29 and Az36 isolates: uncovering candidate genes involved in insect 705 

pathogenicity. Exp Parasitol. 2012;130:116–25. doi:10.1016/j.exppara.2011.12.001. 706 

61. Boguski MS, Lowe TM, Tolstoshev CM. dbEST--database for “expressed 707 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 31 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

sequence tags”. Nat Genet. 1993;4:332–3. doi:10.1038/ng0893-332. 708 

62. McLean F, Berger D, Laetsch DR, Schwartz HT,Blaxter M. Revised gene 709 

annotations for the entemopathogenic nematode,Heterorhabditis bacteriophora. 710 

Zenodo data repository. 10.5281/zenodo.1169646 . 711 

 712 

Figures and Legends 713 

Figure 1. Taxon-annotated GC-coverage plot of the H. bacteriophora assembly.  714 

Bottom left panel: Each scaffold or contig is represented by a single filled circle. Each 715 

scaffold is placed in the main panel based on its GC proportion (X axis) and coverage 716 

by reads from the Illumina re-sequencing project (Y axis). The fill colour of the circle 717 

indicates the taxon of the top BLASTn hit in the NCBI nt database for that scaffold. 718 

The colours are annotated in the top right hand key, which indicates taxon assignment 719 

and (in brackets) the number of contigs and scaffolds so assigned, their total span, 720 

and their N50 length. The circles are scaled to scaffold length, as indicated in the key 721 

at the base of the main panel.  722 

Right panel: Nucleotide span in kb at each coverage level.  723 

Top panel: Nucleotide span in kb at each GC proportion. 724 

 725 

Figure 2. Comparisons of BRAKER1/soft-masked and original gene predictions 726 

from H. bacteriophora 727 

(A, B) Frequency histograms of intron count (A) and protein length (B) in 728 

BRAKER1/soft-masked (blue) and published (yellow) protein coding gene predictions. 729 
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Outlying proteins longer than >2500 amino-acids (n=40) or genes containing >60 730 

introns (n=20) are not shown.  731 

(C) Frequency histogram of the proportion of each BRAKER1 gene prediction 732 

overlapped by a published gene prediction at the nucleotide level. 733 

(D) Comparison of singleton, proteome-specific, and shared proteins in the published 734 

and BRAKER1/soft-masked protein sets.  735 

(E) Counts of non-canonical GC/AG introns in gene predictions from the published 736 

and BRAKER1 H. bacteriophora  gene sets, and the model nematode 737 

Caenorhabditis elegans (WS258). Counts are of genes containing at least one non-738 

canonical GC/AG intron with the specified number of non-canonical introns. 739 

 740 

Figure 3. Maximum likelihood phylogeny of selected rhabditine (Clade V) 741 

nematodes. 742 

A supermatrix of aligned amino acid sequences from orthologous loci from both H. 743 

bacteriophora predictions and a set of 23 rhabditine (Clade V) nematodes (see 744 

Supporting Data: Orthofinder_analysis) were aligned and analysed with RaxML using 745 

a PROTGAMMAGTR amino-acid substitution model. Pristionchus spp. were 746 

designated as the outgroup. Bootstrap support values (100 bootstraps performed) 747 

were 100 for all branches except one. 748 
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Tables 749 

. Contamination screening of the H. bacteriophora assembly 750 

Number of 
scaffolds 

Sum of 
scaffold 
spans 
(bp) 

Mean 
coverage

* 

Best matches in 
NCBI nt database 

Assignment 

12 99556 2.8 Stenotrophomona
s maltophilia 

genome 

bacterial culture 
contaminant ** 

4 4709 0.1 Photorhabdus sp. 
genomes 

symbiont culture 
contaminant ** 

2 2144 756.0 poorly annotated 
mitochondrial 

matches 

H. bacteriophora 
mitochondrial 

fragments 

22 3051844 69.6 mariner 
transposons in 

Metazoa, 
especially 

Hymenoptera and 
Platyhelminthes 

H. bacteriophora 
nuclear genome 

mariner transposon 
family (highest 

coverage 960-fold) 

10 334100 76.6 low score match 
to several histone 

H3.3 across 
Metazoa 

H. bacteriophora 
nuclear sequence 

7 713932 56.5 chance nucleotide 
matches to 

conserved genes 
in other taxa 

H. bacteriophora 
nuclear sequences 

 751 

* The average read coverage of the whole assembly was 85.3. 752 

** These scaffolds were removed by the low-coverage filter. 753 

 754 
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Table 2. Comparison of the published and BRAKER1/soft-masked protein 757 
coding gene predictions. 758 

Prediction set Published [14] BRAKER1/soft-
masked 

Number of protein coding genes predicted 20964 1,5747 
 

Mean protein length (amino acids) 
 

