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Supplemental Experimental Procedures 

 

Mouse lung fibrosis model 

Adult mice (both male and female), 8 to 16 weeks old, were subjected to bleomycin-

induced lung injury (Li et al., 2011; Liang et al., 2016; Xie et al., 2016). Bleomycin at 2.5 

U/kg was injected intratracheally. Mouse lungs were harvested on day 21 for single-cell 

isolation. 

 

Flow cytometry  

Fluorescence- activated cell sorting (FACS) experiments were performed using fresh lung 

preparations. Triple-heterozygous αSMA-GFP;Tbx4-Cre;Rosa26-tdTomato mouse lung 

homogenates for single-cell flow cytometry were prepared as previously described (Xie 

et al., 2016). Briefly, fresh mouse lungs were perfused with 10 ml PBS, elastase (4 U/ml; 

Worthington Biochemical Corporation) were injected through the trachea to inflate the 



lung and dissociate epithelial cells. After that, samples were cut into approximately 1-3 

mm pieces and digested with DNase I (100 U/ml; Sigma). Single cell homogenates were 

collected after passing through cell strainers and centrifugation. Flow cytometry was used 

to sort αSMA-GFP+tdTomato+, αSMA-GFP-tdTomato+, and αSMA-GFP-tdTomato- 

within live Epcam-CD31-CD45- MCs. Primary antibodies to CD31, and CD45, and 

secondary antibody anti-streptavidin were all from eBioscience (San Diego, CA). Mouse 

anti-EpCAM (G8.8, catalog 118215) were from BioLegend (San Diego, CA). 7-AAD was 

from BD Biosciences (San Diego, CA). Singlet discrimination was sequentially performed 

using plots for forward scatter (FSC-A versus FSC-H) and side scatter (SSC-W versus 

SSC-H). Dead cells were excluded by scatter characteristics and viability stains. All FACS 

experiments were performed on an Aria III sorter (BD Immunocytometry Systems, San 

Jose, CA) at the Cedars-Sinai Medical Center Shared FACS Facility and FACS data were 

analyzed using FlowJo software (TreeStar, Ashland, OR). 

 

Single cell RNA-seq data analysis 

Cell Ranger 1.3.1 (10X Genomics) was used to demultiplex reads and convert raw base 

call files into fastq format. Reads alignment was performed by using STAR (version 2.5.1) 

(Dobin et al., 2013) with default parameters, using a custom mouse mm10 transcriptome 

reference from Gencode Release M9 annotation, containing all protein coding and long 

non-coding RNA genes. Expression counts for each gene in all samples were collapsed 

and normalized to unique molecular identifier (UMI) counts using Cell Ranger 1.3.1 (10X 

Genomics). The result is a large digital expression matrix with cell barcodes as rows and 

gene identities as columns. We obtained 80,412 post-normalization mean reads per cell 



with median genes per cell of 1,189 and median UMI counts per cell of 2,631. Cells of D0 

were aggregated into a single database by using Cell Ranger 1.3.1 (10X GEnomics) as 

well as the cells from D21 samples. Depth normalization was performed before merging 

by subsampling reads from higher-depth libraries until they all have an equal number of 

confidently mapped reads per cell to reduce the batch effect introduced by sequencing. 

Mapping percentage of mitochondrial genes and total number of expressed for each cell 

was calculated by using Seurat suite version 2.0.0 (Butler, 2017; Macosko et al., 2015). 

Cells with percentage of reads mapped on mitochondrial genes > 15% or total number of 

genes expressed < 300 were removed from further analysis. 614 cells in d0 αSMA-

GFP+tdTomato+ and 2835 cells in d21 αSMA-GFP+tdTomato+ sample, 1943 cells in d0 

MCs and 3386 cells in d21 MCs sample were included for further analysis.  

 

Expression of UMI counts for each gene were normalized by times the size factor 

calculated by median of total of UMI counts for all cells divided total of UMI counts for 

each cell. To obtain two-dimensional projections of the population’s dynamics, principal 

component analysis (PCA) was firstly run on the normalized gene-barcode matrix to 

reduce the number of feature dimensions. Top 10 principle components (PC) that 

explained more variability than expected by chance were selected using a permutation-

based test implemented in Seurat and passed to t-distribution stochastic neighbor 

embedding (tSNE)	 (Van Der Maaten, 2008) for clustering visualization by using Cell 

Ranger 1.3.1 (10X Genomics). For tSNE, the perplexity parameter and the parameter 

was set to 30 and 0.5, respectively while the other parameters were left as defaults and 

total iterations was 1000. A cloupe file was generated as input for a graphical user 



interface browser, Loupe Cell Browser 1.0.5, to present the clustering of cell population 

and gene expression of identified marker genes.  

