#numerical parameters @ MAXSTOR=500000 @ BOUNDS=1e+20 @ DT=0.001 @ TOTAL=1000 @ NJMP=100 # (nmol/ml*min) = uM/min # minute=60 seconds minute=60 # uMmM converts uM to mM uMmM=1000 #################################################### # compartmentalization parameters and calculations # #################################################### # total volume (in ml) param V=1.0 # proportion of V occupied my cytosol param pcytosol=0.5 # density of cystosolic protein mg/ml param dcytosol=75 # proportion of V occupied my mitochondria param pmito=0.05 # density of mitochondrial protein mg/ml param dmito=1000 # proportion of V occupied my ER param per=0.10 # density of ER protein mg/ml param der=1000 # cmito in nmol/(mV*mg) param cmito=0.0725 # calculation of protein amounts M=V*Pmito*Dmito C=V*pcytosol*Dcytosol E=V*Per*Der # calculation of compartment volumes Vc=(V*pcytosol) Vm=(V*pmito) Ve=(V*per) ################################################# # Nucleotide conversion/conservation relations # # from Magnus and Keizer 1997, 1998a) # ################################################# # conservation conditions (nmol/mg converted to mM) ATPm=(12*dmito/uMmM)-ADPm NAD=(8*dmito/uMmM)-NADHM # ATPi already in mM ATPi=2-ADPi # proportion of free nucleotides # (Magnus and Keizer 1998a) table 2 ADPmf=0.8*ADPm ADPif=0.3*ADPi # charged, free nucleotides ADP3Mm=0.45*ADPmf ADP3Mi= 0.45*ADPif MgADPMi = 0.55*ADPif ATP4Mi=0.05*ATPi ATP4Mm=0.05*ATPm ############################### # Mitochondrial Components # ############################### #### mitochondria - CA2+ handling # mitochondrial uniporter (nmol/(mg*min)) # modified from equation (19) (Magnus and Keizer 1997) param rhouni=300 # MWC refers to Monod-Wyman-Changeux (MWC) model for concerted allosteric transitions MWCnum=(CAC/6)*((1+(CAC/6))^3) MWCdenom=((1+(CAC/6))^4)+(50/((1+(CAC/0.38))^2.8)) MWC=MWCnum/MWCdenom VDuni=(PSI-91)/13.35 # RT/2F = 13.35 for T = 310 K, dPSI* = 91 mV Juni=(rhouni*VDuni*(MWC-CAM*exp(-VDuni))/(1-exp(-VDuni)))*(1-PTPh) # Includes contribution due to PTP opening in high conductance state # Na/Ca exchanger (nmol/(mg*min)) # equation (21) (Magnus and Keizer 1997) param rhonc=3 VDnaca=exp((PSI-91)/53.4) Jnc=(rhonc*VDnaca*(1/(1+(9.4/30)**2))*(1/(1+(0.003*Dmito/CAM))))*(1-PTPh) #### Mitochondria - respiration param rhores=0.4 # Ares=affinity bracketed expression # based on equation (4) (Magnus and Keizer 1997) Ares = (1.35e18)*nadhm^0.5/(nad)^0.5 # VDres=exp(6*0.85*F*PSI/RT) VDres=exp(0.191*PSI) # proton pump (nmol/(mg*min)) # equation (6) (Magnus and Keizer 1997) r1=7e-7 r2=(2.54e-3)*Ares r3=0.639*VDres r4=7.58e13+(1.57e-4)*Ares r5=(1.73 + Ares*1.06e-17)*VDres Jhres= 360*rhores*((r1+r2-r3)/(r4+r5)) # Oxygen Consumption rate (nmol/(mg*min)) # equation (5) (Magnus and Keizer 1997) o1=Ares*2.55e-3 o2=Ares*2.00e-5 o3=0.639*(VDres) o4=(VDres)*Ares*8.63e-18 o5=(1+Ares*2.08e-18)*7.54e13 o6=(1.73+1.06e-17*Ares)*VDres Jo=30*rhores*(o1+o2-o3+o4)/(o5+o6) #### Mitochondria - Fo/F1 ATPase equations: param rhof1=0.7 # AF1=affinity bracketed expression # based on equation (12) (Magnus and Keizer 1997) param pim=20 Af1 = (1.71e9)*(ATPm)/(ADPmf*pim) # VDf1=exp(3*F*PSI/RT) VDf1=exp(0.112*PSI) ## Fo/F1 ATPase phosphorylation of ADPm (nmol/(mg*min)) # equation (13) (Magnus and keizer 1997) f1= 10.5*Af1 f2= 166*VDf1 f3= (4.85e-12)*Af1*VDf1 f4= (1e7+0.135*Af1)*275 f5= (7.74 + (6.65e-8)*Af1)*VDf1 Jpf1=-60*rhof1*((f1-f2+f3)/(f4+f5)) # proton flux due to ATPase (nmol/(mg*min)) # equation (14) (Magnus and Keizer, 1997) Jhf1=-180*rhof1*(0.213+f1-169*VDf1)/(f4+f5) # mitochondrial membrane proton leak (nmol/(min*mV*mg)) # equation (7) (Magnus and Keizer, 1997) param rholeak=0.2 Jhl=rholeak*(PSI+24.6) #fraction of activated pyruvate (dimless) # equation (18) (Magnus and Keizer, 1998a) fpdh = 1/(1+(1.1*(1+(15/(1+(cam/0.05))^2)))) # NADH