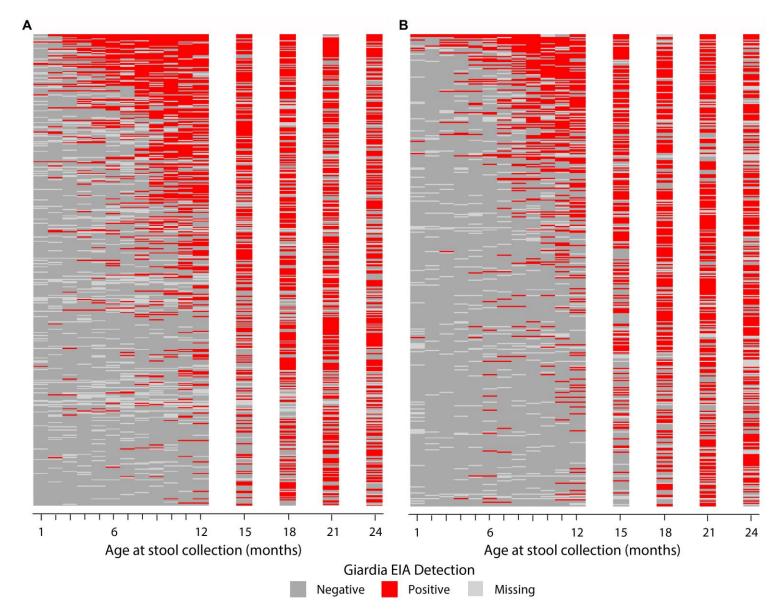
Supplemental material

Determinants and impact of *Giardia* infection in the first two years of life in the MAL-ED birth cohort


Elizabeth T. Rogawski¹, Luther A. Bartelt², James A. Platts-Mills¹, Jessica C. Seidman³, Amidou Samie⁴, Alexandre Havt⁵, Sudhir Babji⁶, Dixner Rengifo Trigoso⁷, Shahida Qureshi⁸, Sadia Shakoor⁸, Rashidul Haque⁹, Estomih Mduma¹⁰, Samita Bajracharya¹¹, S.M. Abdul Gaffar⁹, Aldo A.M. Lima⁵, Gagandeep Kang⁶, Margaret N. Kosek^{7,12}, Tahmeed Ahmed⁹, Erling Svensen¹³, Carl Mason¹⁴, Zulfiqar A Bhutta⁸, Dennis R. Lang¹⁵, Michael Gottlieb¹⁵, Richard L. Guerrant¹, Eric R. Houpt¹, Pascal O. Bessong⁴ and the MAL-ED Network Investigators

¹Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, ²Division of Infectious Diseases, University of North Carolina-Chapel Hill, ³Fogarty International Center, National Institutes of Health, Bethesda, ⁴University of Venda, Thohoyandou, South Africa, ⁵Clinical Research Unit and Institute of Biomedicine, Federal University of Ceara, Fortaleza, Brazil, ⁶Christian Medical College, Vellore, India, ⁷Asociación Benéfica PRISMA, Iquitos, Peru, ⁸Aga Khan University, Karachi, Pakistan, ⁹International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh, ¹⁰Haydom Lutheran Hospital, Haydom, Tanzania, ¹¹Walter Reed AFRIMS Research Unit Nepal, Kathmandu, Nepal, ¹²Bloomberg School of Public Health, Johns Hopkins University, Baltimore, ¹³Haukeland University Hospital, Bergen, Norway, ¹⁴Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand, ¹⁵Foundation for the National Institutes of Health, Bethesda