 

In order to reduce any potential batch effect, we collected our samples at the same time 

and all the samples were processed for single cell RNA-seq on the same day. After 

construction of the single cell RNA-seq libraries, we performed aggregation analysis  

 

Significantly differentiated gene analysis 

sSeq (Yu et al., 2013) integrated in the Cell Ranger R kit version 2.0.0 was employed to 

identify the differentially expressed genes between groups of cells, which modeled gene 

expression with the Negative Binomial (NB) distribution using a shrinkage approach for 

dispersion estimation. Gene expression for each cluster was compared to other cells 

yielding a list of genes that are differentially expressed in that cluster relative to the rest 

of the sample. Benjamini-Hochberg procedure was used for multiple test corrections to 

calculate the adjusted p value. The adjusted p value, average expression in target cluster 

(main_a_sizenorm) and log2 fold change was considered side by side to pick up the 

significant genes. We set the cutoff of adjusted p-value <0.05, average expression > 1 

and log2 fold change > 2, depending on the expression activity of samples and 

discrepancy among cells. And the method was keep consistent thought out all the MC 

subtypes.  

DE genes which are exclusively expressed in each single MC subgroups were selected 

for top subgroup specific signature genes and used for drawing heat maps and violin plots 

by using ggplot2 v2.2.1 in R v3.3.1. 



 

Transcription factor analysis 

Transcription factors were defined and annotated by RIKEN TFdb (The Institute of 

Physical and Chemical Research Transcription Factor Database), this list was further 

curated for missing genes and occasional mis-annotated transcription factors. 

 

IncRNA analysis 

IncRNAs annotated by Ensembl biomart (Wellcome Trust Sanger Institute and European 

Bioinformatics Institute) were extracted from DE gene list for each MC subtypes. 

 

Extracellular and plasma membrane expressing gene analysis 

Extracellular and plasma membrane expressing genes were identified according to 

COMPARTMENTS, a subcellular localization database (The Novo Nordisk Foundation 

Center for Protein Research (CPR), the Luxembourg Centre for Systems Biomedicine 

(LCSB), and the Commonwealth Scientific and Industrial Research Organization 

(CSIRO).). 

 

Customizable suite of single-cell R-analysis tools (SCRAT) analysis 

SCRAT based on SOM machine learning (Camp et al., 2017) were used to determine 

and envision high-dimensional metagene sets exhibited in each population of MCs during 

fibrosis. Sample trajectory analysis was also performed by SCRAT suite inputting 5 MC 

subtypes with cell cycle correction. 



We applied the Scater R package (McCarthy et al., 2017) to conduct quality control on 

the cells and low-abundance gene filtering (Lun et al., 2016b). We removed low-quality 

cells based on three criteria: 1) cells with log-library sizes more than 2 median absolute 

deviations (MADs) below the median; 2) cells with log-transformed number of expressed 

genes 2 MADs below median; 3) cells with mitochondrial proportions 2 MADs higher than 

median. Low-abundance genes with an average UMI count below 0.2 were filtered out. 

The data was then cell-specifically normalized with pool-based size factors (Lun et al., 

2016a). 

 

Key Resource Table 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 
Anti-Epcam eBioscience 118216 
Anti-CD31 eBioscience 102404 
Anti-CD45 eBioscience 103104 
Anti-biotin-APC-eFlour780 eBioscience 47-4317-82 
Chemicals, Peptides, and Recombinant Proteins 
Bleomycin Hospira NDC61703-332-

18 
Elastase Worthington 

Biochemical 
Corporation 

LS002280 

DNase I Sigma D4527 
7-AAD BD Biosciences 51-68981E 
Chromium Single Cell 3′ v2 Reagent Kits 10x Genomics 120234 
SPRIselect Reagent Kit Beckman Coulter B23318 
Chromium Single-Cell 3′ Library Kit 10x Genomics 120237 
KAPA Library Quantification Kit KAPA Biosystems KK4824 
Deposited Data 
Raw data files of the RNA sequencing 
analyses 

GEO GSE104154 

Experimental Models: Organisms/Strains 
αSMA-GFP Tbx4-Cre Rosa26-tdTomato 
mouse strain with C57BL/6 background 

Cedars-Sinai 
Comparative 
Medicine 

 