reduction rate (nmol/(mg*min)) # equation (21) (Magnus and Keizer, 1998a) param Jredbasal=20 Jred = Jredbasal + 6.3944*fpdh*Jglytotal #ATP/ADP antiport flux (nmol/(mg*min)) # equation (16) (Magnus and Keizer 1997) param JmaxANT=900 ant1=(ATP4Mi/ADP3Mi)*(ADP3Mm/ATP4Mm)*exp(-PSI/26.7) ant2=1+(ATP4Mi/ADP3Mi)*exp(-PSI/53.4) ant3=1+(ADP3Mm/ATP4Mm) Jant=JmaxANT*((1-ant1)/(ant2*ant3)) ## phosphorylation of ADPm from TCA cycle (nmol/(mg*min)) Jptca = (Jredbasal/3)+0.84*fpdh*Jglytotal ######################### # Cytosolic Components # ######################### # glucose concentration in mM param glc=1 ### glycolytic rate based on hexokinase (nmol/(mg*min) # equation (10) (Magnus and Keizer 1998a) glynum=(123.3*(1+1.66*glc)*(glc*ATPi))*0.0249 glydenom=1+(4*ATPi)+((1+2.83*ATPi)*1.3*glc)+((1+2.66*ATPi)*0.16*glc^2) Jglytotal=glynum/glydenom # phosphorylation of ADPi from glycolysis (nmol/(mg*min)) # (Magnus and Keizer, 1998a) Jpgly=2*Jglytotal # Cytosolic hydrolysis of ATP # equations (35) and (37) (Magnus and Keizer, 1998a) param Jhydmax=30.1 Jhyd =41*(ATPi)+Jhydmax/(1+(8.7/glc)^2.7) ############################## # ER Ca2+ handling modified # # from Li and Rinzel # ############################## # IP3 receptor and leak param vIP3=3000 param vLEAK=0.1 param dip3=0.25 param dinh=1.4 param dact=1 param tau=4 jerout=(vIP3*((ip3/(ip3+dip3))^3)*((CAC/(CAC+dact))^3)*(h^3)+vLEAK)*(CAER-CAC) # serca pump param vserca=110 param kserca=0.4 Jserca=vserca*CAC^2/(kserca^2+CAC^2) ############################## ### differential equations # ############################## # uMmM converts uM to mM # minute=60 seconds #ODE eqn for mitochondrial NADH (mM) dNADHm/dt= (Jred-Jo)*M/(uMmM*Vm*minute) #ODE eqn for mitochondrial ADPm (mM) dADPm/dt= (Jant-Jptca-Jpf1)*M/(uMmM*Vm*minute) #ODE for cytosolic ADPi (mM) dADPi/dt=(-Jant*M + (Jhyd-Jpgly)*C)/(uMmM*Vc*minute) #ODE eqn for mitochondrial inner membrane voltage dPSI/dt= -(-Jhres + Jhf1 +Jant +Jhptp +Jhl +2*Juni +2*Jcaptp)*M/(cmito*minute) #ODE eqn for mitochondrial Ca # fm = mitochondrial Ca buffering param fm=0.0003 dCAM/dt= (fm*(Juni-Jnc+Jcaptp)*M/(Vm*minute)) #ODE for cytosolic CA2+ # fi = cytosolic Ca2+ buffering param fi=0.01 param aV1=0.0065, aV2=4, Valpha=0.05, aKalpha=120, an=2, am=4, akbeta=0.2, ak1=0.01, ak2=0.1 dCAC/dt=(fi*(M*(Jnc-Juni-Jcaptp)-E*(Jserca-Jerout))/(Vc*minute)+akbeta*a^am) dh/dt=(dinh-(CaC+dinh)*h)/tau #ODE for ER ca2+ dCaer/dt= fi*(E*(Jserca-Jerout))/(Ve*minute) #ODE for beta-amyloid da/dt=aV1+Valpha*CAC^an/(aKalpha^an+CAC^an)-ak1*a ######################## ### INITIAL CONDITIONS ######################## # mV PSI(0)=164 # uM Cam(0)=0.05 CaC(0)=0.05 CaER(0)=11 # mM ADPm(0)=4.46 ADPi(0)=0.028 NADHm(0)=0.16 # percentage closed channels h(0)=0.95 ##################### # IP3 step function # ##################### param baseline=0.3 param amplitude=0.3 param init=10 param duration=100 stepupf=heav(t-init) stepdownf=heav(t-(init+duration)) IP3=baseline+amplitude*(stepupf-stepdownf) ##################### # PTPH Integration # ##################### param CAMthresh = 4 param ythresh = 0.8 tauy = 1000*((1000/cosh(CAM/0.1)) + 0.1) tauh = tauy/8 PTPhinf = heav(y - ythresh) yinf = heav(CAM - CAMthresh) dy/dt = (yinf - y)/tauy dPTPh/dt = (PTPhinf - PTPh)/tauh ##################### # PTPL Integration # ##################### param fHM = 0.00000128 param p1 = 0.022 param p2 = 0.0001 param p3 = 0.0231 param p4 = 0.0001 param amptau = 26000 param p6 = 0.001 param permlh = 3.0 param permca = 0.40 param postptp = 2 Jhptp = permlh*PTPl*PSI*(HM-0.0000000398*exp(-37.434*PSI)/(1-exp(-37.434*PSI))) Jcaptp = permca*PTPl*Juni*(1-postptp*PTPh) dHM/dt = (fHM/tauh)*(Jhl+Jhf1-Jhres+Jhptp) taul = p6+amptau/cosh((HM-p3)/p4) PTPlinf = 0.5*(1+tanh((p1-HM)/p2)) dPTPl/dt = (PTPlinf - PTPl)/taul # # # # # # # # # # # # # # # # # # # # # # END