MAL-ED Investigators and Institutional Affiliations

Angel Mendez Acosta¹, Rosa Rios de Burga¹, Cesar Banda Chavez¹, Julian Torres Flores¹, Maribel Paredes Olotegui¹, Silvia Rengifo Pinedo¹, Mery Siguas Salas¹, Dixner Rengifo Trigoso¹, Angel Orbe Vasquez¹, Imran Ahmed², Didar Alam², Asad Ali², Zulfigar A Bhutta², Shahida Qureshi², Muneera Rasheed², Sajid Soofi², Ali Turab², Anita KM Zaidi², Ladaporn Bodhidatta³, Carl J Mason³, Sudhir Babji⁴, Anuradha Bose⁴, Ajila T George⁴, Dinesh Hariraju⁴, M. Steffi Jennifer⁴, Sushil John⁴, Shiny Kaki⁴, Gagandeep Kang⁴, Priyadarshani Karunakaran⁴, Beena Koshy⁴, Robin P Lazarus⁴, Jayaprakash Muliyil⁴, Mohan Venkata Raghava⁴, Sophy Raju⁴, Anup Ramachandran⁴, Rakhi Ramadas⁴, Karthikeyan Ramanujam⁴, Anuradha Rose⁴, Reeba Roshan⁴, Srujan L Sharma⁴, Shanmuga Sundaram E⁴, Rahul J Thomas⁴, William K Pan^{5,6}, Ramya Ambikapathi⁶, J Daniel Carreon⁶, Vivek Charu⁶, Viyada Doan⁶, Jhanelle Graham⁶, Christel Hoest⁶, Stacey Knobler⁶, Dennis R Lang^{6, 7}, Benjamin JJ McCormick⁶, Monica McGrath⁶, Mark A Miller⁶, Archana Mohale⁶, Gaurvika Navvar⁶, Stephanie Psaki⁶, Zeba Rasmussen⁶, Stephanie A Richard⁶, Jessica C Seidman⁶, Vivian Wang⁶, Rebecca Blank⁷, Michael Gottlieb⁷, Karen H Tountas⁷, Caroline Amour⁸, Eliwaza Bayyo⁸, Estomih R Mduma⁸, Regisiana Mvungi⁸, Rosemary Nshama⁸, John Pascal⁸, Buliga Mujaga Swema⁸, Ladislaus Yarrot⁸, Tahmeed Ahmed⁹, AM Shamsir Ahmed⁹, Rashidul Hague⁹, Igbal Hossain⁹, Munirul Islam⁹, Mustafa Mahfuz⁹, Dinesh Mondal⁹, Fahmida Tofail⁹, Ram Krishna Chandyo¹⁰, Prakash Sunder Shrestha¹⁰, Rita Shrestha¹⁰, Manjeswori Ulak¹⁰, Aubrey Bauck¹¹, Robert Black¹¹, Laura E Caulfield¹¹, William Checkley^{11,6}, Margaret N Kosek¹¹, Gwenyth Lee¹¹, Kerry Schulze¹¹, Pablo Peñataro Yori¹¹, Laura E. Murray-Kolb¹², A Catharine Ross¹², Barbara Schaefer^{12,6}, Suzanne Simons¹², Laura Pendergast¹³, Cláudia B Abreu¹⁴, Hilda Costa¹⁴, Alessandra Di Moura¹⁴, José Quirino Filho^{14,6}, Alexandre Havt¹⁴, Álvaro M Leite¹⁴, Aldo AM Lima¹⁴, Noélia L Lima¹⁴, Ila F Lima¹⁴, Bruna LL Maciel¹⁴, Pedro HQS Medeiros¹⁴, Milena Moraes¹⁴, Francisco S Mota¹⁴, Reinaldo B Oriá^{14,} Josiane Quetz¹⁴, Alberto M Soares¹⁴, Rosa MS Mota¹⁴, Crystal L Patil¹⁶, Pascal Bessong¹⁷, Cloupas Mahopo¹⁷, Angelina Maphula¹⁷, Emanuel Nyathi¹⁷, Amidou Samie¹⁷, Leah Barrett¹⁸, Rebecca Dillingham¹⁸, Jean Gratz¹⁸, Richard L Guerrant¹⁸, Eric Houpt¹⁸, William A Petri, Jr¹⁸, James Platts-Mills¹⁸, Rebecca Scharf¹⁸, Elizabeth T. Rogawski¹⁸, Binob Shrestha¹⁹, Sanjaya Kumar Shrestha¹⁹, Tor Strand^{19,15}, Erling Svensen^{20,8}