Software and Algorithms 
Cell Ranger 1.3.1 10X Genomics version 1.3.1 
STAR Dobin et al., 2013 version 2.5.1 
Seurat suite  Butler, 2017, 

Macosko et al., 
2015 

version 2.0.0 

Loupe Cell Browser  10X Genomics version 1.0.5 
Cell Ranger R kit 10X Genomics version 2.0.0 
ggplot2  R Core Team version 2.2.1 in R 

v3.3.1 
RIKEN TFdb The Institute of 

Physical and 
Chemical 
Research 
Transcription 
Factor Database 

 

Ensembl biomart Wellcome Trust 
Sanger Institute 
and European 
Bioinformatics 
Institute 

 

COMPARTMENTS The Novo Nordisk 
Foundation Center 
for Protein 
Research (CPR), 
the Luxembourg 
Centre for 
Systems 
Biomedicine 
(LCSB), and the 
Commonwealth 
Scientific and 
Industrial 
Research 
Organization 
(CSIRO) 

 

SCRAT Camp et al., 2017  
Scater R package McCarthy et al., 

2017 
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Supplementary fig. 1 Col1a1 expression visualized in t-SNE plot. Related to Figure 3. (A-B) Col1a1 expressing cells are scattered in Col13a1 and Col14a1

matrix fibroblasts, myofibroblasts, methothelial, and pdgfrb hi cells, and Col1a1 highly expressing cells are matrix fibroblasts in both normal (A) and fibrotic (B)

MCs.
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Supplementary fig. 2 Lipofibroblasts features M2-like macrophage genes. Related to Figure 5. (A) Pdgfra, Vim, Col4a1, and Fn1 expression in MC subtypes.

(B) M2-like genes were examined across all MC subtypes.
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Supplementary fig. 3 Gene profile distinguishes mesenchymal progenitors. Related to Figure 1. (A-B) Mki67 expression shown in t-SNE plot of all MC

subtypes in both normal and fibrotic conditions. (C) Known mesenchymal progenitor marker expression across MC subtypes. (D-E) Enrichment pattern of

genes in mesenchymal progenitors cross all MC subtypes. (F) Mesenchymal progenitor IncRNA expression. (G) Heat map showing top differential expression

of genes labeled with cellular locations in normal and fibrotic condition. (H) Hmgb2 as the most significantly expressed transcription factor in mesenchymal

progenitor subtype by violin plot. (I) Top transcription factors were compared between normal and fibrotic status in this subtype.
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Supplementary fig. 4 Analysis of gene sets in mesothelial cells. Related to Figure 1. (A-B) Wt1 marks exclusively the mesothelial cell cluster. (C) Known

mesothelial markers were enriched in this cluster. (D-E) Top signature genes were exhibit across MC subtypes as violin plots. (F) Top IncRNAs were

analyzed. (G) Comparison of normal and fibrotic top 50 significant genes were demonstrated as heat map. (H) Bnc1 as the most discriminative transcription

factors. (I) Comparison of top expressed transcription factors in mesothelial cell subtype.
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Supplementary fig. 5 Known pericyte markers examination. Related to Figure 6. (A) Violin plots shown previously reported pericyte markers (Pdgfrb, Cspg4,

Foxd1, and Adam12) across all MC subtypes. (B-C) t-SNE projection and single cell expression pattern of Mcam (B) and Cspg4 (C).
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Supplementary fig. 6 Exploration of endothelial cell markers, IncRNAs, and transcription factors. Related to Figure 1. (A-B) Distinct cluster of Egfl7 highly

expression cells in MC subtypes. (C-D) Previously reported endothelial cell markers are significantly expressed in this cluster. (E-F) Violin plots showing

expression of known and novel endothelial signature genes. (G) Top IncRNAs in endothelial subtype. (H) Top 50 differentially expressed genes in endothelial

subtype were compared between corresponding conditions. (I) The most discriminative transcription factor Sox18 expression by violin plot. (J) Heat map

visualization of top unique transcription factors between normal and fibrotic endothelial cells in MCs.



Supplementary Fig. 7

A B

C

Supplementary fig. 7 MANCs, AMP, Lgr5 and Lgr6 mesenchymal subpopulation signature gene comparisons. Related to Figure 1. (A) Violin plots shown

previously reported MANC markers across all MC subtypes. (B) Violin plots shown previously reported AMP markers across all MC subtypes. (C) t-SNE

projection and single cell expression pattern of Lgr5 and Lgr6.




