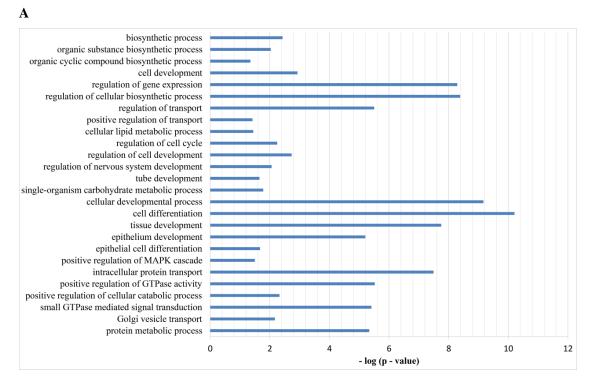
Supplementary information

Comparative transcriptome analysis to investigate the potential role of miRNAs in milk protein/fat quality

Xuehui Wang, Li Zhang, Jing Jin, Anting Xia, Chunmei Wang*, Yingjun Cui, Bo Qu, Qingzhang Li and Chunyan Sheng


Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, Heilongjiang, China;

* Corresponding author: Chunmei Wang Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin 150030, Heilongjiang, China, Tel: +86 13936507139, E-mail: wangcm-1@163.com (W.C.)

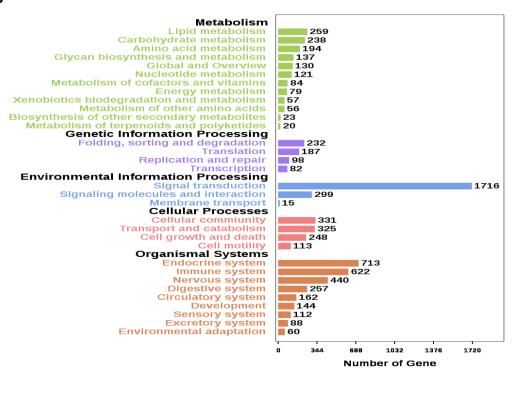
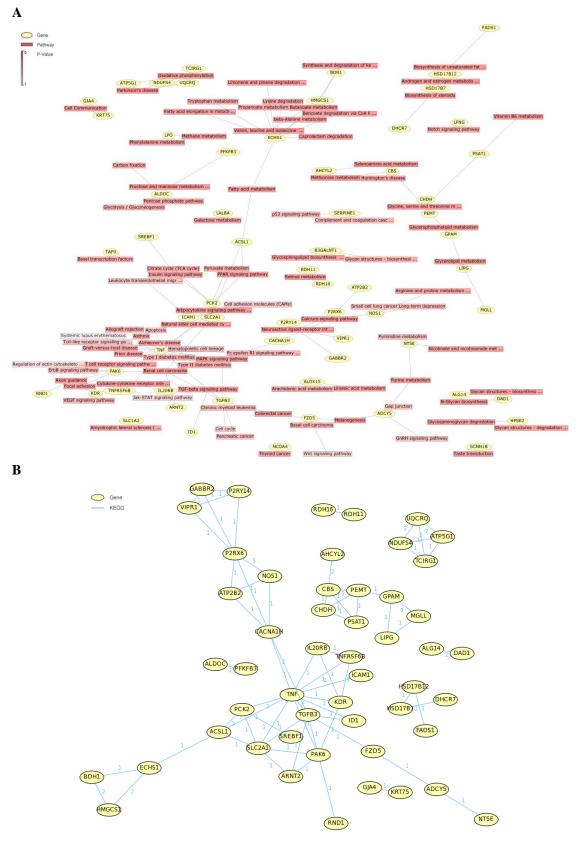
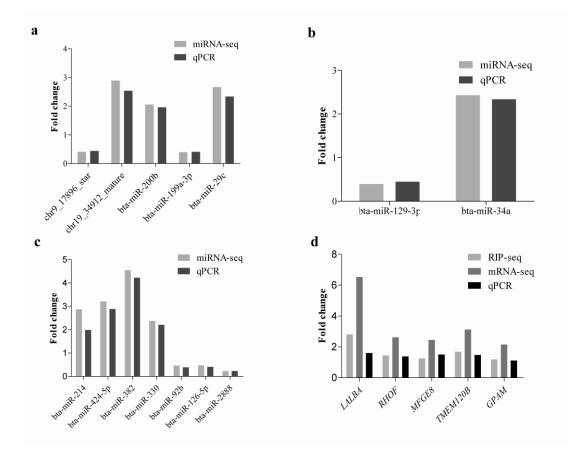

Concentrate composition (%)	Lactating	Dry
Corn	/	67.5
Cottonseed	15	8
Rapeseed	8	6
Soybean meal	12	/
Extruded soybean	30	4
Wheat bran	/	10
Limestone	2	1.5
Sodium bicarbonate	2	1
Calcium bicarbonate	2.7	1
Sodium chloride	1.5	/
DDGS	24	/
Methionine	0.8	/
Mineral and vitamin premix	2	1

Table S1. Concentrate composition of lactating and dry cow rations


Figure S1. Functional enrichment analysis and pathways classification targets of differentially expressed miRNAs. (**A**) Functional enrichment analysis of targets by 38 differentially expressed miRNAs in H and L group. (**B**) Pathway classification of targets by 38 differentially expressed miRNAs in H and L group.

B


Figure S2. (**A**) Gene pathway network analysis results indicated that signal transduction, cell cycle and metabolism were the most important pathway in H vs. L of putative gene. (**B**) Gene correlation was analysis based on pathway from KEGG database, showing that most genes have one association on the same pathway of the same database.

Gene symbol	Difference in log2 FC	P value
	(L / H)	1 value
LALBA	2.82	4.99E-07
ABCG2	2.51	7.52E-06
HSTN	2.47	7.78E-05
CSN1S1	1.98	2.77E-04
TMEM120B	1.69	1.83E-03
WNT5A	-2.24	2.22E-03
FASN	1.56	3.70E-03
PAEP	1.48	5.69E-03
CSN1S2	1.45	6.93E-03
SLC34A2	1.44	7.31E-03
RHOF	1.45	7.66E-03
SLC39A8	1.37	1.15E-02
CSTB	1.53	1.50E-02
MFGE8	1.26	1.82E-02
GPAM	1.19	2.59E-02

Table S2. RIP gene differentially expressed in L compared to H sample.

Figure S3. qPCR validation of the miRNAs and mRNAs expression. (**a**) L compared to D, (**b**) H compared to D, (**c**) H compared to L, (**d**) L compared to H of RIP – seq and mRNA – seq, L compared to H of qPCR.