¹A.B. PRISMA, Iquitos, Peru, ²Aga Khan University, Karachi, Pakistan, ³Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand, ⁴Christian Medical College, Vellore, India, ⁵Duke University, Durham, NC, USA, ⁶Fogarty International Center/National Institutes of Health, Bethesda, MD, USA, ⁷Foundation for the NIH, Bethesda, MD, USA, ⁸Haydom Lutheran Hospital, Haydom, Tanzania, ⁹icddr,b, Dhaka, Bangladesh, ¹⁰Institute of Medicine, Tribhuvan University, Kathmandu, Nepal, ¹¹Johns Hopkins University, Baltimore, MD, USA, ¹²The Pennsylvania State University, University Park, PA, USA, ¹³Temple University, Philadelphia, PA, USA, ¹⁴Universidade Federal do Ceara, Fortaleza, Brazil, ¹⁵University of Bergen, Norway, ¹⁶University of Illinois at Chicago, IL, USA, ¹⁷University of Venda, Thohoyandou, South Africa, ¹⁸University of Virginia, Charlottesville, VA, USA, ¹⁹Walter Reed/AFRIMS Research Unit, Kathmandu, Nepal, ²⁰Haukeland University Hospital, Bergen, Norway **Figure S1.** Heat maps showing *Giardia* positivity in surveillance stools over the first 2 years of life among children in the MAL-ED cohort with more than one *Giardia*-positive stool in Bangladesh, India, Nepal and Pakistan (n=444 of 1016 total children in the South Asian sites; A) and in Brazil, Peru, Tanzania, and South Africa (n=394 of 1072 total children in the southern hemisphere sites; B). Each row represents positivity in the stools of one child; children are ordered by detection frequency.

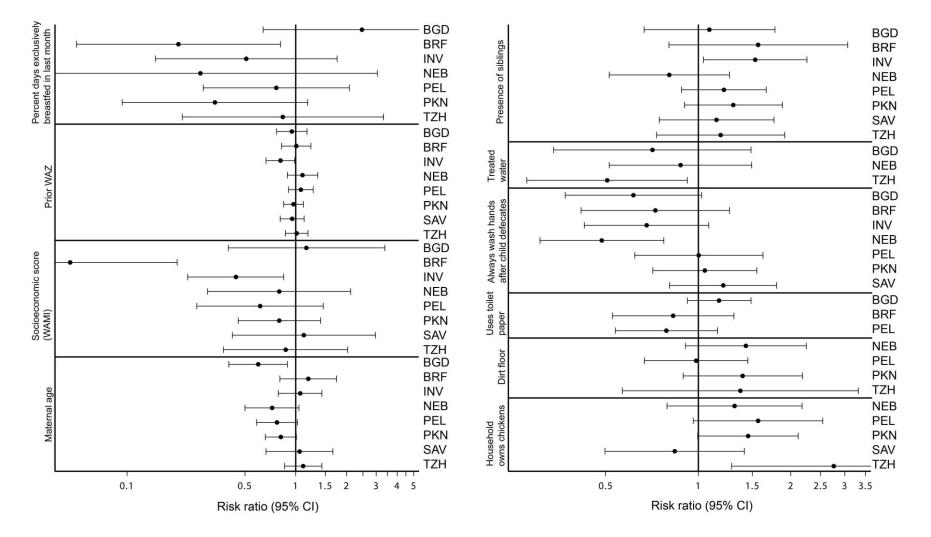
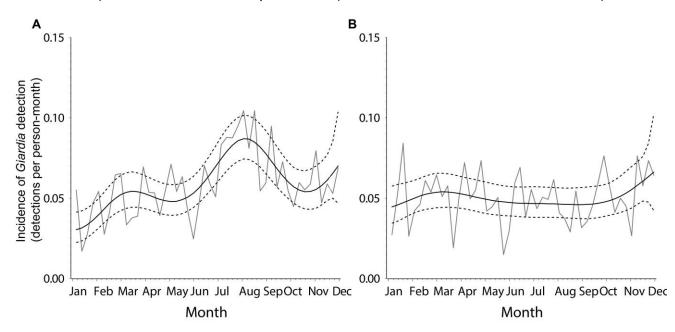