218.8 
 

344.5 
 

Number of single exon genes 
 

1728 
 

2326 
 

Mean number of exons per gene* 
 

5.9 
 

7.8 
 

Proportion of non-canonical (GC-AG) 
introns 

 
8.87% 

 
0.79% 

 
Percentage mapping to publicly available 

transcriptome reads 
Sanger ESTs 

Roche 454 reads 

 
 
 

80.45% 
37.18% 

 
 
 

84.26% 
58.03% 

 
BUSCO score for proteome 

Complete 
Fragmented 

 
 

47.8% 
34.7% 

 
 

94% 
4.3% 

 
Number of proteins with no hits in 

Uniref90 

 
8,962 

 
2,889 

 
Protein singletons in clustering 

 
5442 

 
1112 

 
Conserved, single-copy orthologues** 

Total 
Missing 

Expanded 

 
 

2089 
377 
184 

 
 

2330 
141 
84 

 759 

* Number of exons: number of coding DNA sequence (CDS) entries per gene for 760 

BRAKER1 predictions. CDS features, not exons are outputted by AUGUSTUS in GFF 761 

files. 762 

** The list of strict one-to-one orthologues was augmented with protein clusters where 763 

75% of species had single copy representatives (“fuzzy-1-to-1” orthologues identified 764 

by KinFin).  765 

 766 
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 767 

 768 

Supplementary Files 769 

Supplementary file 1: BRAKER1 and JIGSAW annotation pipelines. 770 

Figure illustrating the differences between the BRAKER1 and the Bai et al 2013 771 

JIGSAW prediction methods used for Heterorhabditis bacteriophora. PDF file. 772 

Supplementary file 2: Methods Supplementary Note 773 

A note detailing the command lines used in the generation of the BRAKER1 gene 774 

predictions, and the associated analysis. PDF file. 775 

Supporting Data 776 

The Supporting Data [24, 62], for this work is described below: 777 

augustus.aa: BRAKER1/soft-masked annotations of Heterorhabditis bacteriophora. 778 

The amino acid sequences of the protein predictions in FASTA format. 779 

augustus.gff: BRAKER1/soft-masked annotations of Heterorhabditis bacteriophora. 780 

The GFF format file. 781 

augustus.gtf: BRAKER1/soft-masked annotations of Heterorhabditis bacteriophora. 782 

The GTF format file. 783 

augustus.hm.aa: BRAKER1/hard-masked annotations of Heterorhabditis 784 

bacteriophora. The amino acid sequences of the protein predictions in FASTA format. 785 
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augustus.hm.gff: BRAKER1/hard-masked annotations of Heterorhabditis 786 

bacteriophora. The GFF format file. 787 

augustus.hm.gtf: BRAKER1/hard-masked annotations of Heterorhabditis 788 

bacteriophora. The GTF format file. 789 

Blobtools_coverage_analysis.txt: COV file (raw output from the blobology pipeline) 790 

detailing the base/read coverage of the published assembly with reads from the re-791 

sequencing project. Text file. 792 

BRAKER1_annotation_comparisons.txt: Comparison of the BRAKER1/soft-793 

masked and BRAKER1/hard-masked gene predictions from Heterorhabditis 794 

bacteriophora. Tab-delimited text file. 795 

Contaminant_scaffolds.txt: A list of the scaffolds/contigs identified by contamination 796 

screening and presented in Table 1. Text file. 797 

EST.acc.txt: Accession numbers for the publically available ESTs used for the EST 798 

assembly. Text file. 799 

EST.assembled.fas: Assembled ESTs derived from the publicly available ESTs 800 

detailed in EST.acc.txt. FASTA .fas format file. 801 

HBACT_BRAKER1_signalPNoTM.txt: Secretome predictions from the 802 

BRAKER1/soft-masked predictions. Text file. 803 

HBACT_published_signalPNoTM.txt: Secretome predictions from the published Bai 804 

et al. (2013) protein predictions. Text file. 805 

Individual_gene_alignments: Alignments of orthogroups used to build the 806 

supermatrix. Directory of aligned sequences in fasta format. 807 
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IPR.domain.analysis.txt: Comparative Interproscan statistics. Text file. 808 

kinfin.zip: KinFin analyses from the OrthoFinder analyses of Heterorhabditis 809 

bacteriophora predicted proteomes. Zipped archive (42.6 Mb). 810 

Low_coverage_scaffolds.txt: Scaffolds and contigs removed from the 811 

Heterorhabditis bacteriophora assembly because of low coverage in the new whole 812 

genome sequencing dataset. Text file. 813 

Newick_tree.txt: Phylogenetic analysis output files. NEWICK format text file. 814 

Orthofinder.zip: The OrthoFinder output files. A zipped archive of the three 815 

OrthoFinder clustering result files (published H. bacteriophora + 23 species; 816 