Figure S2. Site-specific estimates of key risk factors for first *Giardia* detection in monthly surveillance stools among 2,088 children in the MAL-ED cohort with at least one surveillance stool.

BGD – Dhaka, Bangladesh; BRF – Fortaleza, Brazil; INV – Vellore, India; NEB – Bhaktapur, Nepal; PEL – Loreto, Peru; PKN – Naushahro Feroze, Pakistan; SAV – Venda, South Africa; TZH – Haydom, Tanzania

Figure S3. Incidence of first *Giardia* detection in surveillance stools among 2,088 children in the MAL-ED cohort over months of the year for the **A**: South Asian sites (Bangladesh, India, Nepal, and Pakistan); and **B**: southern hemisphere sites (Brazil, Peru, Tanzania, and South Africa).

Table S1. Associations between micronutrient status and *Giardia* detection in surveillance stools among 1,521 children in the MAL-ED cohort with an assessment of plasma zinc and retinol concentration at 7 months of age.

	Detection rate ratio*			
Micronutrient	(95% CI)			
Zinc concentration (per 50 mcg/dL [†])	0.81 (0.67, 0.97)			
Retinol concentration (per 10 mcg/dL [†])	0.89 (0.79, 1.01)			
Both higher zinc (50 mcg/dL) and retinol (10 mcg/dL) concentrations	0.78 (0.63, 0.98)			
*Rate ratio of Giardia detections in surveillance stools from 8 to 24 months of age, adjusted for site, Giardia detection				
prior to blood draw, enrollment weight, sex, WAMI, mother's age, presence of siblings, water treatment, routine				
handwashing after child defecation, use of toilet paper, dirt floor, ownership of chickens an	a proportion of days			

exclusively breastfed in month before blood draw. Analysis excludes the South African site.

†Approximately the standard deviation of the micronutrient in the study population.

Table S2. Effect of early *Giardia* presence and persistence on subsequent all-cause diarrheal rates in Naushahro Feroze, Pakistan and all other sites among 1,967 children in the MAL-ED cohort who remained in the study for at least 6 months.

	Naushahro Feroze, Pakistan (n=265)			All other sites (n=1702)		
Giardia exposure	No. exposed	alRR* (95% CI)	<i>p</i> -value	No. exposed	alRR* (95% CI)	<i>p</i> -value
Persistence in first 6 months	46	0.72 (0.59, 0.89)	0.002	27	1.13 (0.78, 1.64)	0.5
Any detection in first 6 months	106	0.79 (0.66, 0.95)	0.01	88	1.19 (1.00, 1.41)	0.06
Persistence in first year	122	0.81 (0.64, 1.03)	0.09	188	1.12 (0.96, 1.29)	0.1
Any detection in first year	194	1.06 (0.81, 1.38)	0.7	388	1.10 (0.98, 1.23)	0.1
Persistence in second year	132	0.75 (0.55, 1.01)	0.06	436	1.00 (0.86, 1.18)	0.9
Any detection in second year	210	0.84 (0.60, 1.18)	0.3	806	1.09 (0.94, 1.26)	0.3

*Incidence rate ratio for diarrhea following exposure period (after 6 months, 12 months, or 18 months), adjusted for site, age, sex, socioeconomic score (WAMI), mother's age, presence of siblings, water treatment, routine handwashing after child defecation, use of toilet paper, dirt floor, ownership of chickens, and days with diarrhea, acute lower respiratory infection, fever, and vomiting in exposure period