BRAKER1/soft-masked + 23 species: published + soft-masked + 23 species). Zipped 817 

archive (20.9 Mb) 818 

Orthogroup_count_ratios.txt: Table with count of orthogroups at each contribution 819 

ratio from the BRAKER1/soft-masked and published proteomes after clustering with 820 

23 other Clade V nematodes. Empty cells denote contribution combinations with no 821 

orthogroups. Text file. 822 

Proteomes_in_clustering.txt: A list of the proteomes included in the OrthoFinder 823 

analyses. Text file. 824 

Publicly_available_assembly_details.txt: Details of the published, publicly 825 

available Heterorhabditis bacteriophora genome assembly re-analysed in this study 826 

using BRAKER1. Text file. 827 

Scaffolds_included.txt: Scaffolds and contigs in the Heterorhabditis bacteriophora 828 

assembly included in re-annotation and further analysis. Text file. 829 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Page 38 Heterorhabditis bacteriophora reannotation – Re-submission v2 21/03/2018 

Secretome.analysis.txt: Secretome statistics for 23 Clade V nematodes. Text file. 830 

Short_BRAKER1_genes_list.txt: List of Heterorhabditis bacteriophora proteins of 831 

length <30 amino acids excluded from the OrthoFinder analyses. Text file 832 

Supermatrix.fas: Supermatrix of aligned sequences. FASTA .fas format file. 833 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Figure 1 Click here to download Figure Figure_1.pdf 

http://www.editorialmanager.com/giga/download.aspx?id=34537&guid=706c2069-6134-443a-8b4d-9f1ad5352815&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=34537&guid=706c2069-6134-443a-8b4d-9f1ad5352815&scheme=1


0

400

800

1200

0 500 1000 1500 2000 2500
Protein Length (amino acids)

N
um

be
r 

of
 g

en
es

0

1000

2000

3000

4000

0 10 20 30 40 50 60
Intron frequency per gene

N
um

be
r 

of
 g

en
es

BRAKER1
Published

Proportion of each BRAKER1 gene
overlapped by a published gene

N
um

be
r 

of
 g

en
es

0.0 0.2 0.4 0.6 0.8 1.0
0

2000

4000

6000

8000

BR
A

K
ER

1

Pu
bl

is
he

d

N
um

be
r 

of
 p

ro
te

in
s

0

5000

10000

15000

20000

H. bacteriophora only
Shared with other species

Singletons

A B

C

BR
A

K
ER

1
Pu

bl
is

he
d

D

E

BRAKER1
Published

H. bacteriophora 
(Bai et al. 2013) 

H. bacteriophora
(BRAKER1/soft-masked)

C. elegans 
(WS258)

7 8 9

0

1000

2000

3000

GC/AG introns per gene

N
um

be
r 

of
 g

en
es

4 5 61 2 3 7 8 94 5 61 2 3 7 8 94 5 61 2 3

Figure 2 Click here to download Figure Figure_2.pdf 

http://www.editorialmanager.com/giga/download.aspx?id=34538&guid=b167aa63-87d9-44c9-8eb6-58e3cb58b2b6&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=34538&guid=b167aa63-87d9-44c9-8eb6-58e3cb58b2b6&scheme=1


0.3

Mesorhabditis belari
Pristionchus exspectatus

Ancylostoma caninum

Caenorhabditis sp. 32

Angiostrongylus cantonensis

Heligmosomoides polygyrus

Caenorhabditis elegans

Caenorhabditis monodelphis

Oesophagostomum dentatum

Heterorhabditis bacteriophora Published

Oscheius tipulae

Heterorhabditis bacteriophora BRAKER1

Haemonchus placei

Dictyocaulus viviparus

Haemonchus contortus

Angiostrongylus costaricensis

Ancylostoma ceylanicum

Nippostrongylus brasiliensis

Ancylostoma duodenale

Caenorhabditis sp. 38
Caenorhabditis briggsae

Teladorsagia circumcincta

Pristionchus pacificus

Necator americanus

Strongylus vulgaris

96

Figure 3 Click here to download Figure Figure_3.pdf 

http://www.editorialmanager.com/giga/download.aspx?id=34539&guid=76017641-f767-4f0a-a634-106e638272f7&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=34539&guid=76017641-f767-4f0a-a634-106e638272f7&scheme=1


  

Supplementary File 1

Click here to access/download
Supplementary Material

Supplementary_File_1.pdf

http://www.editorialmanager.com/giga/download.aspx?id=34544&guid=33f04d64-29e0-4c54-b30d-06335e9f292d&scheme=1


  

Supplementary File 2

Click here to access/download
Supplementary Material

Supplementary_File_2.docx

http://www.editorialmanager.com/giga/download.aspx?id=34543&guid=088743af-f3f5-49e0-a55e-08956422439a&scheme=1

